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Recap: Demo revisited
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The same processor!
The same memory 

address!

Different values

Different values are 
preserved
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Why: If we expose memory directly to the processor (I)
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? What if my program 
needs more memory?
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Why: If we expose memory directly to the processor (II)
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?

What if my program 
runs on a machine 
with a different 
memory size?
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Why: If we expose memory directly to the processor (III)
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What if both programs 
need to use memory?



Recap: Full picture of segmentation
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Physical memory of the 
machine0

X

2X

Virtual memory of 
Application

X

0
Processor

PC Base

X = X + 0x4000

load 0x4000

0x4000 +

Bound

X Yes — proceed<0x4000

only allow the access 
if it’s yes

No — segmentation fault!!!

a segmentation fault (often shortened to 
segfault), raised by hardware with 

memory protection, when the software 
has attempted to access a restricted area 
of memory (a memory access violation).



Current scoreboard
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• Regarding segments, how many of the followings are correct? 
! Each segment must occupy contiguous physical memory locations 
" The system must allocate and reserve the physical memory locations for a 

segment whenever the program using that segment is scheduled 
# An application can pre-allocate a large segment but turn out not using every byte 

in the segment   
$ The system may not be able to allocate space for a segment even though the 

total capacity of available physical locations is sufficient 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Efficiency of SegmentationPoll close in
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Recap: segmentation
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Physical memory of the 
machine0

X

2X

Virtual memory of 
Application

X

0
Processor

PC Base

X = X + 0x4000

load 0x4000

0x4000 +

Bound

X0x4000

only allow the access 
if it’s yes

The whole segment must be 
contiguous both logically and 

physically!



What if?
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Application B

X

0

Y

X+Y

11

Application A0

Y

Physical memory of the 
machine0

z
Application C0

X
Where can we map 

Application C?

X

X

External Fragment

What if Application B 
only uses part of the 
allocated space?

Internal 
Fragment

Even though we have space, we still 
cannot map App. C We waste some space in 

the allocated segment



• Regarding segments, how many of the followings are correct? 
! Each segment must occupy contiguous physical memory locations 
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Efficiency of Segmentation



• Demand paging 
• Making demand paging efficient 
• Swapping
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Outline



When to create a virtual to physical 
address mapping? —  

Demand paging
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Virtual Memory Space
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The virtual memory abstraction in “paging”
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Demand paging
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Program
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Virtual Address Space for Apple MusicVirtual Address Space for Chrome

Memory

00c2e800  
00000008  
00c2f000  
00000008  

instruction
0x0

0f00bb27 
509cbd23 
00005d24 
0000bd24

data
0x80000000 instruction

0x0

0f00bb27 
509cbd23 
00005d24 
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00c2f800  
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00c30000  
00000008

data
0x80008000

Page fault!
Page fault! Page fault! Page fault!



Demand paging
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Application A0

X

Application B

X

0
Physical memory of the 

machine0

each of these cells 
is a page



• Paging: partition virtual/physical memory spaces into fix-sized 
pages 

• Page fault: when the requested page cannot be found in the 
physical memory — created the demand of allocating pages! 

• Demand paging: Allocate a physical memory page for a virtual 
memory page when the virtual page is needed (page fault 
occurs) 
• There is also shadow paging used by embedded systems, mobile 
phones — they load the whole program/data into the physical 
memory when you launch it

18

Terminology of Demand paging



• How many of the following statements is/are correct regarding 
segmentation and demand paging? 
! Segments can cause more external fragmentations than demand paging 
" Paging can still cause internal fragmentations 
# The overhead of address translation in segmentation is higher 
$ Consecutive virtual memory address may not be consecutive in physical 

address if we use demand paging 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

19

Segmentation v.s. demand pagingPoll close in
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Segmentation v.s. demand paging

— you need to provide finer-grained mapping in paging — you may need to handle page faults!

— within a page— the main reason why we love paging!

We haven’t seen pure/true implementation of 
segmentations for a while, but we still use segmentation 

fault errors all the time!



Address translation in demand 
paging

22



page offsetphysical page number

page offsetvirtual page number

0x D E A D B

• Processor receives virtual addresses from the running 
code, main memory uses physical memory addresses 

• Virtual address space is organized into “pages” 
• The system references the page table to translate 
addresses 
• Each process has its own  
page table 

• The page table 
content is maintained 
by OS 

• In addition to valid bit and physical page #, the page 
table may also store 
• Reference bit 
• Modified bit 
• Permissions

23

Address translation
Virtual 
address 0x 0 0 0 0 B E E F

va
lid

ac
ce

ss
pe

rm
iss

ion

Physical 
address E E F

Page 
table



• Assume that we have 32-bit virtual address space, each page 
is 4KB, each page table entry is 4 bytes, how big is the page 
table for a process? 
A. 1MB 
B. 2MB 
C. 4MB 
D. 8MB 
E. 16MB

24

Size of page tablePoll close in
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• Assume that we have 32-bit virtual address space, each page 
is 4KB, each page table entry is 4 bytes, how big is the page 
table for a process? 
A. 1MB 
B. 2MB 
C. 4MB 
D. 8MB 
E. 16MB
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Size of page table

What if we have 16 processes?
4 MB * 16 = 64MB 

— we need a separate page 
table for each process

4 bytes × 4 GB
4 KB = 4 × 1 M = 4 MB

Number of entries in the page table
The size of each entry in the page table



• Assume that we have 64-bit virtual address space, each page 
is 4KB, each page table entry is 8 bytes (64-bit addresses), 
what magnitude in size is the page table for 32 processes? 
A. MB — 220 Bytes 
B. GB — 230 Bytes 
C. TB — 240 Bytes 
D. PB — 250 Bytes 
E. EB — 260 Bytes

27

Size of page tablePoll close in
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• Assume that we have 64-bit virtual address space, each page 
is 4KB, each page table entry is 8 bytes (64-bit addresses), 
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Size of page table

8 bytes × 264 B
4 KB = 23B × 264 B

212 B
= 255 B = 32 PB

32 PB × 32 = 260B = 1 EB



• Page tables are too large to be kept on the chip (millions of 
entries) 

• Instead, the page tables are kept in memory

30

Address translation (cont.)
— space overhead: surpasses cache capacity

— memory access overhead
— space overhead: can be bigger than physical main 

memory when address space is large



Smaller page tables

31



Virtual memory

0x0000000000000000

0xFFFFFFFFFFFFFFFF

Do we really need a large table?

32

heap

stack

Dynamic allocated 
data: malloc()

Local variables, 
arguments

code

static data

Your program probably 
never uses this huge area!



Virtual memory

0x0000000000000000

0xFFFFFFFFFFFFFFFF

Hierarchical page table
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heap

stack

Dynamic allocated 
data: malloc()

Local variables, 
arguments

code

static data

1
1
1
0
0
0
0
0
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid
1
1
1
1
1
1
1
1
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid

1
1
1
1
1
1
1
1
1
1

valid

Each of these nodes occupies exactly a page
Why?

Otherwise, you always need to 
find more than one consecutive 

pages — difficult!



• Break the virtual page number into several pieces 
• If one piece has N bits, build an 2N-ary tree 
• Only store the part of the tree that contain valid pages 
• Walk down the tree to translate the virtual address

34

Hierarchical page table

level 2 index offsetlevel 1 index

physical page # offset



• Two-level, 4KB, 10 bits index in each level 
• If we are accessing 0x1006000 now…

10 bits 10 bits offset = 12 bits
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Page table walking example

0000000100 0000000110 000000000000

0x7fffffffe000

0x4a

the memory page in 0x7fffffffe000

physical page # offset
1001010 000000000000



• Only store the valid 
second level pages.

1
0
1
0
0
0
0
0
0
0

valid

36

Hierarchical page table
1
1
1
1
0
1
1
1
1
0

1
1
1
1
0
1
1
0
1
1

Each of these nodes 
must fit in a page



• Assume that our system uses hierarchical page table with 4KB 
page size under 64-bit virtual address space and each PTE is 
8B in size. How many levels of indexes do we need for the 
hierarchical page table? 
A. 2 
B. 3 
C. 4 
D. 5 
E. 6

37
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• Assume that our system uses hierarchical page table with 4KB 
page size under 64-bit virtual address space and each PTE is 
8B in size. How many levels of indexes do we need for the 
hierarchical page table?
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How many levels do we need?

1

1

0

1

1

4096
8 =512=29

12 bits offset9 bits index
1

1

0

1

1

4096
8 =512=29

9 bits index
1

1

0

1
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8 =512=29

9 bits index
1

1

0

1
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4096
8 =512=29

9 bits index
1

1

0

1

1

4096
8 =512=29

9 bits index7 bits index



• Assume that our system uses hierarchical page table with 4KB 
page size under 64-bit virtual address space and each PTE is 
8B in size. How many levels do we need for the hierarchical 
page table? 
A. 2 
B. 3 
C. 4 
D. 5 
E. 6
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How many levels do we need?



Case study: Address translation in x86-64
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63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
SignExt L4 index L3 index L2 index L1 index page offset

X86 
Processor

CR3 Reg.

……
…512 entries

……
…512 entries

……
…512 entries

……
…512 entries

11:0 (12 bits)
physical page # page offset



• Reading quizzes due next Tuesday 
• New office hour 

• M 3p-4p and Th 9a-10a 
• Use the office hour Zoom link, not the lecture one 

• Project released 
• Groups in 2 
• Pull the latest version — had some changes for later kernel versions
https://github.com/hungweitseng/CS202-ResourceContainer 

• Install an Ubuntu Linux 16.04.07 VM as soon as you can! 
• Please do not use a real machine — you may not be able to reboot again 

• Midterm 
• Will release on 2/10/2021 0:00am and due on 2/15/2021 11:59:00pm 
• You will have to find a consecutive, non-stop 80-minute slot with this period 
• One time, cannot reinitiate — please make sure you have a stable system and network 
• No late submission is allowed
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Announcement

https://github.com/hungweitseng/CS202-ResourceContainer
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