
Thread scheduling &
Virtual memory (I)

Hung-Wei Tseng

Recap: What happens when creating a process

2

Virtual memory

heap

stack

Dynamic allocated data: malloc()

Local variables,
arguments

code

static data

program

code

static data

Linux contains a .bss section
for uninitialized global variables

The Machine

Previously, we talked about virtualization

3

Virtual memory

heap

stack

code

static data

Virtual memory

heap

stack

code

static data

Virtual memory

heap

stack

code

static data

Virtual memory

heap

stack

code

static data

Virtually, every process seems to
have a processor/memory space, but

only a few of them are physically
executing/using the installed DRAM.

• The mechanism
• Non-preemptive/cooperative: the run process itself initiate context switches — by
using system calls

• Preemptive: the OS kernel can actively incur context switches — by using hardware
(timer) interrupts

• The policy
• Non-preemptive

• First Come First Serve
• Shortest job first: SJF

• Preemptive
• Round robin
• Shortest Time-to-completion
• Multi-level scheduling algorithm

4

Recap: Virtualizing the processor

• Place new process in the one of the queue
• Depending on the program size

• Schedule processes in one of N queues
• Start in initially assigned queue n
• Run for 2n quanta (where n is current depth)
• If not complete, move to a higher queue (e.g. n +1)

• Level m is run only when levels 0 to m-1 are empty
5

Recap: The Multilevel Scheduling Algorithm

wp is the program memory size — smaller ones are
assigned to lower numbered queues

• Smaller tasks are given higher priority in the beginning
Why?

• Larger process will execute longer before switch

• Smaller process, newer process are given higher priority

Why Lottery

6

We want Quality of Service

Most approaches are not flexible, responsive

The overhead of running those
algorithms are high!

No body knows how they work…

• Each process hold a certain number of lottery tickets
• Ticket

• Each ticket represent a chance to win a CPU/resource quanta
• Each ticket has equal chance to win/use a resource

• Randomize to generate a lottery
• If a process wants to have higher priority

• Obtain more tickets!

7

Recap: How does lottery work?

• Thread scheduling
• When thread programing meets scheduling
• Why virtualize your memory
• Start with the basic proposal — segmentation
• Demand paging

8

Outline

Scheduler Activations: Effective Kernel Support
for the User-level Management of Parallelism

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska and Henry M. Levy
University of Washington

9

• Comparing user-level threads and kernel threads, please identify how many of
the following statements are correct.
! The overhead of switching threads is smaller for user-level threads
" The OS scheduler can directly control the scheduling of kernel thread, but not for

user-level threads
A user-level thread can potentially block all other threads in the same process
$ Implementing the user-level thread library can be achieved without modifying the

OS kernel
A. 0
B. 1
C. 2
D. 3
E. 4

10

User-level v.s kernel threadsPoll close in

• Comparing user-level threads and kernel threads, please identify how many of
the following statements are correct.
! The overhead of switching threads is smaller for user-level threads
" The OS scheduler can directly control the scheduling of kernel thread, but not for

user-level threads
A user-level thread can potentially block all other threads in the same process
$ Implementing the user-level thread library can be achieved without modifying the

OS kernel
A. 0
B. 1
C. 2
D. 3
E. 4

11

User-level v.s kernel threadsPoll close in

User-level v.s kernel threads

12

user-level threads

Kernel

privilege boundary

user-
level

kernel
mode

Process

runtime
library

thread list

process list

The process is a
virtual processor

kernel threads

Process

Kernel

process list

thread list

thread
thread

• The OS kernel is unaware of user-level threads
• Switching threads does not require kernel mode operations
• A thread can block other threads within the same process

• The kernel can control threads directly
• Thread switch requires kernel/user mode switch and system calls
• Thread works individually

• Comparing user-level threads and kernel threads, please identify how many of
the following statements are correct.
! The overhead of switching threads is smaller for user-level threads
" The OS scheduler can directly control the scheduling of kernel thread, but not for

user-level threads
A user-level thread can potentially block all other threads in the same process
$ Implementing the user-level thread library can be achieved without modifying the

OS kernel
A. 0
B. 1
C. 2
D. 3
E. 4

13

User-level v.s kernel threads

— kernel threads requires kernel switch!!!

— user threads are not visible from kernel!!!

— because the OS scheduler treat all threads as the same scheduling identity, if one is doing I/O, whole process
maybe switched out — how do you implement “locks” in user-level threads and kernel-level threads?

• User-level threads
• Efficient, flexible, safer, customizable

• Kernel threads
• Slower, more powerful
• Better matches the multiprocessor hardware

• Problems
• OS is only aware of kernel threads
• OS is unaware of user-level threads as they are hidden behind each
process

14

Why — the “dilemma” of thread implementations

• The OS kernel provides each user-level thread system with its
own virtual multiprocessor

• Communication mechanism between kernel and user-level

15

What does “Scheduler Activations” propose?

• The kernel allocates processors to an address space/process
• An address space is shared by all threads within the same process
• The kernel controls the number of processors to an address space

• Each process has complete control over the processor-thread
allocation

• The kernel notifies the address space when the allocated
number of processors changes

• The process notifies the kernel when it needs more or fewer
processors

• Transparent to users/programmers
16

The virtual multiprocessor abstraction

• Create a scheduler activation when the system create a process on a processor
• Create a scheduler activation when the kernel needs to perform an “upcall”
user-level
• Add a processor
• Processor has been preempted
• Scheduler activation has blocked
• Scheduler activation has unblocked

• Downcalls — hints for kernel to perform resource management
• Add more processors
• This processor is idle

• Key difference from a kernel thread
• Kernel never restarts user thread after it is blocked

17

How scheduler activation works?

• Once been implemented in NetBSD, FreeBSD, Linux
• A user-level thread gets preempted whenever there is
scheduling-related event
• Overhead
• You may preempt a performance critical thread

• Blocking system call

18

Will you use Scheduler activation?

• Linux treat all schedule identities as “tasks” — context of
executions

• COEs can share parts of their contexts with each
• Processes share nothing
• Threads share everything but the CPU states

• http://www.evanjones.ca/software/threading-linus-msg.html

19

Linux’s thread implementation

http://www.evanjones.ca/software/threading-linus-msg.html

When threading meets scheduling

20

• Also referred to as “producer-consumer” problem
• Producer places items in shared buffer
• Consumer removes items from shared buffer

21

Bounded-Buffer Problem

producer consumer

5 22 18 38 2 15buffer

1. Mutual exclusion — at most one process/thread in its critical
section

2. Progress — a thread outside of its critical section cannot
block another thread from entering its critical section

3. Fairness — a thread cannot be postponed indefinitely from
entering its critical section

4. Accommodate nondeterminism — the solution should work
regardless the speed of executing threads and the number of
processors

22

Solving the “Critical Section Problem”

23

Use locks
int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

24

Use locks
int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

• Which of the following can the spin lock implementation
guarantee for the bounded-buffer example?
A. At most one process/thread in its critical section
B. A thread outside of its critical section cannot block another

thread from entering its critical section
C. A thread cannot be postponed indefinitely from entering its

critical section
D. The solution should work regardless the speed of executing

threads and the number of processors
E. None of the above

25

Spin locks?Poll close in

• Which of the following can the spin lock implementation
guarantee for the bounded-buffer example?
A. At most one process/thread in its critical section
B. A thread outside of its critical section cannot block another

thread from entering its critical section
C. A thread cannot be postponed indefinitely from entering its

critical section
D. The solution should work regardless the speed of executing

threads and the number of processors
E. None of the above

26

Spin locks?Poll close in

27

Use locks
int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

what if context switch
happens here?

Both threads can grab the lock if context switches occurs in the middle

The thread may not be able to enter its critical section because context
switched out!

what if context switch
happens here?

• Which of the following can the spin lock implementation
guarantee for the bounded-buffer example?
A. At most one process/thread in its critical section
B. A thread outside of its critical section cannot block another

thread from entering its critical section
C. A thread cannot be postponed indefinitely from entering its

critical section
D. The solution should work regardless the speed of executing

threads and the number of processors
E. None of the above

28

Spin locks?

Both threads can grab the lock if context switches occurs in the middle

The thread with the lock may not be able to enter its critical section because
context switched out and another thread can keep check the lock!

What if we have multiple processors?

How to implement lock/unlock

29

• Which of the following can disabling interrupts guarantee for
for the bounded-buffer example?
A. At most one process/thread in its critical section
B. A thread outside of its critical section cannot block another

thread from entering its critical section
C. A thread cannot be postponed indefinitely from entering its

critical section
D. The solution should work regardless the speed of executing

threads and the number of processors
E. None of the above

30

Disable interrupts?Poll close in

• Which of the following can disabling interrupts guarantee for
for the bounded-buffer example?
A. At most one process/thread in its critical section
B. A thread outside of its critical section cannot block another

thread from entering its critical section
C. A thread cannot be postponed indefinitely from entering its

critical section
D. The solution should work regardless the speed of executing

threads and the number of processors
E. None of the above

31

Disable interrupts?Poll close in

• Which of the following can disabling interrupts guarantee for
for the bounded-buffer example?
A. At most one process/thread in its critical section
B. A thread outside of its critical section cannot block another

thread from entering its critical section
C. A thread cannot be postponed indefinitely from entering its

critical section
D. The solution should work regardless the speed of executing

threads and the number of processors
E. None of the above

32

Disable interrupts?

What if we have multiple processors?

What if we have multiple processors?

33

Use locks
int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

what if context switch
happens here?

— the lock must be updated atomically

34

Use locks
int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

static inline uint xchg(volatile unsigned int *addr,
unsigned int newval) {
 uint result;
 asm volatile("lock; xchgl %0, %1" : "+m" (*addr),
"=a" (result) : "1" (newval) : "cc");
 return result;
}

void Pthread_mutex_lock(volatile unsigned int *lock) {
 // what code should go here?
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 // what code should go here?
}

a prefix to xchgl that locks the whole cache line
exchange the content in %0 and %1

35

Use locks
int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

static inline uint xchg(volatile unsigned int *addr,
unsigned int newval) {
 uint result;
 asm volatile("lock; xchgl %0, %1" : "+m" (*addr),
"=a" (result) : "1" (newval) : "cc");
 return result;
}

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1);
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 xchg(lock, 0);
}

Semaphores

36

• A synchronization variable
• Has an integer value — current value dictates if thread/process
can proceed

• Access granted if val > 0, blocked if val == 0
• Maintain a list of waiting processes

37

Semaphores

• sem_wait(S)
• if S > 0, thread/process proceeds and decrement S
• if S == 0, thread goes into “waiting” state and placed in a special
queue

• sem_post(S)
• if no one waiting for entry (i.e. waiting queue is empty), increment S
• otherwise, allow one thread in queue to proceed

38

Semaphore Operations

Semaphore Op Implementations

39

sem_init(sem_t *s, int initvalue) {
 s->value = initvalue;
}

sem_wait(sem_t *s) {
 while (s->value <= 0)
 put_self_to_sleep(); // put self to sleep
 s->value--;
}

sem_post(sem_t *s) {
 s->value++;
 wake_one_waiting_thread(); // if there is one
}

• Semaphore operations must operate atomically
• Requires lower-level synchronization methods requires (test-and-
set, etc.)

• Most implementations still require on busy waiting in spinlocks
• What did we gain by using semaphores?

• Easier for programmers
• Busy waiting time is limited

40

Atomicity in Semaphore Ops

• What variables to use for this problem?

41

Using semaphores

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 Sem_init(&filled, 0);
 Sem_init(&empty, BUFF_SIZE);
 while(TRUE) {
 int item = …;
 Sem_wait(&W);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Sem_post(&X);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Sem_wait(&Y);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 // do something w/ item
 Sem_post(&Z);
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
sem_t filled, empty;

W X Y Z
A empty empty filled filled
B empty filled filled empty
C filled empty empty filled

Poll close in

• What variables to use for this problem?

42

Using semaphores

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 Sem_init(&filled, 0);
 Sem_init(&empty, BUFF_SIZE);
 while(TRUE) {
 int item = …;
 Sem_wait(&W);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Sem_post(&X);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Sem_wait(&Y);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 // do something w/ item
 Sem_post(&Z);
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
sem_t filled, empty;

W X Y Z
A empty empty filled filled
B empty filled filled empty
C filled empty empty filled

Poll close in

• What variables to use for this problem?

43

Using semaphores

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 Sem_init(&filled, 0);
 Sem_init(&empty, BUFF_SIZE);
 while(TRUE) {
 int item = …;
 Sem_wait(&W);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Sem_post(&X);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Sem_wait(&Y);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 // do something w/ item
 Sem_post(&Z);
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
sem_t filled, empty;

W X Y Z
A empty empty filled filled
B empty filled filled empty
C filled empty empty filled

Let’s talk about virtual memory

44

The Machine

Previously, we talked about virtualization

45

Virtual memory

heap

stack

code

static data

Virtual memory

heap

stack

code

static data

Virtual memory

heap

stack

code

static data

Virtual memory

heap

stack

code

static data

Previously, we’ve talked about
sharing the processor.How about sharing DRAM?

Why Virtual Memory?

46

47

If we expose memory directly to the processor (I)

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins
tru

cti
on

s 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Memory

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Da
ta

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008
00c2e800
00000008
00c2f000
00000008

00c2e800
00000008
00c2f000
00000008

00c2f800
00000008
00c30000
00000008

? What if my program
needs more memory?

48

If we expose memory directly to the processor (II)

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins
tru

cti
on

s 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Memory

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Memory

?

What if my program
runs on a machine
with a different
memory size?

49

If we expose memory directly to the processor (III)

Memory

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins
tru

cti
on

s 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

?

What if both programs
need to use memory?

The Virtual Memory Abstraction

50

Virtual memory

51

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Virtual Memory SpaceVirtual Memory Space

Memory

00c2e800
00000008
00c2f000
00000008

instruction
0x0

0f00bb27
509cbd23
00005d24
0000bd24

data
0x80000000 instruction

0x0

0f00bb27
509cbd23
00005d24
0000bd24

00c2f800
00000008
00c30000
00000008

data
0x80008000data

0x80008000

00c2f800
00000008
00c30000
00000008

Virtual memory

52Physical memory

Virtual
memory

CPU

address mapping

0x000000000000

0xFFFFFFFFFFFF

Code
 Static Data

Data

Heap

Stack

Process A
0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Process B

• An abstraction of memory space available for programs/
software/programmer

• Programs execute using virtual memory address
• The operating system and hardware work together to handle
the mapping between virtual memory addresses and real/
physical memory addresses

• Virtual memory organizes memory locations into “pages”

53

Virtual memory

Demo revisited: Virtualization

54

double a;

int main(int argc, char *argv[])
{
 int cpu, status, i;
 int *address_from_malloc;
 cpu_set_t my_set; // Define your cpu_set bit mask.
 CPU_ZERO(&my_set); // Initialize it all to 0, i.e. no CPUs selected.
 CPU_SET(4, &my_set); // set the bit that represents core 7.
 sched_setaffinity(0, sizeof(cpu_set_t), &my_set); // Set affinity of this process to the defined mask, i.e. only 7.
 status = syscall(SYS_getcpu, &cpu, NULL, NULL);

 if(argc < 2)
 {
 fprintf(stderr, "Usage: %s process_nickname\n",argv[0]);
 exit(1);
 }

 srand((int)time(NULL)+(int)getpid());
 a = rand();

 fprintf(stderr, "\nProcess %s is using CPU: %d. Value of a is %lf and address of a is %p\n",argv[1], cpu, a, &a);
 sleep(1);

 fprintf(stderr, "\nProcess %s is using CPU: %d. Value of a is %lf and address of a is %p\n",argv[1], cpu, a, &a);
 sleep(3);

 return 0;
}

getcpu system call to retrieve the executing CPU ID

create a random number

print the value of a and address of a

print the value of a and address of a again after sleep

Demo revisited

55

The same processor!
The same memory

address!

Different values

Different values are
preserved

Demo revisited

56

#define _GNU_SOURCE
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <sched.h>
#include <sys/syscall.h>
#include <time.h>

double a;

int main(int argc, char *argv[])
{
 int i, number_of_total_processes=4;
 number_of_total_processes = atoi(argv[1]);
 for(i = 0; i< number_of_total_processes-1 && fork(); i++);
 srand((int)time(NULL)+(int)getpid());
 fprintf(stderr, "\nProcess %d is using CPU: %d. Value of a is %lf and address of a is %p\n”,getpid(), cpu, a, &a);
 sleep(10);
 fprintf(stderr, "\nProcess %d is using CPU: %d. Value of a is %lf and address of a is %p\n”,getpid(), cpu, a, &a);
 return 0;
}

Process B

Process A
&a = 0x601090

Process A’s
Mapping Table

Process B’s
Mapping Table

How to map from virtual to physical?
Let’s start from segmentation

57

• The compiler generates code using virtual memory addresses
• The OS works together with hardware to partition physical memory
space into segments for each running application

• The hardware dynamically translates virtual addresses into physical
memory addresses

58

Segmentation

Physical memory of the
machineApplication A0

X

Application B

X

00

X

2X

Address translation in segmentation

59

Physical memory of the
machine0

X

2X

Virtual memory of
Application

X

0
Processor

PC Base

0 X+ = X

load 0x4000

X0x4000 + = X + 0x4000

Protection again malicious processes

60

Physical memory of the
machine0

X

2X

Virtual memory of
Application

X

0
Processor

PC Base

0 X+ = X

load 0x4000

0x4000 X+ = X + 0x4000
what if X + 0x4000 belongs to

another process?

what if we are load a
“negative offset”?

Protection again malicious processes

61

Physical memory of the
machine0

X

2X

Virtual memory of
Application

X

0
Processor

PC Base

X = X + 0x4000

load 0x4000

0x4000 +

Bound

X Yes — proceed<0x4000

only allow the access
if it’s yes

No — segmentation fault!!!

a segmentation fault (often shortened to
segfault), raised by hardware with

memory protection, when the software
has attempted to access a restricted area
of memory (a memory access violation).

• Reading quizzes due next Tuesday
• New office hour

• M 3p-4p and Th 9a-10a
• Use the office hour Zoom link, not the lecture one

• Project released
• Groups in 2
• Start as soon as you can — due in about a month
• Pull the latest version — had some changes for later kernel versions
https://github.com/hungweitseng/CS202-ResourceContainer

• Install an Ubuntu Linux 16.04.07 VM as soon as you can!
• Please do not use a real machine — you may not be able to reboot again

• Midterm
• Will release on 2/10/2021 0:00am and due on 2/15/2021 11:59:00pm
• You will have to find a consecutive, non-stop 80-minute slot with this period
• One time, cannot reinitiate — please make sure you have a stable system and network
• No late submission is allowed

67

Announcement

https://github.com/hungweitseng/CS202-ResourceContainer

ͺͻͥ

Computer
Science &
Engineering

202

