Design philosophy of operating
systems (1V)

Hung-Wel Tseng

Recap: Each process has a separate virtual memory space

code code code code

static data static data static data static data

heap heap

heap

heap

They are isolated from one
another. Each of them is not Virtually, every process seems to have a
supposed to know what Processor processor, but only a few of them are

happens to another one physically executing.

Recap: The basic process API of UNIX

e fork
e walt
e eXec
e X1t

Recap: How to implement redirection in shell

Say, we want to do ./a > b.txt Homework for you:
fork Think about the case when
The forked code opens b.txt your fork isequivalentto fork+exec()

The forked code dup the file descriptor to stdin/stdout
The forked code closes b.txt
exec("./a", NULL)

int pid, fd;
char cmd[2048], prompt = "myshell$"
while(gets(cmd) != NULL) {
if ((pid = fork()) ==0) {
fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
dup2(fd,);
close(fd);
execv(”./a",NULL);
¥
else
printf(“%s ", prompt);
}

int pid, fd;
char cmd[2048], prompt = “myshell$"
while(gets(cmd) != NULL) {

+ ((pid = fork()) == 0) {

fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);

dup2(fd,);
close(fd);
execv(”./a",NULL);
}
else
orintf("%s ", prompt);
5

The shell can respond to next input

static data

Why “Mach"?

- The hardware is changing

be built and future development of UNIX-like systems for new architectures

* MU|tIprOCeSSOrS can continue. The computing environment for which Mach is targeted spans a

wide class of systems, providing basic support for large, general purpose mul-

* Networked ComDUtlng tiprocessors, smaller multiprocessor networks and individual workstations (see
- The software

- The demand of extending an OS easily
- Repetitive but confusing mechanisms for similar stuffs

As the complexity of distributed environments and multiprocessor archi-
tectures increases, it becomes increasingly important to return to the original
UNIX model of consistent interfaces to system facilities. Moreover, there is a
clear need to allow the underlying system to be transparently extended to allow
user-state processes to provide services which in the past could only be fully
integrated into UNIX by adding code to the operating system kernel.

Make UNIX great again! N

5

Whys v.s. whats

- How many pairs of the "why" and the “what"” in Mach are correct?

Support for multiprocessors Threads
Networked computing Messages/Ports
OS Extensibility Microkernel/Object-oriented design
Repetitive but confusing mechanisms Messages/Ports
A. O
B. 1
C. 2

Ul
w

[m
I

Intel Sandy Bridge

. 21 S | uu-- |
Core|Core Core !

-{

3’

Q!?

!

l

ShareL3 $

Core|Core|Core|Core

Concept of chip multiprocessors

Processor

Core Core Core Core
Registers Registers Registers Registers

L1-$ L1-$ L1-$ L1-$
LY LY LY LY
L2-$ L2-$ L2-$ L2-$

SR SR SR SR

Main memory is eventually shared among processor
cores

Current scoreboard

Red Blue

Outline

- Mach: A New Kernel Foundation For UNIX Development (cont.)
- Taxonomy of Kernels

- Threads

10

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta, Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian,
Michael Young
Computer Science Department, Carnegie Mellon University

1

Tasks/Processes and threads

- How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
® The context switch and creation overhead of processes is higher

@ The overhead of exchanging data among different computing tasks for the
same applications is higher in process model

® The demand of memory usage is higher when using processes

@ The security and isolation guarantees are better achieved using processes
A. O

moow
A wp>N-

12

Tasks/Processes and threads

- How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
® The context switch and creation overhead of processes is higher

@ The overhead of exchanging data among different computing tasks for the
same applications is higher in process model

® The demand of memory usage is higher when using processes

@ The security and isolation guarantees are better achieved using processes
A. O

moow
A wp>N-

13

Tasks/processes

Task #1 Task #2 Task #3 Task #4
CPU
e CPU 5C e CPU oo
Memory

/O

/O

/O

Each process has its own unique virtual memory address
space, its own states of execution, i't's”own set of I/Os

static data

static data static data static data

heap

heap

heap

heap

a = 0x01234567 a = OxDEADBEEF

a = Ox87654321

a = Ox95273310

14

Threads

Task #1 Task #2

Thread #1 Thread #2 Thread #3 Thread #1 Thread #2 Thread #3

pc@ m—pc‘ - hal o el B

Each process has its own unique virtual memory address
space, its own states of execution,its.own set.of 1/Os
Each thread has its own PC, states of execution, but shares
memory address spaces, |/Os without threads withinthe -
same process

a = 0x01234567 S DR

15

The cost of creating processes

- Measure process creation overhead using Imbench http://
www.bitmover.com/Imbench/

16

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

The cost of creating processes

- Measure process creation overhead using

Imbench http://www.bitmover.com/
Imbench/

» On a 3.7/GHz intel Core 15-9600K
Processor
- Process fork+exit ~ 57 microseconds
- More than 16K cycles

17

Operations

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Send 2K bytes over network

Main memory reference

Read 1 MB sequentially from memory
Compress 1K bytes with Zippy
Read 4K randomly from SSD*
Read 1 MB sequentially from SSD*
Round trip within same datacenter
Read 1 MB sequentially from disk
Disk seek

Send packet CA-Netherlands-CA

Latency (ns)
Tns

3ns

4ns

17 ns

44 ns

100 ns
3,000 ns
2,000 ns
16,000 ns
49,000 ns
500,000 ns
825,000 ns
2,000,000 ns
150,000,000 ns

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

Tasks/Processes and threads

- How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?

® The context switch and creation overhead of processes is higher

ou have to chang e tables, warm up TLBs, warm up caches, create a new memory space ...

® The overhead of exchanglngeollog%a among different computing tasks for the
same applications is higher in process model

— you cannot directly share data without leveraging other mechanisms

® The demand of memory usage is higher when using processes

. . — each process heeds its own address space even if mast data are potentially identical
@ The security and isolation guaran’?ees are better achieved using processes

A O — separate address, it's not easy to access data from another process

O O0Ow
w N =

[T
I

18

Why Threads?

- Process is an abstraction of a computer
- When you create a process, you duplicate everything

- However, you only need to duplicate CPU abstraction to parallelize
computation tasks

- Threads as lightweight processes

- Thread is an abstraction of a CPU in a computer
- Maintain separate execution context

- Share other resources (e.g. memory)

19

What should threads share?

- How many of the following memory elements should be shared by
two threads in the same process?
® Stack section
@ Data section
® Text/code section
@ Page table
A. O

moOoOw
A W N -

20

What should threads share?

- How many of the following memory elements should be shared by
two threads in the same process?
® Stack section
@ Data section
® Text/code section
@ Page table
A. O

moOoOw
A W N -

21

The virtual memory of single-threaded applications

static data

heap

The virtual memory of multithreaded applications

static data

heap

stack #1 T
stack

Case study: Chrome v.s. Firefox

o @)

Wi\
.each of these is a process

806 ¥ 4 M Home of theMozill . * | @ Moalla Frefex Sur. .~ | +

Welcome to Chrome w o) (8- s Dhie s s |=

You're using a fast new browser. Mouse over the markers below for three quick tips.

each of these is a thread

e 7 K

Sti“ reed help’) Learn More

Memory usage?

~Stability?
Security?
Latency?

24

static data static data static data static data

heap heap heap heap

Firefox

static data

Everything here is shared/
visible among all threads

within the same process!

Why “Mach"?

- The hardware is changing

be built and future development of UNIX-like systems for new architectures

* MU|t|prOceSSOrS can continue. The computing environment for which Mach is targeted spans a

N k d . wide class of systems, providing basic support for large, general purpose mul-
* etwor e ComDUtlng tiprocessors, smaller multiprocessor networks and individual workstations (see
- The software
- The demand of extending an OS easily

- Repetitive but confusing mechanisms for similar stuffs

As the complexity of distributed environments and multiprocessor archi-
tectures increases, it becomes increasingly important to return to the original
UNIX model of consistent interfaces to system facilities. Moreover, there is a
clear need to allow the underlying system to be transparently extended to allow
user-state processes to provide services which in the past could only be fully
integrated into UNIX by adding code to the operating system kernel.

27

Interprocess communication

- UNIX provides a variety of mechanisms
- Pipes

- Pty's

- Signals

- Sockets

- No protection

- No consistency

- Location dependent

28

Ports/Messages

- Port is an abstraction of:

- Message queues

- Capability

- What do ports/messages promote?

- Location independence — everything is communicating with ports/
messages, ho matter where it is

29

Li)]

‘ < w |20 q :_‘5 0 - 4 [(xzle [|xs P xo [x/» % 0
' - -

- (< e =le ‘ wle il [<ie ule wle

“ | a6 (_ae | lale —aa [ae |_o@ [Jew o

= = =) . = = — =Y =)

‘ B BEICHE . v <o [|ala| [|«le T <o [|| | «le

; - s Vv e = R < 8 R

31

ECONOMY

LRI S IR IR I B IR

< < <i[an <o[cd/an
¥ 8 I B B K E

2

w3)

w
. 5t
oo B
- - 4

8 z
L -

- p—
aa .F
s =

Board the plane M .
[= |
Business Class g, Business Class Cabin
Passenger
- ht amplificatiyn-"
Exit the plane g P 5 Economy Class Seat
Economy Class g (
_~— Passenger
Request a drink v Economy Class Cabin
Flight Attendant Galley - o -
- -
-ga 2990 oq

32

What is capability? — Hydra

- An access control list associated with an object

- Contains the following:
- A reference to an object
- Alist of accessrights

- Whenever an operation is attempted:

- The requester supplies a capabillity of referencing the requesting
object — like presenting the boarding pass

- The OS kernel examines the access rights
- Type-independant rights
- Type-dependent rights

33

Ports/Messages

Port Z N
. Capability of Port Z

Capability of A #Q0 | read, write

Program A

message = “something”;
d t Z, I . s

send(port Z, message) Message queues

0

Capability of B

—

Program B

recv(port Z, message)

class JBT {

int variable = 5;

public static void main(String args[]) {

JBT obj = new IJIBT();

obj.method(20):
obj.method();

}

void method(int variable) {
variable = 10:;
System.out.println("Value
System.out.println("Value

}

void method() {
int variable = 40:
System.out.println("Value
System.out.println("Value

}

of Instance variable
of Local variable :"

of Instance variable :" + this.variable)

of Local variable :"

:" + this.variable);

+ variable);

+ variable);

°
)

What's in the kernel?

- How many of the following Mach features/functions are
Implemented in the kernel?
® 1/O device drivers
@ File system
® Shell
@ Virtual memory management
A. O

moOow
AwN =

36

What's in the kernel?

- How many of the following Mach features/functions are
Implemented in the kernel?
® 1/O device drivers
@ File system
® Shell
@ Virtual memory management
A. O

moOow
AwN =

37

What's in the kernel?

- How many of the following Mach features/fun

Implemented in the kernel?
® 1/O device drivers
@ File system
® Shell
@ Virtual memory management
A. O

o
N

0] 1
N

> W

38

User processes

i Mach Network :
OS5 i 1 UNIX Compatibility

L}
L unctional:ty: + 1 Munctionality:

E tc.mr.c nctwc:rl:. Il'J(; - : 1 UNIX File Svstem
o Distributed filesystem ¥ %y x procass Management
1 Authentication - otc

1
1
1
1 Autherizaton 1o :
L} 1
' Network resource 5 = '
: manazement T 8 N '
1 Network paging 5 !
]]
1
: etc. ’ . 1

Mach-1 Kernel Layer

“unctionality:

Virtual memeory manazement
[nterprocess communication
Low-level device drivers
Multiprocessor scheduling
Redirectdor of UNIX traps

Poll close in 1:30

Types of kernels

- What type of kernels does the UNIX described in Dennis M. Ritchie's
paper belong to?

A. Microkernel — the kernel only provides a minimal set of services
Including memory management, multitasking and inter-process
communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

39

Poll close in 1:30

Types of kernels

- What type of kernels does the UNIX described in Dennis M. Ritchie's
paper belong to?

A. Microkernel — the kernel only provides a minimal set of services
Including memory management, multitasking and inter-process
communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

40

Types of Kernels

user
. . . mode dynamically
Monolithic Micro Modular loadable
kernel

modules

-
..

Server programs File Server §

Device Application .-*"
Drivers IPC

Application | Server |Device

Virtual File Systems, System IPC programs | Drivers

operating calls, IPC, File systems,
system scheduler, virtual memory,
device drivers, dispatcher. kernel Basic IPC, Virtual Memory, Basic IPC, Virtual Memory,
mode Scheduling Scheduling

Hardware

Hardware Hardware

Linux,

Original :
UNIX Hydra, Mach Windows,

MacOS

41

Types of kernels

- What type of kernels does the UNIX described in Dennis M. Ritchie's
paper belong to?

A. Microkernel — the kernel only provides a minimal set of services
Including memory management, multitasking and inter-process
communication Hydra, Mach

. Monolithic — the kernel implements every function that cannot be in a

user-space library: device drivers, scheduler, memory handling, file
systems, network stacks Old UNIX

C. Modular — the kernel provides a basic set of functions like

microkernels, but allows load/unload kernel modules if necessar 2SD
ree

D. Layered kernel — the kernel follows strlct ayere<§I 8e3|gn that?ower—
order module cannot interact with higher-order modules THE

42

Why not microkernels?

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

D. Microkernels are not as competitive as monolithic kernels in
terms of application performance

E. Microkernels are less flexible than monolithic kernels

43

Why not microkernels?

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

D. Microkernels are not as competitive as monolithic kernels in
terms of application performance

E. Microkernels are less flexible than monolithic kernels

44

Why not microkernels?

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

E. Microkernels are less flexible than monolithic kernels

45

The impact of Mach

- Threads
- Extensible operating system kernel design

. Strongly influenced modern operating systems
- Windows NT/2000/XP/7/8/10
- MacQOS

46

Documentation Archive

g & developer.apple.com

Kernel Programming Cuide

¥ Tabhke of Contenis

About This Document
Keep Out

Kernel Architecturas
Overview

The Early Boot Frocess
Security Considerations
Performance Considerations
Kernel Programming Style
Mach Overview

Memory and Virtual Memory

Mach Scheduling and Thread

Interfaces

Bootstrap Contexts

1,0 Kit Overview

BSD Overview

File Systems Overview
Network Architecture
Boundary Crossings
Synchronization Primitives
Miscellancous Kernel
Services

Kernel Extension Overview

Building and Debugging
Kernels

Bibliography
Revision History
Glossary

Mach Overview

The fundamental services and primitives of the OS X kernel are based on Mach 3.0. Apple has mod fied and extercded Mach to better meet OS X functional and p

Mzch 3 0 was anginally conreived as a simple, extensihle, communications microkernel tis capable of running a< a stand-a one <ernel, with athar traditianal o
networking stacks rurring as user-mode servers.

Hawever, in OS5 X, Mach is 'inked with other kernel components into a single kernel address space. This is primarily for performance; it is much faster ta make a
messayges o1 do remole procedure calls (RPC) belween sepdrate tasks. This modular structure results in @ more robust and extensible system than a monolithic |
microkerrel.

Thus in OS X, Mach is not primarily a communication hub between clients and servers. Instead, its value consists of its abstractions, its extensibility, and its flax
* gbjact-based AP's with communication channels (for example, ports) as object references

« higny parallel execution, including preemptvely scheduled threads and support for SMP

« a flaxible scheduling framework, with sunoort for real-time usage

= a comglete set of JPC primitives, including messaging, RPC, synchronization, and notificaticn

» support for large virtual address spaces, shared memory regions, and memory objects backec by persistent store

« provan extensibility and portability, for examp e across instruction set architactures and in distributed environments

- security and resource management as a fundamental principle of design; all rescurces are virtualized

Mach Kernel Abstractions

Mach provides a small set of abstracticns that have been designed tc be both simp'e and powarful. Thase ara the main kernal abstractions:

e Tasks. The units of resource ownership, each task consists of a virtual address space. a port rigint narnespdce, and one or more threads. (Similar W0 a process.
o Threads. The units ¢f CPU execution within a task.

e Address space. In canjunction with memory managers, Mach implements the notion of a sparse virrua' address space and shared memory.

e Memory objects. The internal units of memory management. Memory chjects include named entries and regions; they are representations of potentizlly parsi
e FPorts. Secure, simplex commurication channels, accessible on'y via send and receive capabilities (known as port rights).

« JPC. Message queues, remote procedure calls, notifications, semaphores, and lock sets.

47

« Time. Clocks, timers, anc waiting.

Thread programming &
synchronization

The virtual memory of multithreaded applications

Everything here is shared/
visible among all threads
within the same process!

stack #1 T

Joint Banking

withdraw

$20 Bank of UCR

What is the new balance each would see?E
107 R ,_" IVERSIDER m——

deposit current balance: $40
$10

50

Joint Banking

- If the shared variable, balance, initially has the value of 40, what
value(s) might it hold after threads A and B finish after we call
deposit(10) andwithdraw(20)?

Thread A Thread B
deposit(int amt) { withdraw(int amt) {

int bal; int bal;

bal = getBalance(); bal = getBalance();
A. 30 bal = bal + amt; bal = bal - amt;

setBalance(bal);: setBalance(bal);
B. 20 or 30 bal = checkBalance(); bal = checkBalance();
C. 20 30 or 50 printReceipt(bal); printReceipt(bal);

* I I } }

D. 10, 20, or 30 —

57

Joint Banking

- If the shared variable, balance, initially has the value of 40, what
value(s) might it hold after threads A and B finish after we call
deposit(10) andwithdraw(20)?

Thread A Thread B
deposit(int amt) { withdraw(int amt) {

int bal; int bal;

bal = getBalance(); bal = getBalance();
A. 30 bal = bal + amt; bal = bal - amt;

setBalance(bal);: setBalance(bal);
B. 20 or 30 bal = checkBalance(); bal = checkBalance();
C. 20 30 or 50 printReceipt(bal); printReceipt(bal);

* I I } }

D. 10, 20, or 30 —

52

Bank Account Race Condition

current balance: $50 current balance: $40
Thread A Thread B
deposit(int amt) { withdraw(int amt) {
int bal: int bal;
bal = getBalance(): * bal = getBalance();
bal = bal + amt; bal = bal - amt;
SetBalance(bal); SetBalance(bal)
bal = checkBalance(): bal = checkBalance();
printReceipt(bal): printReceipt(bal);
) Iy

Step 1: Taruns and calls getBalance followed by adding amt (10) to bal

53

Bank Account Race Condition

current balance: $50 current balance: $20
Thread A Thread B
deposit(int amt) { withdraw(int amt) {
int bal: int bal;
bal = getBalance(); bal = getBalance();
bal = bal + amt; bal = bal - amt;
SetBalance(bal); setBalance(bal);
bal = checkBalance(): bal = checkBalance();
printReceipt(bal): printReceipt(bal);
) s

O — T

T —

Step 2: Switch to Tg which calls getBalance, followed by subtracting amt (20) from bal

54

Bank Account Race Condition

current balance: $50 current balance: $20
Thread A Thread B
deposit(int amt) { withdraw(int amt) {
int bal: int bal;
bal = getBalance(); bal = getBalance();
bal = bal + amt; bal = bal - amt;
* setBalance(bal): setBalance(bal);
bal = checkBalance(); ba} checkBalance();
printReceipt(bal): printReceipt(bal);
) s

Step 3: Switch back to Ta which calls setBalance

55

Bank Account Race Condition

current balance: $50 current balance: $20
Thread A Thread B
withdraw(int amt) {

deposit(int amt) {

int bal: int bal;

bal = getBalance();

bal = getBalance();
bal = bal - amt;

bal = bal + amt;
» setBalance(bal): setBalance(bal);
bal = checkBalance(); bal = checkBalance();
printReceipt(bal): printReceipt(bal);
1 s

O — T

L — T

Step 4: Switch back to and finish Tg by calling setBalance, followed by printReceilpt

56

Bank Account Race Condition

current balance: $20 current balance: $20
Thread A Thread B
deposit(int amt) { withdraw(int amt) {
int bal: int bal;
bal = getBalance(); bal = getBalance();
bal = bal + amt; bal = bal - amt;
* setBalance(bal): setBalance(bal);
bal = checkBalance(); bal = checkBalance();
printReceipt(bal): printReceipt(bal);
) s

Step 5: Finish Ta by calling checkBalance, followed by printRecelpt
Honey, we need to chat

57

Joint Banking

- If the shared variable, balance, initially has the value of 40, what
value(s) might it hold after threads A and B finish after we call
deposit(10) andwithdraw(20)?

Thread A Thread B
deposit(int amt) { withdraw(int amt) {

int bal; int bal;

bal = getBalance(); bal = getBalance();
A. 30 bal = bal + amt; bal = bal - amt;

setBalance(bal);: setBalance(bal);
B. 20 0r 30 bal = checkBalance(); bal = checkBalance();
C._ 20 30 or50 printReceipt(bal); printReceipt(bal);

° I I } }

D. 10, 20, or 30 —_ —

58

Processors/threads are not-deterministic

- Processor/compiler may reorder your memory operations/
Instructions

- Each processor core may not run at the same speed (cache
misses, branch mis-prediction, |/O, voltage scaling and etc..)

- Threads may not be executed/scheduled right after it's
spawned

59

Synchronization

- Concurrency leads to multiple active processes/threads that
share one or more resources

- Synchronization involves the orderly sharing of resources
- All threads must be on the same page
- Need to avoid race conditions

60

Critical sections

- Protect some pieces of code that access shared resources
(memory, device, etc.)

- For safety, critical sections should:
- Enforce mutual exclusion (i.e. only one thread at a time)
- Execute atomically (all-or-nothing) before allowing another thread

61

ldentifying Critical Sections

- Which is the smallest code region in Thread A that we can
make as a critical section to guarantee the outcome as 307

Thread A Thread B
int deposit(int amt) { int withdraw(int amt) {
int bal; int bal;

AI: bal = getBalance(); bal = getBalance();
bal bal + amt;]c D bal bal - amt;
setBalance(bal); E setBalance(bal):

B

bal = checkBalance(); bal = checkBalance();

printReceipt(bal); printReceipt(bal);
return bal; return bal;

} }

62

ldentifying Critical Sections

- Which is the smallest code region in Thread A that we can
make as a critical section to guarantee the outcome as 307

Thread A Thread B
int deposit(int amt) { int withdraw(int amt) {
int bal; int bal;

AI: bal = getBalance(); bal = getBalance();
bal bal + amt;]c D bal bal - amt;
setBalance(bal); E setBalance(bal):

B

bal = checkBalance(); bal = checkBalance();

printReceipt(bal); printReceipt(bal);
return bal; return bal;

} }

63

ldentifying Critical Sections

- Which is the smallest code region in Thread A that we can
make as a critical section to guarantee the outcome as 307

Thread A Thread B
int deposit(int amt) { int withdraw(int amt) {
int bal; int bal;

bal = getBalance(); bal = getBalance();
AI: bal = bal + amt;]c bal bal - amt;

setBalance(bal); E setBalance(bal):
B[bal = checkBalance() bal = checkBalance();

printReceipt(bal); printReceipt(bal);
return bal; return bal;

} }

64

Critical sections

Thread A Thread B
deposit(int amt) { withdraw(int amt) {
int bal; int bal;

bal = getBalance(); bal = getBalance();
bal bal + amt; bal = bal - amt;

setBalance(bal); setBalance(bal);
bal = checkBalance() bal = CheckBalance()
printRecelpt(bal); printRecelpt(bal);

65

Critical section

- Entry section acts as barrier, only allowing a single thread in at a
time
- EXxit section should remove barrier for other threads’ entry

deposit(int amt) {
int bal:
entry section

bal = getBalance();
bal = bal + amt;
setBalance(bal):

bal = checkBalance();

printReceipt(bal);

¥

00

Announcement

- Reading quizzes due next Tuesday
- Project groups in 2
- Will release the project by the end of the week

- You may preview the idea/scope of the project
https://github.com/hungweitseng/CS202-ResourceContainer

- Install an Ubuntu Linux 16.04 using VirtualBOX or VMWare as
soohn as you can!

67

https://github.com/hungweitseng/CS202-ResourceContainer

Computer

Engineering

