
Process/Thread/Task Scheduling
Hung-Wei Tseng

Recap: Each process has a separate virtual memory space

2

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Processor
Virtually, every process seems to have a

processor, but only a few of them are
physically executing.

They are isolated from one
another. Each of them is not

supposed to know what
happens to another one

Recap: Threads

3

Virtual memory

heap

code

static data

code

stack

Task #1

0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memory

heap

code

static data

code

stack

Task #2

0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

• Process is an abstraction of a computer
• When you create a process, you duplicate everything
• However, you only need to duplicate CPU abstraction to parallelize

computation tasks
• Threads as lightweight processes

• Thread is an abstraction of a CPU in a computer
• Maintain separate execution context
• Share other resources (e.g. memory)

4

Recap: Why Threads?

• If the shared variable, balance, initially has the value of 40, what
value(s) might it hold after threads A and B finish after we call
deposit(10) and withdraw(20)?

A. 30
B. 20 or 30
C. 20, 30, or 50
D. 10, 20, or 30

5

Joint Banking

deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

Critical sections

6

deposit(int amt) {
 int bal;

 bal = getBalance();
 bal = bal + amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread A
withdraw(int amt) {
 int bal;

 bal = getBalance();
 bal = bal - amt;
 setBalance(bal);
 bal = checkBalance();
 printReceipt(bal);
}

Thread B

7

int max;
volatile int balance = 0; // shared global variable
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void * mythread(void *arg) {
 char *letter = arg;
 printf("%s: begin\n", letter);
 int i;
 for (i = 0; i < max; i++) {
 Pthread_mutex_lock(&lock);
 balance++;
 Pthread_mutex_unlock(&lock);
 }
 printf("%s: done\n", letter);
 return NULL;
}

int main(int argc, char *argv[])
{
 if (argc != 2) {
 fprintf(stderr, "usage: main-first <loopcount>\n");
 exit(1);
 }
 max = atoi(argv[1]);
 pthread_t p1, p2;
 printf("main: begin [balance = %d] [%x]\n", balance,
 (unsigned int) &balance);
 Pthread_create(&p1, NULL, mythread, "A");
 Pthread_create(&p2, NULL, mythread, "B");
 // join waits for the threads to finish
 Pthread_join(p1, NULL);
 Pthread_join(p2, NULL);
 printf("main: done\n [balance: %d]\n [should: %d]\n",
 balance, max*2);
 return 0;
}

Use pthread_lock

8

Kernel: Types of Kernels

Virtual File Systems, System
calls, IPC, File systems,

scheduler, virtual memory,
device drivers, dispatcher. Basic IPC, Virtual Memory,

Scheduling

Application
IPC

Server
programs

Device
Drivers

File
Server

Applications

Application
IPC

Server programs

Device
Drivers

File Server

kernel
mode

kernel
mode

operating
system

dynamically
loadable

kernel
modules

Monolithic Micro Modular

Hydra, MachOriginal
UNIX

Linux,
Windows,

MacOS

user
mode

HardwareHardware Hardware

Applications Applications

Basic IPC, Virtual Memory,
Scheduling

user
mode

Current scoreboard

9

Red Blue

6 7

• Mechanisms of changing processes
• Basic scheduling policies
• An experimental time-sharing system — The Multi-Level

Scheduling Algorithm
• Scheduler Activations
• Getting locks done correctly with modern OS scheduling

10

Outline

The mechanisms of changing
processes

11

• Cooperative Multitasking (non-preemptive multitasking)
• Preemptive Multitasking

12

The mechanisms of changing the running processes

• How many of the following statements about cooperative multitasking is/are
correct?
! The OS can change the running process if the current process give up the resource
" The OS can change the running process if the current process traps into OS kernel
The OS can change the running process if the current process raise an exception

like divide by zero
$ The OS can actively change the running process if the current process is running for

a long enough time
A. 0
B. 1
C. 2
D. 3
E. 4

13

Cooperative multitaskingPoll close in

• How many of the following statements about cooperative multitasking is/are
correct?
! The OS can change the running process if the current process give up the resource
" The OS can change the running process if the current process traps into OS kernel
The OS can change the running process if the current process raise an exception

like divide by zero
$ The OS can actively change the running process if the current process is running for

a long enough time
A. 0
B. 1
C. 2
D. 3
E. 4

14

Cooperative multitaskingPoll close in

• How many of the following statements about cooperative multitasking is/are
correct?
! The OS can change the running process if the current process give up the resource
" The OS can change the running process if the current process traps into OS kernel
The OS can change the running process if the current process raise an exception

like divide by zero
$ The OS can actively change the running process if the current process is running for

a long enough time
A. 0
B. 1
C. 2
D. 3
E. 4

15

Cooperative multitasking

Unfortunately, the OS cannot — if the process never traps

Cooperative multitasking — processes
voluntarily yield control periodically or

when idle in order to enable multiple
applications to be run simultaneously

Anytime if we make a system call to the OS, the OS can potentially switch a process

• The OS controls the scheduling — can change the running
process even though the process does not give up the
resource

• But how?

16

Preemptive Multitasking

• Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

17

How to achieve preemptive multitaskingPoll close in

• Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

18

How to achieve preemptive multitaskingPoll close in

• Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

19

How to achieve preemptive multitasking

• System calls / trap instructions — raised by applications
• Display images, play sounds

• Exceptions — raised by processor itself
• Divided by zero, unknown memory addresses

• Interrupts — raised by hardware
• Keystroke, network packets

20

Three ways to invoke OS handlers

add 0x1bad(%eax),%dh
add %al,(%eax)
decb 0x52(%edi)
in $0x8d,%al
mov %eax,0x101c
lea -0x2bb84(%ebx),%eax
mov %eax,-0x2bb8a(%ebx)
lgdtl -0x2bb8c(%ebx)
lea -0x2bf3d(%ebx),%eax
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx)
and %cl,(%rbx)
xor $0x19,%al
add %edx,(%rbx)
add %al,(%rax)
syscall
add %al,(%rbx)
……
……
……
div %ecx
……
……
……
……

trap

return-from-trap

exception

return from
exception handler

interrupt
return from

interrupt handler

• Setup a timer (a hardware feature by the processor)event
before the process start running

• After a certain period of time, the timer generates interrupt
to force the running process transfer the control to OS
kernel

• The OS kernel code decides if the system wants to
continue the current process
• If not — context switch
• If yes, return to the process

21

How preemptive multitasking works

Scheduling Policies from
Undergraduate OS classes

22

23

• Virtualizing the processor
• Multiple processes need to share a single processor
• Create an illusion that the processor is serving my task by rapidly

switching the running process
• Determine which process gets the processor for how long

24

CPU Scheduling

• Non-preemptive/cooperative: the task runs until it finished
• FIFO/FCFS: First In First Out / First Come First Serve
• SJF: Shortest Job First

• Preemptive: the OS periodically checks the status of processes
and can potentially change the running process
• STCF: Shortest Time-to-Completion First
• RR: Round robin

25

What you learned before

• Assume that we have the following 3 processes

which of the following scheduling policy yields the best average turn-around time?
(assume we prefer not to switch process if two process have the same criteria)

A. FIFO/FCFS: First In First Out / First Come First Serve
B. SJF: Shortest Job First
C. STCF: Shortest Time-to-Completion First
D. RR: Round robin
E. Two of the above

26

Best for turn-around time
Arrival time Task length

P1 0 5
P2 1 4
P3 4 1

Poll close in

• Assume that we have the following 3 processes

which of the following scheduling policy yields the best average turn-around time?
(assume we prefer not to switch process if two process have the same criteria)

A. FIFO/FCFS: First In First Out / First Come First Serve
B. SJF: Shortest Job First
C. STCF: Shortest Time-to-Completion First
D. RR: Round robin
E. Two of the above

27

Best for turn-around time
Arrival time Task length

P1 0 5
P2 1 4
P3 4 1

Poll close in

• Assume that we have the following 3 processes

which of the following scheduling policy yields the best average turn-around time?
(assume we prefer not to switch process if two process have the same criteria)

A. FIFO/FCFS: First In First Out / First Come First Serve
B. SJF: Shortest Job First
C. STCF: Shortest Time-to-Completion First
D. RR: Round robin
E. Two of the above

28

Best for turn-around time
Arrival time Task length

P1 0 5
P2 1 4
P3 4 1

0 1 2 3 4 5 6 7 8 9 10
P1 P3P2 (5-0)+(9-1)+(10-4)=6.33

0 1 2 3 4 5 6 7 8 9 10
P1 P2P3 (5-0)+(6-4)+(10-1)=5.33

0 1 2 3 4 5 6 7 8 9 10
P1 P2P3 (5-0)+(6-4)+(10-1)=5.33

0 1 2 3 4 5 6 7 8 9 10
P1 P2 P1 P2 P3 P1 P2 P1 P2 P1 (10-0)+(9-1)+(5-4)=6.33

28

• How many of the following scheduling policies require knowledge of
process run times before execution?
! FIFO/FCFS: First In First Out / First Come First Serve
" SJF: Shortest Job First
STCF: Shortest Time-to-Completion First
$ RR: Round robin
A. 0
B. 1
C. 2
D. 3
E. 4

29

Parameters for policiesPoll close in

• How many of the following scheduling policies require knowledge of
process run times before execution?
! FIFO/FCFS: First In First Out / First Come First Serve
" SJF: Shortest Job First
STCF: Shortest Time-to-Completion First
$ RR: Round robin
A. 0
B. 1
C. 2
D. 3
E. 4

30

Parameters for policiesPoll close in

• How many of the following scheduling policies require knowledge of
process run times before execution?
! FIFO/FCFS: First In First Out / First Come First Serve
" SJF: Shortest Job First
STCF: Shortest Time-to-Completion First
$ RR: Round robin
A. 0
B. 1
C. 2
D. 3
E. 4

You can never know the execution time before executing them!
— These policies are not realistic

31

Parameters for policies

The best ones you learned in undergraduate
OS does not even work in real!

— forget about them in real implementation

An experimental time-sharing system
Fernando J. Corbató, Marjorie Merwin-Daggett and Robert C. Daley
Massachusetts Institute of Technology, Cambridge, Massachusetts

32

• Why MIT’s experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the followings are correct?
! Optimize for the average response time of tasks
" Optimize for the average turn-around time of tasks
Optimize for the performance of long running tasks
$ Guarantee the fairness among tasks
A. 0
B. 1
C. 2
D. 3
E. 4

33

Why Multi-level scheduling algorithmPoll close in

• Why MIT’s experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the followings are correct?
! Optimize for the average response time of tasks
" Optimize for the average turn-around time of tasks
Optimize for the performance of long running tasks
$ Guarantee the fairness among tasks
A. 0
B. 1
C. 2
D. 3
E. 4

34

Why Multi-level scheduling algorithmPoll close in

• Why MIT’s experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the followings are correct?
! Optimize for the average response time of tasks
" Optimize for the average turn-around time of tasks
Optimize for the performance of long running tasks
$ Guarantee the fairness among tasks
A. 0
B. 1
C. 2
D. 3
E. 4

35

Why Multi-level scheduling algorithm

• System saturation — the demand of computing is larger than
the physical processor resource available

• Service level degrades
• Lots of program swap ins-and-outs (known as context switches

in our current terminology)
• User interface response time is bad

— you have to wait until your turn
• Long running tasks cannot make

good progress — frequent
swap in-and-out

36

What happens to round robin when the system is saturated?Why Multi-level scheduling algorithm?

Context Switch Overhead

37

You think round robin should act like this —

0 1 2 3 4 5 6 7 8 9 10
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1

But the fact is —
P1 P2 P3Overhead

P1 -> P2
Overhead
P2 -> P3

Overhead
P3 -> P1

0 1 1 2 2 3
P1 P2Overhead

P1 -> P2
Overhead
P2 -> P3

3 4 4 5

•Your processor utilization can be very low if you switch frequently
•No process can make sufficient amount of progress within a given period of time
•It also takes a while to reach your turn

• Place new process in the one of the queue
• Depending on the program size

• Schedule processes in one of N queues
• Start in initially assigned queue n
• Run for 2n quanta (where n is current depth)
• If not complete, move to a higher queue (e.g. n +1)

• Level m is run only when levels 0 to m-1 are empty
38

The Multilevel Scheduling Algorithm

wp is the program memory size — smaller ones are
assigned to lower numbered queues

• Smaller tasks are given higher priority in the beginning
Why?

• Larger process will execute longer before switch

• Smaller process, newer process are given higher priority

• Not optimized for anything — it’s never possible to have an
optimized scheduling algorithm without prior knowledge
regarding all running processes

• It’s practical — many scheduling algorithms used in modern
OSes still follow the same idea

39

The Multilevel Scheduling Algorithm

Lottery Scheduling: Flexible Proportional-
Share Resource Management

Carl A. Waldspurger and William E. Weihl

40

Why Lottery

41

We want Quality of Service

Most approaches are not flexible, responsive

The overhead of running those
algorithms are high!

No body knows how they work…

Solution — Lottery and Tickets

42

• How many of the following can the ticket abstraction in the lottery
paper promote?
! Proportional fairness
" Machine-independent implementation of the scheduling policy
Generic scheduling policy across different devices
$ Starvation free
A. 0
B. 1
C. 2
D. 3
E. 4

43

What do ticket abstraction promote?Poll close in

• How many of the following can the ticket abstraction in the lottery
paper promote?
! Proportional fairness
" Machine-independent implementation of the scheduling policy
Generic scheduling policy across different devices
$ Starvation free
A. 0
B. 1
C. 2
D. 3
E. 4

44

What do ticket abstraction promote?Poll close in

• Each process hold a certain number of lottery tickets
• Randomize to generate a lottery
• If a process wants to have higher priority

• Obtain more tickets!

45

What lottery proposed?

• How many of the following can the ticket abstraction in the lottery
paper promote?
! Proportional fairness
" Machine-independent implementation of the scheduling policy
Generic scheduling policy across different devices
$ Starvation free
A. 0
B. 1
C. 2
D. 3
E. 4

46

What do ticket abstraction promote?

The ticket abstraction can be independent of machine speeds or details

Tickets represent the share of a process should receive from a resource

You may use tickets on everything you would like to share
Eventually every process with a ticket gets to run
It’s also state-free — reduce the overhead

• Ticket transfers
• Ticket inflation
• Ticket currencies
• Compensation tickets

47

Ticket economics

• The overhead is not too bad
• 1000 instructions ~ less than 500 ns on a 2

GHz processor
• Fairness

• Figure 5: average ratio in proportion to the
ticket allocation

• Flexibility
• Allows Monte-Carlo

algorithm to dynamically
inflate its tickets

• Ticket transfer
• Client-server setup

48

How good is lottery?

• Data center scheduling
• You buy “times”
• Lottery scheduling of your virtual machine

49

The impact of “lottery”

• Will it be good for
• Event-driven application
• Real-time application
• GUI-based system

• Is randomization a good idea?
• The authors later developed a deterministic stride-scheduling

50

Will you use lottery for your system?

• Reading quizzes due next Tuesday
• Project released

• Groups in 2
• Start as soon as you can — due in about a month
• Pull the latest version — had some changes for later kernel versions

https://github.com/hungweitseng/CS202-ResourceContainer
• Install an Ubuntu Linux 16.04.07 VM as soon as you can!
• Please do not use a real machine — you may not be able to reboot again

• Midterm
• Will release on 2/10/2021 0:00am and due on 2/15/2021 11:59:00pm
• You will have to find a consecutive, non-stop 80-minute slot with this period
• One time, cannot reinitiate — please make sure you have a stable system and network
• No late submission is allowed

51

Announcement

https://github.com/hungweitseng/CS202-ResourceContainer

ͺͻͥ

Computer
Science &
Engineering

202

