
Virtual memory (II)
Hung-Wei Tseng

Recap: Demo revisited

2

The same processor!
The same memory

address!

Different values

Different values are
preserved

3

Why: If we expose memory directly to the processor (I)

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins
tru

cti
on

s 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Memory

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Da
ta

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008
00c2e800
00000008
00c2f000
00000008

00c2e800
00000008
00c2f000
00000008

00c2f800
00000008
00c30000
00000008

? What if my program
needs more memory?

4

Why: If we expose memory directly to the processor (II)

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins
tru

cti
on

s 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Memory

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Memory

?

What if my program
runs on a machine
with a different
memory size?

5

Why: If we expose memory directly to the processor (III)

Memory

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins
tru

cti
on

s 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

?

What if both programs
need to use memory?

Recap: Full picture of segmentation

6

Physical memory of the
machine0

X

2X

Virtual memory of
Application

X

0
Processor

PC Base

X = X + 0x4000

load 0x4000

0x4000 +

Bound

X Yes — proceed<0x4000

only allow the access
if it’s yes

No — segmentation fault!!!

a segmentation fault (often shortened to
segfault), raised by hardware with

memory protection, when the software
has attempted to access a restricted area
of memory (a memory access violation).

Current scoreboard

7

Red Blue

9 12

• Regarding segments, how many of the followings are correct?
! Each segment must occupy contiguous physical memory locations
" The system must allocate and reserve the physical memory locations for a

segment whenever the program using that segment is scheduled
An application can pre-allocate a large segment but turn out not using every byte

in the segment
$ The system may not be able to allocate space for a segment even though the

total capacity of available physical locations is sufficient
A. 0
B. 1
C. 2
D. 3
E. 4

8

Efficiency of SegmentationPoll close in

• Regarding segments, how many of the followings are correct?
! Each segment must occupy contiguous physical memory locations
" The system must allocate and reserve the physical memory locations for a

segment whenever the program using that segment is scheduled
An application can pre-allocate a large segment but turn out not using every byte

in the segment
$ The system may not be able to allocate space for a segment even though the

total capacity of available physical locations is sufficient
A. 0
B. 1
C. 2
D. 3
E. 4

9

Efficiency of SegmentationPoll close in

Recap: segmentation

10

Physical memory of the
machine0

X

2X

Virtual memory of
Application

X

0
Processor

PC Base

X = X + 0x4000

load 0x4000

0x4000 +

Bound

X0x4000

only allow the access
if it’s yes

The whole segment must be
contiguous both logically and

physically!

What if?

11

Application B

X

0

Y

X+Y

11

Application A0

Y

Physical memory of the
machine0

z
Application C0

X
Where can we map

Application C?

X

X

External Fragment

What if Application B
only uses part of the
allocated space?

Internal
Fragment

Even though we have space, we still
cannot map App. C We waste some space in

the allocated segment

• Regarding segments, how many of the followings are correct?
! Each segment must occupy contiguous physical memory locations
" The system must allocate and reserve the physical memory locations for a

segment whenever the program using that segment is scheduled
An application can pre-allocate a large segment but turn out not using every byte

in the segment
$ The system may not be able to allocate space for a segment even though the

total capacity of available physical locations is sufficient
A. 0
B. 1
C. 2
D. 3
E. 4

12

Efficiency of Segmentation

• Demand paging
• Making demand paging efficient
• Swapping

13

Outline

When to create a virtual to physical
address mapping? —

Demand paging

14

Virtual Memory Space
15

0x2000
0x1000

0x8000

0x4000
0x3000

0x6000
0x5000

0x7000

0xFFF
0x1FFF
0x2FFF
0x3FFF
0x4FFF
0x5FFF
0x6FFF
0x7FFF
0x8FFF

AAA
A

BBB
B

CCC
C

DDD
D EEEE FFFF GGG

G
HHH
H

AAA
A

BBB
B

CCC
C

DDD
D EEEE FFFF GGG

G
HHH
H

AAA
A

BBB
B

CCC
C

DDD
D EEEE FFFF GGG

G
HHH
H

AAA
A

BBB
B

CCC
C

DDD
D EEEE FFFF GGG

G
HHH
H

AAA
A

BBB
B

CCC
C

DDD
D EEEE FFFF GGG

G
HHH
H

AAA
A

BBB
B

CCC
C

DDD
D EEEE FFFF GGG

G
HHH
H

AAA
A

BBB
B

CCC
C

DDD
D EEEE FFFF GGG

G
HHH
H

AAA
A

BBB
B

CCC
C

DDD
D EEEE FFFF GGG

G
HHH
H

0x0000

Processor
Core

Registers

The virtual memory abstraction in “paging”
Main memory

(DRAM)
load 0x0009 Page #1Page

table
Page #1

Demand paging

16

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Virtual Address Space for Apple MusicVirtual Address Space for Chrome

Memory

00c2e800
00000008
00c2f000
00000008

instruction
0x0

0f00bb27
509cbd23
00005d24
0000bd24

data
0x80000000 instruction

0x0

0f00bb27
509cbd23
00005d24
0000bd24

00c2f800
00000008
00c30000
00000008

data
0x80008000

Page fault!
Page fault! Page fault! Page fault!

Demand paging

17

Application A0

X

Application B

X

0
Physical memory of the

machine0

each of these cells
is a page

• Paging: partition virtual/physical memory spaces into fix-sized
pages

• Page fault: when the requested page cannot be found in the
physical memory — created the demand of allocating pages!

• Demand paging: Allocate a physical memory page for a virtual
memory page when the virtual page is needed (page fault
occurs)
• There is also shadow paging used by embedded systems, mobile
phones — they load the whole program/data into the physical
memory when you launch it

18

Terminology of Demand paging

• How many of the following statements is/are correct regarding
segmentation and demand paging?
! Segments can cause more external fragmentations than demand paging
" Paging can still cause internal fragmentations
The overhead of address translation in segmentation is higher
$ Consecutive virtual memory address may not be consecutive in physical

address if we use demand paging
A. 0
B. 1
C. 2
D. 3
E. 4

19

Segmentation v.s. demand pagingPoll close in

• How many of the following statements is/are correct regarding
segmentation and demand paging?
! Segments can cause more external fragmentations than demand paging
" Paging can still cause internal fragmentations
The overhead of address translation in segmentation is higher
$ Consecutive virtual memory address may not be consecutive in physical

address if we use demand paging
A. 0
B. 1
C. 2
D. 3
E. 4

20

Segmentation v.s. demand pagingPoll close in

• How many of the following statements is/are correct regarding
segmentation and demand paging?
! Segments can cause more external fragmentations than demand paging
" Paging can still cause internal fragmentations
The overhead of address translation in segmentation is higher
$ Consecutive virtual memory address may not be consecutive in physical

address if we use demand paging
A. 0
B. 1
C. 2
D. 3
E. 4

21

Segmentation v.s. demand paging

— you need to provide finer-grained mapping in paging — you may need to handle page faults!

— within a page— the main reason why we love paging!

We haven’t seen pure/true implementation of
segmentations for a while, but we still use segmentation

fault errors all the time!

Address translation in demand
paging

22

page offsetphysical page number

page offsetvirtual page number

0x D E A D B

• Processor receives virtual addresses from the running
code, main memory uses physical memory addresses

• Virtual address space is organized into “pages”
• The system references the page table to translate
addresses
• Each process has its own
page table

• The page table
content is maintained
by OS

• In addition to valid bit and physical page #, the page
table may also store
• Reference bit
• Modified bit
• Permissions

23

Address translation
Virtual
address 0x 0 0 0 0 B E E F

va
lid

ac
ce

ss
pe

rm
iss

ion

Physical
address E E F

Page
table

• Assume that we have 32-bit virtual address space, each page
is 4KB, each page table entry is 4 bytes, how big is the page
table for a process?
A. 1MB
B. 2MB
C. 4MB
D. 8MB
E. 16MB

24

Size of page tablePoll close in

• Assume that we have 32-bit virtual address space, each page
is 4KB, each page table entry is 4 bytes, how big is the page
table for a process?
A. 1MB
B. 2MB
C. 4MB
D. 8MB
E. 16MB

25

Size of page tablePoll close in

• Assume that we have 32-bit virtual address space, each page
is 4KB, each page table entry is 4 bytes, how big is the page
table for a process?
A. 1MB
B. 2MB
C. 4MB
D. 8MB
E. 16MB

26

Size of page table

What if we have 16 processes?
4 MB * 16 = 64MB

— we need a separate page
table for each process

4 bytes × 4 GB
4 KB = 4 × 1 M = 4 MB

Number of entries in the page table
The size of each entry in the page table

• Assume that we have 64-bit virtual address space, each page
is 4KB, each page table entry is 8 bytes (64-bit addresses),
what magnitude in size is the page table for 32 processes?
A. MB — 220 Bytes
B. GB — 230 Bytes
C. TB — 240 Bytes
D. PB — 250 Bytes
E. EB — 260 Bytes

27

Size of page tablePoll close in

• Assume that we have 64-bit virtual address space, each page
is 4KB, each page table entry is 8 bytes (64-bit addresses),
what magnitude in size is the page table for 32 processes?
A. MB — 220 Bytes
B. GB — 230 Bytes
C. TB — 240 Bytes
D. PB — 250 Bytes
E. EB — 260 Bytes

28

Size of page tablePoll close in

• Assume that we have 64-bit virtual address space, each page
is 4KB, each page table entry is 8 bytes (64-bit addresses),
what magnitude in size is the page table for 32 processes?
A. MB — 220 Bytes
B. GB — 230 Bytes
C. TB — 240 Bytes
D. PB — 250 Bytes
E. EB — 260 Bytes

29

Size of page table

8 bytes × 264 B
4 KB = 23B × 264 B

212 B
= 255 B = 32 PB

32 PB × 32 = 260B = 1 EB

• Page tables are too large to be kept on the chip (millions of
entries)

• Instead, the page tables are kept in memory

30

Address translation (cont.)
— space overhead: surpasses cache capacity

— memory access overhead
— space overhead: can be bigger than physical main

memory when address space is large

Smaller page tables

31

Virtual memory

0x0000000000000000

0xFFFFFFFFFFFFFFFF

Do we really need a large table?

32

heap

stack

Dynamic allocated
data: malloc()

Local variables,
arguments

code

static data

Your program probably
never uses this huge area!

Virtual memory

0x0000000000000000

0xFFFFFFFFFFFFFFFF

Hierarchical page table

33

heap

stack

Dynamic allocated
data: malloc()

Local variables,
arguments

code

static data

1
1
1
0
0
0
0
0
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid
1
1
1
1
1
1
1
1
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid

Each of these nodes occupies exactly a page
Why?

Otherwise, you always need to
find more than one consecutive

pages — difficult!

• Break the virtual page number into several pieces
• If one piece has N bits, build an 2N-ary tree
• Only store the part of the tree that contain valid pages
• Walk down the tree to translate the virtual address

34

Hierarchical page table

level 2 index offsetlevel 1 index

physical page # offset

• Two-level, 4KB, 10 bits index in each level
• If we are accessing 0x1006000 now…

10 bits 10 bits offset = 12 bits

35

Page table walking example

0000000100 0000000110 000000000000

0x7fffffffe000

0x4a

the memory page in 0x7fffffffe000

physical page # offset
1001010 000000000000

• Only store the valid
second level pages.

1
0
1
0
0
0
0
0
0
0

valid

36

Hierarchical page table
1
1
1
1
0
1
1
1
1
0

1
1
1
1
0
1
1
0
1
1

Each of these nodes
must fit in a page

• Assume that our system uses hierarchical page table with 4KB
page size under 64-bit virtual address space and each PTE is
8B in size. How many levels of indexes do we need for the
hierarchical page table?
A. 2
B. 3
C. 4
D. 5
E. 6

37

How many levels do we need?Poll close in

• Assume that our system uses hierarchical page table with 4KB
page size under 64-bit virtual address space and each PTE is
8B in size. How many levels of indexes do we need for the
hierarchical page table?
A. 2
B. 3
C. 4
D. 5
E. 6

38

How many levels do we need?Poll close in

• Assume that our system uses hierarchical page table with 4KB
page size under 64-bit virtual address space and each PTE is
8B in size. How many levels of indexes do we need for the
hierarchical page table?

39

How many levels do we need?

1

1

0

1

1

4096
8 =512=29

12 bits offset9 bits index
1

1

0

1

1

4096
8 =512=29

9 bits index
1

1

0

1

1

4096
8 =512=29

9 bits index
1

1

0

1

1

4096
8 =512=29

9 bits index
1

1

0

1

1

4096
8 =512=29

9 bits index7 bits index

• Assume that our system uses hierarchical page table with 4KB
page size under 64-bit virtual address space and each PTE is
8B in size. How many levels do we need for the hierarchical
page table?
A. 2
B. 3
C. 4
D. 5
E. 6

40

How many levels do we need?

Case study: Address translation in x86-64

41

63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
SignExt L4 index L3 index L2 index L1 index page offset

X86
Processor

CR3 Reg.

……
…512 entries

……
…512 entries

……
…512 entries

……
…512 entries

11:0 (12 bits)
physical page # page offset

• Reading quizzes due next Tuesday
• New office hour

• M 3p-4p and Th 9a-10a
• Use the office hour Zoom link, not the lecture one

• Project released
• Groups in 2
• Pull the latest version — had some changes for later kernel versions
https://github.com/hungweitseng/CS202-ResourceContainer

• Install an Ubuntu Linux 16.04.07 VM as soon as you can!
• Please do not use a real machine — you may not be able to reboot again

• Midterm
• Will release on 2/10/2021 0:00am and due on 2/15/2021 11:59:00pm
• You will have to find a consecutive, non-stop 80-minute slot with this period
• One time, cannot reinitiate — please make sure you have a stable system and network
• No late submission is allowed

42

Announcement

https://github.com/hungweitseng/CS202-ResourceContainer

ͺͻͥ

Computer
Science &
Engineering

202

