Thread scheduling &
Virtual memory ()

Hung-Wel Tseng

Recap: What happens when creating a process

code

static data

| Dynamic allocated data: malloc ()
heap

arguments static data

Local variables,
stack

Virtual memory program

R,
o

Linux contains a .bss section
for uninitialized global variables O\

, 9/

Previously, we talked about virtualization

code code code code

static data static data static data static data

heap

heap heap heap

stack stack stack stack

Virtual memory Virtual memory

Virtual memory

Virtual memory

,h'a"ve a processor/memory space, but
=22 . only a few of them are physically

_ /jexecutlng using the installed DRAM. \ /

Virtually, every process seems to ,‘g&’
R,
o)

The Machine

Recap: Virtualizing the processor

- The mechanism

- Non-preemptive/cooperative: the run process itself initiate context switches — by
using system calls

- Preemptive: the OS kernel can actively incur context switches — by using hardware
(timer) interrupts

- The policy
- Non-preemptive

- First Come First Serve
- Preemptive

- Round robin

I -1O- I
- Multi-level scheduling algorithm

Recap: The Multilevel Scheduling Algorithm

Place new process in the one of the queue
- Depending on the program size

p =

- w - . .
Llog ([_2:1 + 1)J Wp is the program memory size — smaller ones are
o 2 W
q

assigned to lower numbered queues Why')

- Smaller tasks are given higher priority in the beginning

Schedule processes in one of N queues
- Start in initially assigned queue n
- Run for 27 quanta (where rn is current depth)

- If not complete, move to a higher queue (e.g.n +1)
« Larger process will execute longer before switch

- Level m is run only when levels O to m-1 are empty

- Smaller process, hewer process are given higher priority
5

Why Lottery

normous impact on throughput and response time. Accu-
enormous impact on throughput and response time. Accu Few general-purpose schemes even come close to sup-
rate control over the quality of service provided to users

and applications requires support for specilying relative Mporung flexible, ﬁresponswe co_nfllrol Eg_ir SCIVICE rale§.
computation rates. Such control is desirable across a wide ost approaches are not flexible, responsive

spectrum of systems. For long-running computations such
as scientific applications and simulations. the consumption
of computing resources that are shared among users and ap-
plications of varying importance must be regulated [Hel93].
For interactive computations such as databases and media-
based applications, programmers and users need the ability

. lone-running computations. Interactive systems require
We want Quality ot Service “Theoverhead of running those

ware systems. In fact, with the exception of hard real-time algorithms are high!
systems, it has been observed that the assignment of pri-
orities and dynamic priority adjustment schemes are often
ad-hoc [De190]. Even popular priority-based schemes tor
CPU allocation such as decay-usage scheduling are poorly
understood, despite the fact that they are employed by nu-
merous operating systems, including Unix [Hel93].

Existing fair share schedulers [Hen84, Kay88] and mi-
croeconomic schedulers [Fer88, Wal92] successtully ad-
dress some of the problems with absolute priority schemes.
However, the assumptions and overheads associated with
these systems limit them to relatively coarse control over

No body knows how they work...

6

Recap: How does lottery work?

- Each process hold a certain number of lottery tickets

- Ticket
- Each ticket represent a chance to win a CPU/resource quanta
- Each ticket has equal chance to win/use a resource

- Randomize to generate a lottery

- |f a process wants to have higher priority
- Obtain more tickets!

Outline

- Thread scheduling

- When thread programing meets scheduling

- Why virtualize your memory

- Start with the basic proposal — segmentation
- Demand paging

Scheduler Activations: Effective Kernel Support
for the User-level Management of Parallelism

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska and Henry M. Levy
University of Washington

User-level v.s kernel threads

- Comparing user-level threads and kernel threads, please identify how many of
the following statements are correct.
® The overhead of switching threads is smaller for user-level threads

®@ The OS scheduler can directly control the scheduling of kernel thread, but not for
user-level threads

® A user-level thread can potentially block all other threads in the same process

@ Implementing the user-level thread library can be achieved without modifying the
OS kernel

Mmoo ®»
P W N—O

10

User-level v.s kernel threads

- Comparing user-level threads and kernel threads, please identify how many of
the following statements are correct.
® The overhead of switching threads is smaller for user-level threads

®@ The OS scheduler can directly control the scheduling of kernel thread, but not for
user-level threads

® A user-level thread can potentially block all other threads in the same process

@ Implementing the user-level thread library can be achieved without modifying the
OS kernel

Mmoo ®»
P W N—O

1

User-level v.s kernel threads

user-level threads kernel threads

thread

user-
level The processis a
virtual processor
runtime
library \
]
]
kernel
]
mode \
.]
process list \ thread list
process list
« The OS kernel is unaware of user-level threads - The kernel can control threads directly

- Switching threads does not require kernel mode operations - Thread switch requires kernel/user mode switch and system calls

A thread can block other threads within the same process - Thread works individually
12

User-level v.s kernel threads

- Comparing user-level threads and kernel threads, please identify how many of
the following statements are correct.
@/ The overhead of switching threads is smaller for user- I?(e(rerl étmrea IS requires kernel switch!!

V The OS scheduler can directly control the scheduling of kernel thread, but not for
user-level threads — user threads are not visible from kernel!!!

V A user-level thread can potentially block all other threads IN the same process
— beca he QS sche Ier eat all thread e scheduling identity, do hole pxocess
maybe sﬁ et NG e lRer iaval BRrdaaTiBran can be adhies SRS RIS
kernel — how do you implement “locks” in user-level threads and kernel-level threads?

A.

O
B. 1
C. 2
D. 3

A

IE.

13

Why — the “dilemma” of thread implementations

- User-level threads

. Efficient, flexible, safer, customizable
- Kernel threads

. Slower, more powerful

- Better matches the multiprocessor hardware
- Problems

- OS is only aware of kernel threads

- OS is unaware of user-level threads as they are hidden behind each
Process

14

What does “Scheduler Activations” propose?

- The OS kernel provides each user-level thread system with its
own Virtual multiprocessor

. Communication mechanism between kernel and user-level

15

The virtual multiprocessor abstraction

- The kernel allocates processors to an address space/process
- An address space is shared by all threads within the same process
- The kernel controls the number of processors to an address space

- Each process has complete control over the processor-thread
allocation

- The kernel notifies the address space when the allocated
number of processors changes

- The process notifies the kernel when it needs more or fewer
Processors

- Transparent to users/programmers

16

How scheduler activation works?

- Create a scheduler activation when the system create a process on a processor

- Create a scheduler activation when the kernel needs to perform an “upcall”
user-level

- Add a processor

- Processor has been preempted

- Scheduler activation has blocked

- Scheduler activation has unblocked

- Downcalls — hints for kernel to perform resource management
- Add more processors

- This processor is idle

- Key difference from a kernel thread

- Kernel never restarts user thread after it is blocked

17

Will you use Scheduler activation?

» Once been implemented in NetBSD, FreeBSD, Linux

- A user-level thread gets preempted whenever there is
scheduling-related event

- Overhead
- You may preempt a performance critical thread
- Blocking system call

18

Linux’s thread implementation

- Linux treat all schedule identities as "tasks” — context of
executions

» COEs can share parts of their contexts with each

- Processes share nothing
- Threads share everything but the CPU states

- http://www.evanjones.ca/software/threading-linus-msg.html

19

http://www.evanjones.ca/software/threading-linus-msg.html

When threading meets scheduling

Bounded-Buffer Problem

- Also referred to as "producer-consumer” problem
- Producer places items in shared buffer
- Consumer removes items from shared buffer

e =] [| [=]e]fw

i

producer consumer

21

Solving the “Critical Section Problem”

Mutual exclusion — at most one process/thread in its critical
section

. Progress — a thread outside of its critical section cannot
block another thread from entering its critical section

. Fairness — a thread cannot be postponed indefinitely from
entering its critical section

. Accommodate nondeterminism — the solution should work
regardless the speed of executing threads and the number of
Processors

22

Use locks

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;
int main(int argc, char sxargvl[]) { | — ————
pthread_t p;
printf("parent: begin\n");
// init here
Pthread create(&p, NULL, child, NULL);

void *child(void xarg) {
int out = 0;

int in = 0; : :
: ' rintf("ch1ld\n");

while(TRUE) + while (TRUE) {
int 1item = ..; Pthread _mutex_lock(&lock):
Pthread mutex_lock(&lock): int item = bufferlout]:
bufferlin] = 1tem; out = (out + 1) % BUFF_SIZE;

in = (in + 1) % BUFF_SIZE;

Pthread_mutex_unlock(&lock):
Pthread mutex_unlock(&lock):

// do something w/ item

; }
printf("Parent: end\n"); return NULL:
} return 9; 1

23

int main(int argc, char xargv[]) {

Use locks

int buffer[BUFF_SIZE]; // shared global

othread t p: volatile unsigned 1nt lock = 0;

printf("parent: begin\n"); 01d *child(void *xarg) 1 .

// 1nit here int out = 0;

Pthread create(&p, NULL, child, NULL); printf("child\n");

int 1n = O; while(TRUE) {

while(TRUE) { Pthread_mutex_lock(&lock);
int item = ..; int item = buffer[out];
Pthread _mutex_lock(&lock): out = (out + 1) % BUFF_SIZE;
buffer[in] = 1tem; Pthread_mutex_unlock(&lock):
in = (1n + 1) % BUFF_SIZE; // do something w/ item
Pthread _mutex _unlock(&lock): ¥

+ retiurn NUIIT

printf("parent: end\n") y\oid Pthread mutex lock(volatile unsigned int *xlock) A

return @; while (*lock == 1) // TEST (lock)

v // spiln
O — -1 xlock = 1; // SET (lock)
¥

vold Pthread_mutex_unlock(volatile unsigned int *lock) {
*xlock = 0;
s

Spin locks?

- Which of the following can the spin lock implementation
guarantee for the bounded-buffer example?

A. At most one process/thread in its critical section

B. A thread outside of its critical section cannot block another
thread from entering its critical section

C. Athread cannot be postponed indefinitely from entering its
critical section

D. The solution should work regardless the speed of executing
threads and the number of processors

E. None of the above

25

Spin locks?

- Which of the following can the spin lock implementation
guarantee for the bounded-buffer example?

A. At most one process/thread in its critical section

B. A thread outside of its critical section cannot block another
thread from entering its critical section

C. Athread cannot be postponed indefinitely from entering its
critical section

D. The solution should work regardless the speed of executing
threads and the number of processors

E. None of the above

26

Use locks

int buffer[BUFF_SIZE]; // shared global

int main(int argc, char xargv[]) { volatile unsigned int lock = @:

pthread_t p;

printf("parent: begin\n"); P01d *child(void *arg) 1 e

// 1nit here int out = 0;

Pthread create(&p, NULL, child, NULL); printf("child\n");

int in = 0; while(TRUE) {

while(TRUE) { Pthread_mutex_lock(&lock);
int item = ..; int item = buffer[out];
Pthread _mutex_lock(&lock): out = (out + 1) % BUFF_SIZE;
buffer[in] = 1tem; Pthread_mutex_unlock(&lock):
in = (1n + 1) % BUFF_SIZE; // do something w/ item
Pthread_mutex_unlock(&lock): }

' Both threads can grab the lock if context sWwitéhés'd¢curs in the middle

printf("parent: end\n") Y5id Pthread mutex lock(volatile unsigned int %lock) {

what if context SWItCh hile (*xlock == 1) // TEST (lock)
. . // spin

= what if context switch lock = 1; // SET (lock)
happens here?

Tne ireau may nowve aple to goter its cutical seciionbecause context)
0;

switched out! xlock = 0
}

Spin locks?

- Which of the following can the spin lock implementation
guarantee for the bounded-buffer example?

A.
B.

C.

D.

At most one process/thread in its critical section , ,
Both threads can,?rab,the lock If context switches occurs in the middle
A thread outside of its critical section cannot block another

thread from entering its critical section

A thread cannot be postponed indefinitely from entering its
critical section

The solution should work regardless the speed of executing
threads and the number of processors

What if we have multiple processors?
E. None of the above mep

The thread with the lock may not be able to enter its critical section because
context switched out and another thread can keep check the lock!
28

How to implement lock/unlock

Disable interrupts?

- Which of the following can disabling interrupts guarantee for
for the bounded-buffer example?

A. At most one process/thread in its critical section

B. A thread outside of its critical section cannot block another
thread from entering its critical section

C. Athread cannot be postponed indefinitely from entering its
critical section

D. The solution should work regardless the speed of executing
threads and the number of processors

E. None of the above

30

Disable interrupts?

- Which of the following can disabling interrupts guarantee for
for the bounded-buffer example?

A. At most one process/thread in its critical section

B. A thread outside of its critical section cannot block another
thread from entering its critical section

C. Athread cannot be postponed indefinitely from entering its
critical section

D. The solution should work regardless the speed of executing
threads and the number of processors

E. None of the above

31

Disable interrupts?

- Which of the following can disabling interrupts guarantee for
for the bounded-buffer example?

A.
B.

C.

D.

What if we have multiple processors?
At most one process/thread In its critica SGC?(IOR

A thread outside of its critical section cannot block another
thread from entering its critical section

A thread cannot be postponed indefinitely from entering its
critical section

The solution should work regardless the speed of executing
threads and the number of processors

. : 5
E_None of the above What if we have multiple processors™

32

int main(int argc, char xargv[]) {

Use locks

int buffer[BUFF_SIZE]; // shared global

othread t p: volatile unsigned 1nt lock = 0;

printf("parent: begin\n"); P01d *child(void *arg) 1 .

// 1nit here int out = 0;

Pthread create(&p, NULL, child, NULL); printf("child\n");

int in = 0; while(TRUE) {

while(TRUE) { Pthread_mutex_lock(&lock);
int item = ..; int item = buffer[out];
Pthread _mutex_lock(&lock): out = (out + 1) % BUFF_SIZE;
buffer[in] = 1tem; Pthread_mutex_unlock(&lock):
in = (1n + 1) % BUFF_SIZE; // do something w/ item
Pthread _mutex _unlock(&lock): ¥

+ retiurn NIl ¢

printf(zparent: end\n") yoid Pthread_mutex_lock(volatile unsigned int *lock) {

what if context switch x"hile (*¥lock ==1) // TEST (lock)
+ // spiln
happens here?

xlock = 1; // SET (lock)
— the lock must be upciated atomically

vold Pthread_mutex_unlock(volatile unsigned int *lock) {
*xlock = 0;

}

Use locks

int buffer[BUFF_SIZE]; // shared global

int main(int argc, char xargv[]) { volatile unsigned int lock = @:

pthread_t p;

printf("parent: begin\n"); P01d *child(void *arg) 1 e
// 1nit here int out = 0;
Pthread create(&p, NULL, child, NULL); prlntf("chlld\n")
int 1in = 0; o _ T
while(TRUE) { static 1nline uilnt xchg(volatile unsigned int *xaddr,
int item = ..; unsigned int newval) {
Pthread mutex lock (&1L uint result;
buffer[in] = item: asm volatlle(" /@ %1" ¢ "+m" (*kaddr),
in = (in + 1) % BUFF_¢{ "=a" (result) : "1" (ewval) "cc")
Pthread mutex unlock(: return result: exchangethecontent in %0 and %1
! - - 1 a prefix to xchg1 that locks the whole cache line
printf("parent: end\n"); . . . _
return 0: vold Pthread_mutex_lock(volatile unsigned 1int *xlock) {
3 // what code should go here?
T — — }

vold Pthread_mutex_unlock(volatile unsigned int *xlock) {
// what code should go here?

}

Use locks

int buffer[BUFF_SIZE]; // shared global

int main(int argc, char xargv[]) { volatile unsigned int lock = @:

pthread_t p;

printf("parent: begin\n"); P01d *child(void *arg) 1 .

// 1nit here int out = 0;

Pthread create(&p, NULL, child, NULL); prlntf("chlld\n")

int in = 0; o

while(TRUE) { static 1inline uint xchg(volatile unsigned 1int *addr,
int item = ..; unsigned int newval) {
Pthread_mutex_lock (&1 uint result;
buffer[in] = item: asm volatile("lock; xchgl %0, %1" : "+m" (xaddr),
in = (in + 1) % BUFF_ ¢ "=a" (result) : "1" (newval) : "cc");
Pthread_mutex_unlock(: } return result;

}

printf("parent: end\n");

return 0; vold Pthread_mutex_lock(volatile unsigned int xlock) {

1 while (xchg(lock, 1) == 1);
T — —~ }

vold Pthread_mutex_unlock(volatile unsigned int *xlock) {
xchg(lock, 0);
s

Semaphores

Semaphores

- A synchronization variable

- Has an integer value — current value dictates if thread/process
can proceed

- Access granted if val > O, blocked if val ==
- Maintain a list of waiting processes

37

Semaphore Operations

e sem walit(S)
- iIf S> 0, thread/process proceeds and decrement S

- if S == 0, thread goes into “waiting” state and placed in a special
queue

e sem_post(S)
- if no one waiting for entry (i.e. waiting queue is empty), increment S
- otherwise, allow one thread in queue to proceed

38

Semaphore Op Implementations

sem_init(sem_t *s, int initvalue) {
s—>value = initvalue;

}

— T sem_wait(sem_t *s) {
while (s—>value <= 0)
put_self_to_sleep(); // put self to sleep
s—->value——;

sem_post(sem_t xs) {
s—>value++;
wake_one_waiting_thread(); // 1f there 1s one

39

Atomicity in Semaphore Ops

- Semaphore operations must operate atomically

- Requires lower-level synchronization methods requires (test-and-
set, etc.)

- Most implementations still require on busy waiting in spinlocks
- What did we gain by using semaphores?

- Easier for programmers

- Busy waiting time is limited

40

Using semaphores

What variables to use for this problem?

int buffer[BUFF_SIZE]; // shared global
int main(int argc, char xargv[]) { sem_t filled, empty;

pthread_t p; P — T —

priptf("parent: begin\n"); void *child(void *arg) {
// init here int out = O:

Pthrgad:cr?ate(&p, NULL, child, NULL); orintf("child\n");
int in = @,. . while(TRUE) {
Sem_init(&filled, 0): Sem_wait(&Y):

Sem_init(&empty, BUFF_SIZE):

: 1nt 1tem = bufferlout];
while(TRUE) { * ! - Lout |

out = (out + 1) % BUFF_SIZE;

éQ; &;EQ(Zwyf // do something w/ 1item
= . . Sem_post(&Z);
buffer[in] = item; y _post(&Z)

in = (in + 1) % BUFF_SIZE;

return NULL;
Sem_post (&X);

¥
printf("parent: end\n"); --_——-
return 9;

- empty empty filled filled
L — “ empty filled filled empty

filled empty empty filled

Using semaphores

What variables to use for this problem?

int buffer[BUFF_SIZE]; // shared global
int main(int argc, char xargv[]) { sem_t filled, empty;

pthread_t p; P — T —

priptf("parent: begin\n"); void *child(void *arg) {
// init here int out = O:

Pthrgad:cr?ate(&p, NULL, child, NULL); orintf("child\n");
int in = @,. . while(TRUE) {
Sem_init(&filled, 0): Sem_wait(&Y):

Sem_init(&empty, BUFF_SIZE):

: 1nt 1tem = bufferlout];
while(TRUE) { * ! - Lout |

out = (out + 1) % BUFF_SIZE;

éQ; &;EQ(Zwyf // do something w/ 1item
= . . Sem_post(&Z);
buffer[in] = item; y _post(&Z)

in = (in + 1) % BUFF_SIZE;

return NULL;
Sem_post (&X);

¥
printf("parent: end\n"); --_——-
return 9;

- empty empty filled filled
L — “ empty filled filled empty

filled empty empty filled

Tl

Using semaphores

What variables to use for this problem?

int buffer[BUFF_SIZE]; // shared global
int main(int argc, char xargv[]) { sem_t filled, empty;
pthread_t p; .
printf("parent: begin\n");
// init here

void *xchild(void xarg) {
int out = 9;

Pthrgad:cr?ate(&p, NULL, child, NULL): orintf("child\n");
int in = @,. . while(TRUE) {
Sem_init(&filled, 0): Sem_wait(&Y):

Sem_init(&empty, BUFF_SIZE):

: int item = bufferlout];
while(TRUE) { * § ; Lout]

out = (out + 1) % BUFF_SIZE;

éE; $§§$(ZW¥Z // do something w/ item
= . . Sem_post(&Z);
buffer[in] = item; y _post(&Z)

in = (in + 1) % BUFF_SIZE;

return NULL;
Sem_post(&X);

¥
printf("parent: end\n"); -____
return 9;

Let’s talk about virtual memory

Previously, we talked about virtualization

code code code code

static data

heap |

static data

heap |

static data static data

heap | heap |

stack |

Virtual memory

stack |

Virtual memory

stack | stack |

Virtual memory Virtual memory

I— - Ty Previously, we've talked about KK
1 {

shar

sfas o
e Mg
) i A AN -
A R _{,” y
i & /
beser - ;
—
- 2 S - 7
A e : - (@]

ing.the processor.

v

How about sharing DRAM? ./ Filfig

The Machine

Why Virtual Memory?

If we expose memory directly to the processor ()

00c21800

What if my program

00000008

)
c
0
o
Q
-
-
e
)
=

Program

0f00bb27
509chd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3
00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008
00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

0t00bb27
509chd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24

2cabe2b3

00c2e800
00000008
00c21000
00000008

Memory

00c30000
00000008

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008
00c2e800
00000008
00c21000
00000008

a7

needs more memory?

Instructions

If we expose memory directly to the processor (ll)

What if my program
runs on a machine

with a different
memory size?

0f00bb27
509chd23
00005d24
0000bd24

2cab22a0
130020e4
00003d24
2ca4e2b3

Program

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

0f00bb27 00c2e800
509chd23 00000008
00005d24 00c21000
0000bd24 1 ,0000008
2ca422a0 00c21800
130020e4 00000008

If we expose memory directly to the processor (lli)

What if both programs
need to use memory?

Instructions

0f00bb27
509chd23
00005d24
0000bd24

2cab22a0
130020e4
00003d24
2ca4e2b3

Program

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

0t00bb27
509chd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

7y
c
0
)
Q
-
-
-
)
=

Program

01f00bb27
509chd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c21000
00000008
00c21800
00000008
00c30000
00000008

The Virtual Memory Abstraction

Virtual memory

J (intel)' x

=&
Core™i7 ™~

data

Instruction .y,
o Ox80008000

pOv00OE Z0ata indtruction
IX80008000 Ox0O

Virtual Memory Space Virtual Memory Space

\
- 0fobhb27 00c2f800
- _
Program b Program
00005d24 %9c30000

509chd23 00000008
00005d24 00c21000
00006bhd24 00000008
2ca422a0 00c21800
130020e4 00000008
00003d24 00c30000
2cabe2b3 00000008

509cbhd23 00000008 -
00c2f000 21790bb27 006c21800

509chd23 00000008
e 00005d24 00c30000
0000bd24 00000008

Memory

00005d24
0000bd24
2ca422a0 00c21800
130020e4 00000008
00003d24 00c30000
2ca4e2b3 A0NANAASK

N\

Instructions

Instructions !

Virtual memory

CPU

0x000000000000 Process B

Process A | - Code

0x000000000000 |
Static Data

Code

Static Data

Data

. 3 o .
’ : | : ’ hy . . .
. . . - * OXFFFFFFFFFFFF . .' .Q .0 o g . .
’ ' . ; ' 3 ! ’ * P
X .
* . . F . ‘ ‘
@ . . . « o N . 3 o .
. . . LA . o ol . & - .
* . . LIRS . o o8 . 4 " =
‘ .

s ©® . . . a “. . 4 i .

P . L * 4 '. K K . “‘

s ® . . * ° s d . X . . .

. * . . " . J d . A . “' .

. * . ° A . 4 ‘ R X i . “‘
. . . . 4 .. . A R .)
' ’ * y $. .
. . . . L KX y : . .
. . o . R st s . A . .
9 ‘ ’ ’ i p .* “Q
s . . % L ‘.’ “
* . . . L LN . .
K i - 9 . ® e ¢ . . . *
A . . ¢ . .0 .,: 4 ., “' “‘
. . .
" . . * s 3 e “‘

Virtual memory

- An abstraction of memory space available for programs/
software/programmer

- Programs execute using virtual memory address

- The operating system and hardware work together to handle
the mapping between virtual memory addresses and real/
physical memory addresses

- Virtual memory organizes memory locations into “"pages”

53

Demo revisited: Virtualization

double a;

int main(int argc, char xargv[])
{

int cpu, status, 1i;

int *address_from _malloc;

cpu_set_t my_set; // Define your cpu_set bit mask.
CPU_ZERO(&my_set); // Initialize it all to @, i.e. no CPUs selected.
CPU_SET(4, &my_set); // set the bit that represents core 7.

sched setaffinity(®, sizeof(cpu set t &ny set); // Set affinity of this process to the defined mask, 1.e. only 7.
status = syscall(SYS_getcpu, &cpu, NULL, NULL);

getcpu system call to retrieve the executing CPU ID

1T (argc <
{
fprintf(stderr, "Usage: %s process_nickname\n",argv[0]);
exit(1);
¥

srand((int)time(NULL)+(int)getpid());
a = rand(); create a random number

fprintf(stderr, "\nProcess %s is using CPU: %d. Value of a is %1f and address of a is %p\n",argv[1], c
sleep(1); print the value of a and

fprintf(stderr, "\nProcess %s 1s using CPU: %d. Value of a 1s %l1f and,address of a is %p\n", a, &a);
sleep(3); print the value of aand ad fter sleep

return 0;

Demo revisited

Process is using CPU: 4. Value of a is|685161796.000000 pnd address Jof a is 0x6010b0
Process is using CPU: 4. Value of a is]217757257.000000 pnd address pof a is 0x6010b0

Process is using CPU: 4. Walue of a i1s]2057721479.0000004 and addresdq of a is 0x6010b0

Process is using CPU: 4. [Value of a is]1457934803.0000001 and addresq of a is 0x6010b0
Different values
Process is using CPU: 4. [Value of a is]|685161796.000000 |nd address pf a is 0x6010b0

Process is using CPU: 4. [Value of a is|217757257.000000 pnd address pf a is 0x6010b0
Process is using CPU: 4. [Value of a is|2057721479.0000001 and addresq of a is 0Ox6010b0

1457934803 .0000001 and addresdq of a is 0x6010b0
The same memory

Process is using CPU: 4., Value of a i

Different values are

The same processor! address!

preserved

Demo revisited

Process A's

Process A Mapping Table
&a = 0x601090
#define _GNU_SOURCE \
#1nclude <unistd.h>
#include <stdio.h> F)

#include <stdlib.h> r()(3€35555 E;

#include <assert.h>
#include <sched.h>
#include <sys/syscall.h>
#include <time.h>

Process B's
Mapping Table

double a;
int main(int argc, char xargvl[])
{
int 1, number_of_total processes=4;
number_of_total_processes = atoi(argv[l]);
for(i = ©; i< number_of_total_processes-1 && fork(); i++);
srand((int)time(NULL)+(int)getpid());
fprintf(stderr, "\nProcess %d 1s using CPU: %d. Value of a 1s %lf and address of a is %p\n”,getpid(), cpu, a, &a);
sleep(10);
fprintf(stderr, "\nProcess %d is using CPU: %d. Value of a is %l1f and address of a is %p\n”,getpid(), cpu, a, &a);
return 0;
¥

56

How to map from virtual to physical?
Let’s start from segmentation

Segmentation

- The compiler generates code using virtual memory addresses

- The OS works together with hardware to partition physical memory
space into segments for each running application

- The hardware dynamically translates virtual addresses into physical
memory addresses Physical memory of the

machine Application B

O Application A O O ,

. GUE.
7 LEGENDS

58

Address translation in segmentation

Processor

Virtual memory of
O Application

X-

load Ox4000

j »

Ox4000 + X =X+ 0x4000

Physical memory of the
machine

PC Base 0

59

Protection again malicious processes

Processor

Virtual memory of
Application

load |0x4000

Physical memory of the
machine

O

PC Base 0

I
0O + X9X N

X

/\

what if we are load a l

‘negative offset™” - 0,4000 + X =[X + 0x4000

what if X + 0x4000 belongs to
another process?

60

Protection again malicious processes

Processor
Virtual memory of Bound Physical memory of the

O Application machine

PC Base 0

only allow the access I
if it's yes X

X

load Ox4000

a segmentation fault (often shortened to l

segfault), raised by hardware with
memory protection, when the software
has attempted to access a restricted area]OX4000 1 + X =X + 0x4000

of memory (a memory access violation).

Ox4000 < X Yes — proceed
No — segmentation fault!!!

2X

61

Announcement

- Reading quizzes due next Tuesday

- New office hour

- M 3p-4p and Th 9a-10a

- Use the office hour Zoom link, not the lecture one
- Project released

- Groupsin?2

- Start as soon as you can — due in about a month

- Pull the latest version — had some changes for later kernel versions
https://github.com/hungweitseng/CS202-ResourceContainer

« Install an Ubuntu Linux 16.04.07 VM as soon as you can!

- Please do not use a real machine — you may not be able to reboot again

- Midterm

- Will release on 2/10/2021 0:00am and due on 2/15/202111:59:00pm

- You will have to find a consecutive, non-stop 80-minute slot with this period

- One time, cannot reinitiate — please make sure you have a stable system and network
- No late submission is allowed

67

https://github.com/hungweitseng/CS202-ResourceContainer

Computer

Engineering

