Process/Thread/Task Scheduling

Hung-Wei Tseng

Recap: Each process has a separate virtual memory space

code code code code

static data static data static data static data

heap heap

heap

heap

They are isolated from one
another. Each of them is not Virtually, every process seems to have a
supposed to know what Processor processor, but only a few of them are

happens to another one physically executing.

Task #1

Thread #1 Thread #2

= ™ I

code

static data

0x01234567

Recap: Threads

Thread #3

CPU

Task #2

Thread #1 Thread #2

PC

cru |fgem cPU

code

static data

0x01234567

Thread #3

ES <

Recap: Why Threads?

- Process is an abstraction of a computer
- When you create a process, you duplicate everything

- However, you only need to duplicate CPU abstraction to parallelize
computation tasks

- Threads as lightweight processes

- Thread is an abstraction of a CPU in a computer
- Maintain separate execution context

- Share other resources (e.g. memory)

Joint Banking

- If the shared variable, balance, initially has the value of 40, what
value(s) might it hold after threads A and B finish after we call
deposit(10) andwithdraw(20)?

Thread A Thread B
deposit(int amt) { withdraw(int amt) {

int bal; int bal;

bal = getBalance(); bal = getBalance();
A. 30 bal = bal + amt; bal = bal - amt;

setBalance(bal);: setBalance(bal);
B. 20 0r 30 bal = checkBalance(); bal = checkBalance();
C._ 20 30 or50 printReceipt(bal); printReceipt(bal);

° I I } }

D. 10, 20, or 30 —_ —

Critical sections

Thread A Thread B
deposit(int amt) { withdraw(int amt) {
int bal; int bal;

bal = getBalance(); bal = getBalance();
bal bal + amt; bal = bal - amt;

setBalance(bal); setBalance(bal);
bal = checkBalance() bal = CheckBalance()
printRecelpt(bal); printRecelpt(bal);

Use pthread lock

int max;
volatile i1int balance = 0; // shared global variable
pthread_mutex_t lock PTHREAD _MUTEX_INITIALIZER;

T — e ————

int main(int argc, char xargv[])

h void *x mythread(void s*arg) {

if (argc != 2) {
fprintf(stderr, "usage: main-first <loopcount>\n");
exit(1);
¥
max = atoi(argv[1]l);
pthread_t pl, p2;
printf("main: begin [balance = %d] [%x]1\n", balance,
(unsigned int) &balance);
Pthread create(&pl, NULL, mythread, "A");
Pthread_create(&p2, NULL, mythread, "B");
// join waits for the threads to finish
Pthread _join(pl, NULL);
Pthread_join(p2, NULL);
printf("main: done\n [balance: %d]\n [should: %d]\n",
balance, max%*2); ¥
return 0;

T —— e

char xletter = arg;

printf("%s: begin\n", letter);

int 1;

for (1 = 0; 1 < max; i++) {
Pthread_mutex_lock(&lock):
balance++;
Pthread_mutex_unlock(&lock):

¥

printf("%s: done\n", letter):

return NULL;

Kernel: Types of Kernels

o o o d icall
Monolithic Micro Modular Toadable
kernel
modules

user
Applications

B : Server programs
Application | Server |Device

Virtual File Systems, System :
operating caIIs,IPC,‘I,=iIe syste:,ns, A2 Biodame e l
system scheduler, virtual memory,
device drivers, dispatcher. Basic IPC, Virtual Memory, arne Basic IPC, Virtual Memory,
Scheduling Scheduling

Hardware Hardware Hardware

Application
IPC

Device
Drivers

Linux,
Hydra, Mach Windows

UNIX J ’

MacOS

Original

Current scoreboard

Red Blue

Outline

- Mechanisms of changing processes
- Basic scheduling policies

- An experimental time-sharing system — The Multi-Level
Scheduling Algorithm

- Scheduler Activations
. Getting locks done correctly with modern OS scheduling

10

The mechanisms of changing
processes

The mechanisms of changing the running processes

- Cooperative Multitasking (non-preemptive multitasking)
- Preemptive Multitasking

12

Cooperative multitasking

- How many of the following statements about cooperative multitasking is/are
correct?
® The OS can change the running process if the current process give up the resource
@ The OS can change the running process if the current process traps into OS kernel

® The OS can change the running process if the current process raise an exception
like divide by zero

@ The OS can actively change the running process if the current process is running for
a long enough time

moow>
A WMN-—-O0

13

Cooperative multitasking

- How many of the following statements about cooperative multitasking is/are
correct?
® The OS can change the running process if the current process give up the resource
@ The OS can change the running process if the current process traps into OS kernel

® The OS can change the running process if the current process raise an exception
like divide by zero

@ The OS can actively change the running process if the current process is running for
a long enough time

moow>
A WMN-—-O0

14

Cooperative multitasking

- How many of the following statements about cooperative multitasking is/are

correct?
® TheOScanc
@ TheOScanc
® TheOScanc

nange t
nange t

nange t

ne running process if t
ne running process if t

ne running process if t

ne current process give up the resource
ne current process traps into OS kernel

ne current process raise an exception

like divide by zero anytime if we make a system call to the OS, the OS can potentially switch a proces

@ The OS ean actively change the running process if the current process is running for
a long enough time Unfortunately, the OS cannot — if the process never traps

O w >
N — O

ﬁ
8

[m
I

Cooperative multitasking — processes
voluntarily yield control periodically or

when idle in order to enable multiple

applications to be run simultaneously

15

Preemptive Multitasking

- The OS controls the scheduling — can change the running

process even though the process does not give up the
resource

- But how?

16

Poll close in 1:30
How to achieve preemptive multitasking

- Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

17

Poll close in 1:30
How to achieve preemptive multitasking

- Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

18

How to achieve preemptive multitasking

- Which of the following mechanism are used to support
preemptive multitasking?

A. Exception

B. Interrupt

C. System calls

19

Three ways to invoke OS handlers

. System calls / trap instructions — raised by applications
- Display images, play sounds

- Exceptions — raised by processor itself
- Divided by zero, unknown memory addresses

OS kernel

- Interrupts — raised by hardware g
. Keystroke, network packets

How preemptive multitasking works

. Setup a timer (a hardware feature by the processor)event
before the process start running

- After a certain period of time, the timer generates interrupt
to force the running process transfer the control to OS
kernel

- The OS kernel code decides if the system wants to
continue the current process

- |[f not — context switch
- If yes, return to the process

21

Scheduling Policies from
Undergraduate OS classes

Google Scholar operating system scheduling algorithms

Articles About 2,380,000 results (0.10 sec)

23

CPU Scheduling

- Virtualizing the processor
- Multiple processes need to share a single processor

- Create an illusion that the processor is serving my task by rapidly
switching the running process

- Determine which process gets the processor for how long

24

What you learned before

- Non-preemptive/cooperative: the task runs until it finished

- FIFO/FCES: First In First Out / First Come First Serve

- SJF: Shortest Job First

- Preemptive: the OS periodically checks the status of processes
and can potentially change the running process

- STCF: Shortest Time-to-Completion First

- RR: Round robin

25

Best for turn-around time

- Assume that we have the following 3 processes

O 5

L 4
4 T

which of the following scheduling policy yields the best average turn-around time?
(assume we prefer not to switch process if two process have the same criteria)

A. FIFO/FCFS: First In First Out / First Come First Serve
B. SJF: Shortest Job First

C. STCF: Shortest Time-to-Completion First

D. RR: Round robin

E. Two of the above

26

Best for turn-around time

- Assume that we have the following 3 processes

O 5

L 4
4 T

which of the following scheduling policy yields the best average turn-around time?
(assume we prefer not to switch process if two process have the same criteria)

A. FIFO/FCFS: First In First Out / First Come First Serve
B. SJF: Shortest Job First

C. STCF: Shortest Time-to-Completion First

D. RR: Round robin

E. Two of the above

27

Best for turn-around time

- Assume that we have the following 3 processes

5

0

1 4
4 T

which of the following scheduling policy yields the best average turn-around time?
(assume we prefer not to switch process if two process have the same criteria)

A. FIFO/FCFS: First In First Out / First Cloie P P2 Bl 5-0)+9-1+(10-9)=6.33
0O 1 2 3 4 5 © 7/ 8 9 10
0/ SJF: Shortest Job First I R
1 2 3 4 5

P2 (5-0)+(6-4)+(10-1)=5.33
{ : . — 0 6 7 8 9 10

. STCF: Shortest Tlme—to—CompIetlon_- - (5-0)+(6-4)+(10-1)=5.33
. : o 1 2 3 4 5 6 7/ 8 9 10
D. RR: Round robin N 2 B0 2 IR 2 BB 2 BB (10-0)+(9-1)+(5-4)=6.33
E. Two of the above 0 12 3 4 5 6 7 8 910

28

28

Parameters for policies

- How many of the following scheduling policies require knowledge of
process run times before execution?
@® FIFO/FCFS: First In First Out / First Come First Serve
@ SJF: Shortest Job First
® STCF: Shortest Time-to-Completion First
® RR: Round robin
A. O

moOoOw
A W N -

29

Parameters for policies

- How many of the following scheduling policies require knowledge of
process run times before execution?
@® FIFO/FCFS: First In First Out / First Come First Serve
@ SJF: Shortest Job First
® STCF: Shortest Time-to-Completion First
® RR: Round robin
A. O

moOoOw
A W N -

30

Parameters for policies

- How many of the following scheduling policies require knowledge of
process run times before execution?

® FIFO/FCEFS: First In First Out / First Come First Serve
(% . ohortest JobD FIrs

¢ STCF: Shortest Time-to

® RR: Round robin

A. O .
5 1 The best ones you learned in undergraduate

C. 2] OS does not even work in real!
D. — forget about them in real implementation
E.

3
A

31

An experimental time-sharing system

Fernando J. Corbato, Marjorie Merwin-Daggett and Robert C. Daley
Massachusetts Institute of Technology, Cambridge, Massachusetts

32

Why Multi-level scheduling algorithm

- Why MIT's experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the followings are correct?
® Optimize for the average response time of tasks
@ Optimize for the average turn-around time of tasks
® Optimize for the performance of long running tasks

@ Guarantee the fairness among tasks
A. O

moOoOw
A W N -

33

Why Multi-level scheduling algorithm

- Why MIT's experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the followings are correct?
® Optimize for the average response time of tasks
@ Optimize for the average turn-around time of tasks
® Optimize for the performance of long running tasks

@ Guarantee the fairness among tasks
A. O

moOoOw
A W N -

34

Why Multi-level scheduling algorithm

- Why MIT's experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the followings are correct?
® Optimize for the average response time of tasks
@ Optimize for the average turn-around time of tasks
® Optimize for the performance of long running tasks

4, The response time for programs of equal

@ Guarantee the falrneSS among taSkS eizZe, enterinz the system at the same time, and

being run for multiple quanta, is no worse than
‘ A O ‘ approximately twice the response-time occurring

in a single guanta round-rcbin procedure. If
B‘ 1 To illustrate the strategy that can be em~
C 2 ployed to improve the saturation performance
‘ of a time~sharing system, a multi~level schedu~
[) 23 ling algorithm is presented., This algorithm also

E- 4 Several important conclusions can be drawn
from the above algorithm which allow the perfor-

5 mance of the system to be bounded.

Why Multi-level scheduling algorithm?

. System saturation — the demand of computing is larger than
the physical processor resource available

. Service level degrades

- Lots of program swap ins-and-outs (known as context switches
In our current terminology) T

- User interface response timeisbad .
— you have to wait until your turn

- Long running tasks cannot make l
good progress — frequent N
swap in-and-out n —>

Figure 1, Service vs. Number of
36 Active Users

Context Switch Overhead

You think round robin should act like this —

O 1 2 3 4 5 ©6 /7 8 9 10

But the factis —
FE - e
1 1 2 2 3 3 4 4 5

e Your processor utilization can be very low if you switch frequently

0

eNo process can make sufficient amount of progress within a given period of time

o[t also takes a while to reach your turn

37

The Multilevel Scheduling Algorithm

- Place new process in the one of the queue
- Depending on the program size

p =

- w - . .
l.log ([_P.} + 1)J Wp is the program memory size — smaller ones are
o 2 W
q

assigned to lower numbered queues Why')

- Smaller tasks are given higher priority in the beginning

- Schedule processes in one of N queues
- Start in initially assigned queue n
- Run for 27 quanta (where rn is current depth)

- If not complete, move to a higher queue (e.g.n +1)
« Larger process will execute longer before switch

- Level m is run only when levels O to m-1 are empty

- Smaller process, hewer process are given higher priority
38

The Multilevel Scheduling Algorithm

- Not optimized for anything — it's never possible to have an
optimized scheduling algorithm without prior knowledge
regarding all running processes

- |t's practical — many scheduling algorithms used in modern
OSes still follow the same idea

39

Lottery Scheduling: Flexible Proportional-
Share Resource Management

Carl A. Waldspurger and William E. Weihl

40

Why Lottery

normous impact on throughput and response time. Accu-
enormous impact on throughput and response time. Accu Few general-purpose schemes even come close to sup-
rate control over the quality of service provided to users

and applications requires support for specilying relative Mporung flexible, ﬁresponswe co_nfllrol Eg_ir SCIVICE rale§.
computation rates. Such control is desirable across a wide ost approaches are not flexible, responsive

spectrum of systems. For long-running computations such
as scientific applications and simulations. the consumption
of computing resources that are shared among users and ap-
plications of varying importance must be regulated [Hel93].
For interactive computations such as databases and media-
based applications, programmers and users need the ability

. lone-running computations. Interactive systems require
We want Quality ot Service “Theoverhead of running those

ware systems. In fact, with the exception of hard real-time algorithms are high!
systems, it has been observed that the assignment of pri-
orities and dynamic priority adjustment schemes are often
ad-hoc [De190]. Even popular priority-based schemes tor
CPU allocation such as decay-usage scheduling are poorly
understood, despite the fact that they are employed by nu-
merous operating systems, including Unix [Hel93].

Existing fair share schedulers [Hen84, Kay88] and mi-
croeconomic schedulers [Fer88, Wal92] successtully ad-
dress some of the problems with absolute priority schemes.
However, the assumptions and overheads associated with
these systems limit them to relatively coarse control over

No body knows how they work...

41

Solution — Lottery and Tickets

What do ticket abstraction promote?

- How many of the following can the ticket abstraction in the lottery
paper promote?
® Proportional fairness
@ Machine-independent implementation of the scheduling policy
® Generic scheduling policy across different devices

@ Starvation free
A. O

moOoOw
A W N -

43

What do ticket abstraction promote?

- How many of the following can the ticket abstraction in the lottery
paper promote?
® Proportional fairness
@ Machine-independent implementation of the scheduling policy
® Generic scheduling policy across different devices

@ Starvation free
A. O

moOoOw
A W N -

44

What lottery proposed?

- Each process hold a certain number of lottery tickets
- Randomize to generate a lottery

- |f a process wants to have higher priority
- Obtain more tickets!

45

What do ticket abstraction promote?

- How many of the following can the ticket abstraction in the lottery
paper promote?
@ Proportion al fairness Tickets represent the share of a process should receive from a resource

@ Machine-independent implementation of the scheduling policy

® Generic scheduling polilyFACFESE TIffErErie gt feggendent of machine speeds or detall

@ Starvation free You may use tickets on everything you would like to share

A O Eventually every process with a ticket gets to run
. It's also state-free — reduce the overhead

O 0w
w N S

46

Ticket economics

- Ticket transfers

- Ticket inflation

- Ticket currencies

. Compensation tickets

47

How good is lottery?

The overhead is not too bad

- 1000 instructions ~ less than 500 nsona 2

GHz processor
Fairness

- Figure 5: average ratio in proportion to the

ticket allocation
Flexibility
. Allows Monte-Carlo

algorithm to dynamically
Inflate its tickets

Ticket transfer
- Client-server setup

48

30000 —

V\/\/\/\f hAVANA

20000) -

10O =

Average lterations (per sec)

L] 1 L] L] L] L] Ll L] I Ll Ll L] 1 I L] 1 1 L] I
0 50 100 150 200

Time (sec)

Figure 5: Fairness Over Time. Two tasks execuling the Dhry
stone benchmark with a 2: 1 ticket allocation. Averaged over the
entire run, the two tasks executed 25378 and 12619 iterations/sce.,
[or an aclual rato of 2.01 : 1.

The impact of “lottery”

- Data center scheduling
- You buy "times”
- Lottery scheduling of your virtual machine

49

Will you use lottery for your system?

- Will it be good for

- Event-driven application
- Real-time application

- GUIl-based system

- |s randomization a good idea?
- The authors later developed a deterministic stride-scheduling

50

Announcement

- Reading quizzes due next Tuesday

- Project released
- Groupsin 2
- Start as soon as you can — due in about a month

- Pull the latest version — had some changes for later kernel versions
https://github.com/hungweitseng/CS202-ResourceContainer

« Install an Ubuntu Linux 16.04.07 VM as soon as you can!

 Please do not use a real machine — you may not be able to reboot again
- Midterm

- Will release on 2/10/2021 0:00am and due on 2/15/202111:59:00pm

- You will have to find a consecutive, non-stop 80-minute slot with this period

- One time, cannot reinitiate — please make sure you have a stable system and network
« No late submissionis allowed

57

https://github.com/hungweitseng/CS202-ResourceContainer

Computer

Engineering

