
File Systems & The Era of Flash-
based SSD

Hung-Wei Tseng

• Modern file systems
• Flash-based SSDs and eNVy: A non-volatile, main memory

storage system
• Don’t stack your log on my log

11

Outline

Modern file system design —
Extent File Systems

12

• Contiguous: the file resides in continuous addresses

13

How do we allocate disk space?

a.txt

• Non-contiguous: the file
can be anywhere

a.txt
external fragment as in Segmentation

• File types: directory, file
• File size
• Permission
• Attributes
• Types of pointers:

• Direct: Access single data block
• Single Indirect: Access n data blocks
• Double indirect: Access n2 data blocks
• Triple indirect: Access n3 data blocks

• inode has 15 pointers: 12 direct, 1 each
single-, double-, and triple-indirect

• If data block size is 512B and n = 256:
max file size =
(12+256+2562+2563)*512 = 8GB

14

Conventional Unix inode

File size is limited by total
number of pointers

• Contiguous: the file resides in continuous addresses

15

How do we allocate space?

a.txt

• Non-contiguous: the file
can be anywhere

a.txt

• Extents: the file resides in
several group of smaller
continuous address

a.txt

• Contiguous blocks only need a pair <start, size> to represent
• Improve random seek performance
• Save inode sizes
• Encourage the file system to use contiguous space allocation

16

Using extents in inodes

• Basically optimizations over FFS + Extent + Journaling (write-
ahead logs)

17

Extent file systems — ext2, ext3, ext4

• Contiguous blocks only need a pair <start, size> to represent
• Improve random seek performance
• Save inode sizes
• Encourage the file system to use contiguous space allocation

18

Using extents in inodes

How ExtFS use disk blocks

19

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks
File System Metadata (Superblock)

File Metadata
Data

Data
File System Metadata (Superblock)

File Metadata
Data

Data

File System Metadata (Superblock)
File Metadata

Data
Data

block group

• Basically, an idea borrowed from LFS to facilitate writes and
crash recovery

• Write to log first, apply the change after the log transaction
commits
• Update the real data block after the log writes are done
• Invalidate the log entry if the data is presented in the target location
• Replay the log when crash occurs

20

Write-ahead log

Flash-based SSDs
and

eNVy: A non-volatile, main memory storage system
Michael Wu and Willy Zwaenepoel

Rice University

21

Flash memory: eVNy and now

25

Modern SSDs eNVy

Technologies NAND NOR

Read granularity Pages (4K or 8K) Supports byte accesses

Write/program granularity Pages (4K or 8K) Supports byte accesses

Write once? Yes Yes

Erase In blocks (64 ~ 384 pages) 64 KB

Program-erase cycles 3,000 - 10,000 ~ 100,000

Basic flash operations

26

Block #0 …………………
Page #: 0 1 2 3 4 5 6 7 n-8 n-7 n-6 n-5 n-4 n-3n-2 n-1

Block #1 …………………
Block #2 …………………

……
……

……
……

……
……

Block #n-2 …………………
Block #n-1 …………………

Free PageProgram Read

Erase

Programmed page

Types of Flash Chips

27

Single-Level Cell
(SLC)

Multi-Level Cell
(MLC)

Triple-Level Cell
(TLC)

2 voltage levels,
1-bit

4 voltage levels,
2-bit

8 voltage levels,
3-bit

Quad-Level Cell
(QLC)

16 voltage levels,
4-bit

Programming in MLC

28

Multi-Level Cell
(MLC)

4 voltage levels,
2-bit

11

10

01

00

 3.1400000000000001243449787580
= 0x40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

11
10
01
00

3 Cycles/Phases to finish programming

phase #1

phase #2

phase #3

Programming in MLC

29

Multi-Level Cell
(MLC)

4 voltage levels,
2-bit

1 1

1 0

0 1

0 0

 3.1400000000000001243449787580
= 0x40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

11
10
01
00

1 Phase to finish programming the first page!

11
10
01
00

1st page

phase #1

phase #1

Programming the 2nd page in MLC

30

Multi-Level Cell
(MLC)

4 voltage levels,
2-bit

1 1

1 0

0 1

0 0

 3.1400000000000001243449787580
= 0x40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

11
10
01
00

2 Phase to finish programming the second page!

11
10
01
00

1st page

phase #1

phase #1

2nd page

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

phase #2

phase #2

Program-erase cycles: SLC v.s. MLC v.s. TLC v.s. QLC

31

Flash performance

32

Reads:
less than 150us

Program/write:
less than 2ms

Erase:
less than 3.6ms

Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H. Siegel, and Jack K. Wolf.
Characterizing flash memory: anomalies, observations, and applications. In MICRO 2009.

Re
ad

 Ti
me

(μ
s)

0

35

70

105

140

A-
SL

C2
A-

SL
C4

A-
SL

C8
B-

SL
C2

 50
nm

B-
SL

C4
 72

nm
E-

SL
C8

B-
ML

C8
 72

nm
B-

ML
C3

2 5
0n

m
C-

ML
C6

4 4
3n

m
D-

ML
C3

2
E-

ML
C8

Pr
og

ram
 Ti

me
(μ

s)

 '-

 500

 1,000

 1,500

 2,000

A-
SL

C2
A-

SL
C4

A-
SL

C8
B-

SL
C2

 50
nm

B-
SL

C4
 72

nm
E-

SL
C8

B-
ML

C8
 72

nm
B-

ML
C3

2 5
0n

m
C-

ML
C6

4 4
3n

m
D-

ML
C3

2
E-

ML
C8

Era
se

 Ti
me

(μ
s)

0

1000

2000

3000

4000

A-
SL

C2
A-

SL
C4

A-
SL

C8
B-

SL
C2

 50
nm

B-
SL

C4
 72

nm
E-

SL
C8

B-
ML

C8
 72

nm
B-

ML
C3

2 5
0n

m
C-

ML
C6

4 4
3n

m
D-

ML
C3

2
E-

ML
C8

Similar relative performance for reads, writes and erases

SLC SLC
SLC

MLC MLC MLC

Not a good practice

Recap: How your application reaches H.D.D.

33

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite — input.bin/output.bin

fread/fwrite — input.bin/output.bin

Buffer
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses

read/write — block addresses

What happens on a write if we use the same abstractions as H.D.D.

34

Block #1 …………………
Block #2 …………………

Block #0 …………………

Block #3 …………………
Block #4 …………………

SSD
Controller

CPU Write 0x0
Can we write to page #0 directly? No.
We have to copy page #1, page #2 in block #0 to
somewhere (e.g. RAM buffer) and then erase the block
Write this the new 0 and the old 15 back to block #0
again!

Read: 6*30us + Writing: 2ms*3 + Erasing 3ms ~ 9 ms Erase DRAM Buffer
Not much faster than the H.D.D. — also hurts the lifetime!

–David Wheeler

All problems in computer science can be solved by another level of
indirection

36

How your application reaches S.S.D.

37

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite — input.bin/output.bin

fread/fwrite — input.bin/output.bin

Buffer
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses

read/write — block addresses

FTL FTL FTL: Flash translation layer

• We are always lazy to modify our applications
• FTL maintains an abstraction of LBAs (logic block addresses) used

between hard disk drives and software applications
• FTL dynamically maps your logical block addresses to physical

addresses on the flash memory chip
• It needs your SSD to have a processor in it now

41

Flash Translation Layer (FTL)

What happens on a read with FTL

42

Block #1 …………………
Block #2 …………………

Block #0 …………………

Block #3 …………………
Block #4 …………………

SSD
Controller

CPU Read 0x3241 LBA Flash Block Flash Page
0x3241 0 0
0x3242 0 63
0x3243 1 3
0x3244 2 4
0x3245 3 6
0x3246 2 7

What happens on a write with FTL

43

Block #1 …………………
Block #2 …………………

Block #0 …………………

Block #3 …………………
Block #4 …………………

SSD
Controller

CPU Write 0x3241 LBA Flash Block Flash Page
0x3241 0 0
0x3242 0 63
0x3243 1 3
0x3244 2 4
0x3245 3 6
0x3246 2 7

3 7 invalid page
valid page
free page

Garbage Collection in FTL

44

Block #1 …………………
Block #2 …………………

Block #0 …………………

Block #3 …………………
Block #4 …………………

SSD
Controller

CPU LBA Flash Block Flash Page
0x3241 3 7
0x3242 0 63
0x3243 1 3
0x3244 2 4
0x3245 3 6
0x3246 2 7DRAM Buffer

Write 0x3241 invalid page
valid page
free page

Erase

0 2

• We are always lazy to modify our applications
• FTL maintains an abstraction of LBAs (logic block addresses) used

between hard disk drives and software applications
• FTL dynamically maps your logical block addresses to physical

addresses on the flash memory chip
• FTL performs copy-on-write when there is an update
• FTL reclaims invalid data regions and data blocks to allow future

updates
• FTL executes wear-leveling to maximize the life time

• It needs your SSD to have a processor in it now
45

Flash Translation Layer (FTL)

• Flash memories have different characteristics than
conventional storage and memory technologies

• We want to minimize the modifications in our software

46

Why eNVy

• A file system inside flash that performs
• Transparent in-place update
• Page remapping
• Caching/Buffering
• Garbage collection

• Exactly like LFS

47

What eNVy proposed

• Performance degrades as your store more data
• Modern SSDs provision storage space to address this issue

48

Utilization and performance

Flash array size

Flash chip type

of Flash chips

of Flash banks

Read time

Write time

Program time

Erase time

2 Gbytes

1 Mbyte x 8 bits

2048

8

256

100ns

100ns

4000ns

50ms

of Flash chips/bank

Flash Parameters

Erase blocks/chip 16

BTree size 32 pointers/node

Branch records 155

2

Teller records 1550

3

Account records 15.5 million

5

 # of index levels

 # of index levels

 # of index levels

TPC Parameters

SRAM array size

SRAM chip size

of SRAM chips

of SRAM banks

of SRAM chips/bank

Read time

Write time

64 Kbytes x 8

256

1

256

100ns

100ns

16 MBytes

SRAM Parameters (write buffer)

10000

15000

20000

25000

30000

35000

M
ea

su
re

d
Th

ro
ug

hp
ut

 (T
PS

)

10000 20000 30000 40000 50000

Transaction Request Rate (TPS)

5000

10000

15000

20000

25000

30000

35000

40000

45000

M
ea

su
re

d
Th

ro
ug

hp
ut

 (T
PS

)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flash Array Utilization

10,000 TPS 20,000 TPS 30,000 TPS 40,000 TPS

• Your SSD structured exactly like this!

49

The impact of eNVy

ASIC (e.g. NAND)
DRAM

Controller + Registers

Stores the mapping table

Perform FTL algorithms

Don’t stack your log on my log
Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and

Swaminathan Sundararaman
SanDisk Corporation

53

• Log is everywhere
• Application: database
• File system
• Flash-based SSDs

• They can interfere with each
other!

• An issue with software
engineering nowadays

54

Why should we care about this paper?

I/O interface

File system

Flash translation layer (also log-structured)

logic block addresses

logic block addresses

physical addresses

Log
files, offsets

Write-ahead Log

File system

For example, garbage collection

55

I/O interface

logic block addresses

logic block addresses

Block #1
A B F

Block #2 Block #3

invalid
valid
free

A B C D EF G HI J K

C D E G HI J K

OL M N

OL M N

LBA block # page #
0 1 0
1 1 1
2 - -
3 - -
4 - -
5 1 5
6 - -
7 - -
8 2 0
9 2 1

10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 3 0
17 3 1
18 3 2
19 3 3
20 - -
21 - -
22 - -
23 - -

FTL mapping table

LBA: 0

SSD

File systemLBA: 0

Now, SSD wants to reclaim a block

56

I/O interface

Flash SSD

logic block addresses

logic block addresses

Block #1
A B F

Block #2 Block #3

invalid
valid
free

A B C D EF G HI J K

C D E G HI J K

OL M N

OL M N A B F

LBA block # page #
0 1 0
1 1 1
2 - -
3 - -
4 - -
5 1 5
6 - -
7 - -
8 2 0
9 2 1

10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 3 0
17 3 1
18 3 2
19 3 3
20 - -
21 - -
22 - -
23 - -

SSD

3 4
3 5

3 6

FTL mapping table

File systemLBA: 0
File system log

Garbage collection on the SSD done!

57

I/O interface

Flash SSD

logic block addresses

logic block addresses

Block #1 Block #2 Block #3

invalid
valid
free

A B C D EF G HI J K

C D E G HI J K

OL M N

OL M N A B F

LBA block # page #
0 1 0
1 1 1
2 - -
3 - -
4 - -
5 1 5
6 - -
7 - -
8 2 0
9 2 1

10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 3 0
17 3 1
18 3 2
19 3 3
20 - -
21 - -
22 - -
23 - -

SSD

3 4
3 5

3 6

FTL mapping table

File systemLBA: 0
File system log

What will happen if the FS wants to perform GC?

58

I/O interface

File system log

Flash SSD

logic block addresses

logic block addresses

Block #1 Block #2 Block #3

invalid
valid
free

A B C D EF G HI J K

C D E G HI J K

OL M N

OL M N A B F

A B F

3 7
1 0
1 1

AB F

We could have avoided writing the
stale A, B, F if they are coordinated!

LBA block # page #
0 1 0
1 1 1
2 - -
3 - -
4 - -
5 1 5
6 - -
7 - -
8 2 0
9 2 1

10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 3 0
17 3 1
18 3 2
19 3 3
20 - -
21 - -
22 - -
23 - -

SSD

3 4
3 5

3 6

FTL mapping table

- -
- -

- -

3 7
1 0
1 1

–David Wheeler

All problems in computer science can be solved by another level of
indirection

59

...except for the problem of too many layers of indirection.

• Still an open research question
• Software designer should be aware of the characteristics of underlying

hardware components
• Revising the layered design to expose more SSD information to the file

system or the other way around

61

File systems for flash-based SSDs

KAML: Modernize the storage interface

62

Processor

NVMe SSD

File systems

Caches

Set/Get/Delete/Append…

Flash translation layer

keys

keys

physical addresses

❖ Yanqin Jin, Hung-Wei Tseng, Steven Swanson and Yannis
Papakonstantinou. KAML: A Flexible, High-Performance Key-Value
SSD. In HPCA 2017.

❖

