
Design philosophy of operating
systems (IV)

Hung-Wei Tseng

Recap: Each process has a separate virtual memory space

2

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Processor
Virtually, every process seems to have a
processor, but only a few of them are

physically executing.

They are isolated from one
another. Each of them is not
supposed to know what
happens to another one

• fork
• wait
• exec
• exit

3

Recap: The basic process API of UNIX

• Say, we want to do ./a > b.txt
• fork
• The forked code opens b.txt
• The forked code dup the file descriptor to stdin/stdout
• The forked code closes b.txt
• exec(“./a”, NULL)

4

Recap: How to implement redirection in shell

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

The shell can respond to next input

Homework for you:
Think about the case when
your fork is equivalent to fork+exec()

• The hardware is changing
• Multiprocessors
• Networked computing

• The software
• The demand of extending an OS easily
• Repetitive but confusing mechanisms for similar stuffs

5

Why “Mach”?

Make UNIX great again!

• How many pairs of the “why” and the “what” in Mach are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

6

Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Microkernel/Object-oriented design

Intel Sandy Bridge

7

Core Core Core Core

Core Core Core Core

Share L3 $

Concept of chip multiprocessors

8

Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Main memory
Main memory is eventually shared among processor

cores

Current scoreboard

9

Red Blue

4 5

• Mach: A New Kernel Foundation For UNIX Development (cont.)
• Taxonomy of Kernels
• Threads

10

Outline

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta , Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian ,
Michael Young

Computer Science Department, Carnegie Mellon University

11

• How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
! The context switch and creation overhead of processes is higher
" The overhead of exchanging data among different computing tasks for the

same applications is higher in process model
The demand of memory usage is higher when using processes
$ The security and isolation guarantees are better achieved using processes
A. 0
B. 1
C. 2
D. 3
E. 4

12

Tasks/Processes and threadsPoll close in

• How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
! The context switch and creation overhead of processes is higher
" The overhead of exchanging data among different computing tasks for the

same applications is higher in process model
The demand of memory usage is higher when using processes
$ The security and isolation guarantees are better achieved using processes
A. 0
B. 1
C. 2
D. 3
E. 4

13

Tasks/Processes and threadsPoll close in

Tasks/processes

14

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #1

PC

a = 0x01234567

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #2

PC

a = 0xDEADBEEF

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #3

PC

a = 0x87654321

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #4

PC

a = 0x95273310

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Threads

15

Virtual memoryheap

code

static data

code

stack

Task #1

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memoryheap

code

static data

code

stack

Task #2

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Each thread has its own PC, states of execution, but shares
memory address spaces, I/Os without threads within the

same process

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

16

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• Measure process creation overhead using
lmbench http://www.bitmover.com/
lmbench/

• On a 3.7GHz intel Core i5-9600K
Processor
• Process fork+exit ~ 57 microseconds
• More than 16K cycles

17

The cost of creating processes

Operations Latency (ns)
L1 cache reference 1 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100 ns
Read 1 MB sequentially from memory 3,000 ns
Compress 1K bytes with Zippy 2,000 ns
Read 4K randomly from SSD* 16,000 ns
Read 1 MB sequentially from SSD* 49,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from disk 825,000 ns
Disk seek 2,000,000 ns
Send packet CA-Netherlands-CA 150,000,000 ns

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
! The context switch and creation overhead of processes is higher
" The overhead of exchanging data among different computing tasks for the

same applications is higher in process model
The demand of memory usage is higher when using processes
$ The security and isolation guarantees are better achieved using processes
A. 0
B. 1
C. 2
D. 3
E. 4

18

Tasks/Processes and threads

— you have to change page tables, warm up TLBs, warm up caches, create a new memory space …

— you cannot directly share data without leveraging other mechanisms

— each process needs its own address space even if most data are potentially identical
— separate address, it’s not easy to access data from another process

• Process is an abstraction of a computer
• When you create a process, you duplicate everything
• However, you only need to duplicate CPU abstraction to parallelize
computation tasks

• Threads as lightweight processes
• Thread is an abstraction of a CPU in a computer
• Maintain separate execution context
• Share other resources (e.g. memory)

19

Why Threads?

• How many of the following memory elements should be shared by
two threads in the same process?
! Stack section
" Data section
Text/code section
$ Page table
A. 0
B. 1
C. 2
D. 3
E. 4

20

What should threads share?Poll close in

• How many of the following memory elements should be shared by
two threads in the same process?
! Stack section
" Data section
Text/code section
$ Page table
A. 0
B. 1
C. 2
D. 3
E. 4

21

What should threads share?Poll close in

The virtual memory of single-threaded applications

22

Virtual memory

heap

code

static data

stack

The virtual memory of multithreaded applications

23

Virtual memory

heap

code

static data

stackstack #1

stack #2

stack #3

Case study: Chrome v.s. Firefox

24

each of these is a process

each of these is a thread

Memory usage?
Stability?
Security?
Latency?

Chrome

25

Virtual memory

heap

code

static data

stack

Tab #1

Virtual memory

heap

code

static data

stack

Tab #2

Virtual memory

heap

code

static data

stack

Tab #3

Virtual memory

heap

code

static data

stack

Tab #4

Firefox

26

Virtual memory

heap

code

static data

stackTab #1

Tab #2

Tab #3

Everything here is shared/
visible among all threads
within the same process!

• The hardware is changing
• Multiprocessors
• Networked computing

• The software
• The demand of extending an OS easily
• Repetitive but confusing mechanisms for similar stuffs

27

Why “Mach”?

• UNIX provides a variety of mechanisms
• Pipes
• Pty’s
• Signals
• Sockets

• No protection
• No consistency
• Location dependent

28

Interprocess communication

• Port is an abstraction of:
• Message queues
• Capability

• What do ports/messages promote?
• Location independence — everything is communicating with ports/
messages, no matter where it is

29

Ports/Messages

• You can only enjoy the ground services
(objects) that your booking class provides

• You can only access the facilities
(objects) on the airplane according to the
booking class

30

Capability v.s. boarding pass

31

Capability in a plane

32

Economy Class
Passenger

Business Class
Passenger

Business Class Seat

Business Class Cabin

Economy Class Seat

Economy Class Cabin

Galley

IFE

Flight Attendant

Sit

Request a drink

Exit the plane

Board the plane

Watch

Access

Right amplification

• An access control list associated with an object
• Contains the following:

• A reference to an object
• A list of access rights

• Whenever an operation is attempted:
• The requester supplies a capability of referencing the requesting
object — like presenting the boarding pass

• The OS kernel examines the access rights
• Type-independant rights
• Type-dependent rights

33

What is capability? — Hydra

Ports/Messages

34

Program A
message = “something”;
send(port Z, message);

Port Z send

Port B recv
Object C read, write
Object D read

Capability of A

Port Z

Program B

recv(port Z, message);

0
1
2
3
4

Message queues

MQ0 read, write

Capability of Port Z

Port Z recv
Port B send

Object C read, write
Object D read

Capability of B

35

class JBT {

 int variable = 5;

 public static void main(String args[]) {
 JBT obj = new JBT();

 obj.method(20);
 obj.method();
 }

 void method(int variable) {
 variable = 10;
 System.out.println("Value of Instance variable :" + this.variable);
 System.out.println("Value of Local variable :" + variable);
 }

 void method() {
 int variable = 40;
 System.out.println("Value of Instance variable :" + this.variable);
 System.out.println("Value of Local variable :" + variable);
 }
}

• How many of the following Mach features/functions are
implemented in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

36

What’s in the kernel?Poll close in

• How many of the following Mach features/functions are
implemented in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

37

What’s in the kernel?Poll close in

• How many of the following Mach features/functions are
implemented in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

38

What’s in the kernel?

• What type of kernels does the UNIX described in Dennis M. Ritchie’s
paper belong to?
A. Microkernel — the kernel only provides a minimal set of services

including memory management, multitasking and inter-process
communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

39

Types of kernelsPoll close in

• What type of kernels does the UNIX described in Dennis M. Ritchie’s
paper belong to?
A. Microkernel — the kernel only provides a minimal set of services

including memory management, multitasking and inter-process
communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

40

Types of kernelsPoll close in

41

Types of Kernels

Virtual File Systems, System
calls, IPC, File systems,

scheduler, virtual memory,
device drivers, dispatcher. Basic IPC, Virtual Memory,

Scheduling

Application
IPC

Server
programs

Device
Drivers

File
Server

Applications

Application
IPC

Server programs

Device
Drivers

File Server

kernel
mode

kernel
mode

operating
system

dynamically
loadable
kernel

modules
Monolithic Micro Modular

Hydra, MachOriginal
UNIX

Linux,
Windows,
MacOS

user
mode

user
mode

HardwareHardware Hardware

Applications Applications

Basic IPC, Virtual Memory,
Scheduling

user
mode

• What type of kernels does the UNIX described in Dennis M. Ritchie’s
paper belong to?
A. Microkernel — the kernel only provides a minimal set of services

including memory management, multitasking and inter-process
communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

42

Types of kernels

Hydra, Mach

Old UNIX

Linux, Windows, MacOS, FreeBSD
THE

43

Why not microkernels?
• Although Mach’s design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?
A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

Poll close in

44

Why not microkernels?
• Although Mach’s design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?
A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

Poll close in

• Although Mach’s design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?
A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

45

Why not microkernels?

Context switches!

• Threads
• Extensible operating system kernel design
• Strongly influenced modern operating systems

• Windows NT/2000/XP/7/8/10
• MacOS

46

The impact of Mach

47

Thread programming &
synchronization

48

The virtual memory of multithreaded applications

49

Virtual memory

heap

code

static data

stack #1

stack #2

stack #3

Everything here is shared/
visible among all threads
within the same process!

Joint Banking

50

withdraw
$20

deposit
$10

current balance: $40

Bank of UCR

What is the new balance each would see?

• If the shared variable, balance, initially has the value of 40, what
value(s) might it hold after threads A and B finish after we call
deposit(10) and withdraw(20)?

A. 30
B. 20 or 30
C. 20, 30, or 50
D. 10, 20, or 30

51

Joint Banking

deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

Poll close in

• If the shared variable, balance, initially has the value of 40, what
value(s) might it hold after threads A and B finish after we call
deposit(10) and withdraw(20)?

A. 30
B. 20 or 30
C. 20, 30, or 50
D. 10, 20, or 30

52

Joint Banking

deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

Poll close in

Bank Account Race Condition

53

Step 1: TA runs and calls getBalance followed by adding amt (10) to bal

current balance: $40current balance: $50
deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

Bank Account Race Condition

54

Step 2: Switch to TB which calls getBalance, followed by subtracting amt (20) from bal

current balance: $20current balance: $50
deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

Bank Account Race Condition

55

Step 3: Switch back to TA which calls setBalance

current balance: $20current balance: $50
deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

Bank Account Race Condition

56

Step 4: Switch back to and finish TB by calling setBalance, followed by printReceipt

current balance: $20current balance: $50
deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

Bank Account Race Condition

57

Step 5: Finish TA by calling checkBalance, followed by printReceipt

current balance: $20current balance: $20
deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

Honey, we need to chat

• If the shared variable, balance, initially has the value of 40, what
value(s) might it hold after threads A and B finish after we call
deposit(10) and withdraw(20)?

A. 30
B. 20 or 30
C. 20, 30, or 50
D. 10, 20, or 30

58

Joint Banking

deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

• Processor/compiler may reorder your memory operations/
instructions

• Each processor core may not run at the same speed (cache
misses, branch mis-prediction, I/O, voltage scaling and etc..)

• Threads may not be executed/scheduled right after it’s
spawned

59

Processors/threads are not-deterministic

• Concurrency leads to multiple active processes/threads that
share one or more resources

• Synchronization involves the orderly sharing of resources
• All threads must be on the same page
• Need to avoid race conditions

60

Synchronization

• Protect some pieces of code that access shared resources
(memory, device, etc.)

• For safety, critical sections should:
• Enforce mutual exclusion (i.e. only one thread at a time)
• Execute atomically (all-or-nothing) before allowing another thread

61

Critical sections

• Which is the smallest code region in Thread A that we can
make as a critical section to guarantee the outcome as 30?

62

Identifying Critical Sections

int deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();

 printReceipt(bal);
 return bal;
}

Thread A
int withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();

 printReceipt(bal);
 return bal;
}

Thread B

A
B

C D E

Poll close in

• Which is the smallest code region in Thread A that we can
make as a critical section to guarantee the outcome as 30?

63

Identifying Critical Sections

int deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();

 printReceipt(bal);
 return bal;
}

Thread A
int withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();

 printReceipt(bal);
 return bal;
}

Thread B

A
B

C D E

Poll close in

• Which is the smallest code region in Thread A that we can
make as a critical section to guarantee the outcome as 30?

64

Identifying Critical Sections

int deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();

 printReceipt(bal);
 return bal;
}

Thread A
int withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();

 printReceipt(bal);
 return bal;
}

Thread B

A
B

C D E

Critical sections

65

deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

• Entry section acts as barrier, only allowing a single thread in at a
time

• Exit section should remove barrier for other threads’ entry

66

Critical section

deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();

 printReceipt(bal);
}

entry section

exit section

• Reading quizzes due next Tuesday
• Project groups in 2

• Will release the project by the end of the week
• You may preview the idea/scope of the project
https://github.com/hungweitseng/CS202-ResourceContainer

• Install an Ubuntu Linux 16.04 using VirtualBOX or VMWare as
soon as you can!

67

Announcement

https://github.com/hungweitseng/CS202-ResourceContainer

ͺͻͥ

Computer
Science &
Engineering

202

