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• Modern file systems 
• Flash-based SSDs and eNVy: A non-volatile, main memory 

storage system 
• Don’t stack your log on my log
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Outline



Modern file system design — 
Extent File Systems
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• Contiguous: the file resides in continuous addresses
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How do we allocate disk space?

a.txt

• Non-contiguous: the file 
can be anywhere

a.txt
external fragment as in Segmentation



• File types: directory, file 
• File size 
• Permission 
• Attributes 
• Types of pointers: 

• Direct: Access single data block 
• Single Indirect: Access n data blocks 
• Double indirect: Access n2 data blocks 
• Triple indirect: Access n3 data blocks 

• inode has 15 pointers: 12 direct, 1 each 
single-, double-, and triple-indirect 

• If data block size is 512B and n = 256: 
max file size = 
(12+256+2562+2563)*512 = 8GB
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Conventional Unix inode

File size is limited by total 
number of pointers



• Contiguous: the file resides in continuous addresses
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How do we allocate space?

a.txt

• Non-contiguous: the file 
can be anywhere

a.txt

• Extents: the file resides in 
several group of smaller 
continuous address

a.txt



• Contiguous blocks only need a pair <start, size> to represent 
• Improve random seek performance 
• Save inode sizes 
• Encourage the file system to use contiguous space allocation
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Using extents in inodes



• Basically optimizations over FFS + Extent + Journaling (write-
ahead logs)
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Extent file systems — ext2, ext3, ext4



• Contiguous blocks only need a pair <start, size> to represent 
• Improve random seek performance 
• Save inode sizes 
• Encourage the file system to use contiguous space allocation
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Using extents in inodes



How ExtFS use disk blocks
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• Basically, an idea borrowed from LFS to facilitate writes and 
crash recovery 

• Write to log first, apply the change after the log transaction 
commits 
• Update the real data block after the log writes are done 
• Invalidate the log entry if the data is presented in the target location 
• Replay the log when crash occurs
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Write-ahead log



Flash-based SSDs
and

eNVy: A non-volatile, main memory storage system 
Michael Wu and Willy Zwaenepoel

Rice University
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Flash memory: eVNy and now
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Modern SSDs eNVy

Technologies NAND NOR

Read granularity Pages (4K or 8K) Supports byte accesses

Write/program granularity Pages (4K or 8K) Supports byte accesses

Write once? Yes Yes

Erase In blocks (64 ~ 384 pages) 64 KB

Program-erase cycles 3,000 - 10,000 ~ 100,000



Basic flash operations
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Block #0 …………………
Page #: 0 1 2 3 4 5 6 7 n-8 n-7 n-6 n-5 n-4 n-3n-2 n-1

Block #1 …………………
Block #2 …………………

……
……

……
……

……
……

Block #n-2 …………………
Block #n-1 …………………

Free PageProgram Read

Erase

Programmed page



Types of Flash Chips
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Single-Level Cell
(SLC)

Multi-Level Cell
(MLC)

Triple-Level Cell
(TLC)

2 voltage levels, 
1-bit

4 voltage levels, 
2-bit

8 voltage levels, 
3-bit

Quad-Level Cell
(QLC)

16 voltage levels, 
4-bit



Programming in MLC
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Multi-Level Cell
(MLC)

4 voltage levels, 
2-bit

11

10

01

00

 3.1400000000000001243449787580
= 0x40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

11 
10 
01 
00

3 Cycles/Phases to finish programming

phase #1

phase #2

phase #3



Programming in MLC
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Multi-Level Cell
(MLC)

4 voltage levels, 
2-bit

1 1

1 0

0 1

0 0

 3.1400000000000001243449787580
= 0x40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

11 
10 
01 
00

1 Phase to finish programming the first page!

11 
10 
01 
00

1st page

phase #1

phase #1



Programming the 2nd page in MLC
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Multi-Level Cell
(MLC)

4 voltage levels, 
2-bit

1 1

1 0

0 1

0 0

 3.1400000000000001243449787580
= 0x40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

11 
10 
01 
00

2 Phase to finish programming the second page!

11 
10 
01 
00

1st page

phase #1

phase #1

2nd page

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

phase #2

phase #2



Program-erase cycles: SLC v.s. MLC v.s. TLC v.s. QLC
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Flash performance

32

Reads:
less than 150us

Program/write:
less than 2ms

Erase:
less than 3.6ms

Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H. Siegel, and Jack K. Wolf. 
Characterizing flash memory: anomalies, observations, and applications. In MICRO 2009.
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Recap: How your application reaches H.D.D.
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Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite — input.bin/output.bin

fread/fwrite — input.bin/output.bin

Buffer
data

read/write — 0, 512, 4096, … (block address) 

read/write — block addresses 

read/write — block addresses 



What happens on a write if we use the same abstractions as H.D.D.
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Block #1 …………………
Block #2 …………………

Block #0 …………………

Block #3 …………………
Block #4 …………………

SSD 
Controller

CPU Write 0x0
Can we write to page #0 directly? No. 
We have to copy page #1, page #2 in block #0 to 
somewhere (e.g. RAM buffer) and then erase the block
Write this the new 0 and the old 15 back to block #0 
again!

Read: 6*30us + Writing: 2ms*3 + Erasing 3ms ~ 9 ms Erase DRAM Buffer
Not much faster than the H.D.D. — also hurts the lifetime!



–David Wheeler

All problems in computer science can be solved by another level of 
indirection
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How your application reaches S.S.D.
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Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite — input.bin/output.bin

fread/fwrite — input.bin/output.bin

Buffer
data

read/write — 0, 512, 4096, … (block address) 

read/write — block addresses 

read/write — block addresses 

FTL FTL FTL: Flash translation layer



• We are always lazy to modify our applications 
• FTL maintains an abstraction of LBAs (logic block addresses) used 

between hard disk drives and software applications 
• FTL dynamically maps your logical block addresses to physical 

addresses on the flash memory chip 
• It needs your SSD to have a processor in it now

41

Flash Translation Layer (FTL)



What happens on a read with FTL
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Block #1 …………………
Block #2 …………………

Block #0 …………………

Block #3 …………………
Block #4 …………………

SSD 
Controller

CPU Read 0x3241 LBA Flash Block Flash Page
0x3241 0 0
0x3242 0 63
0x3243 1 3
0x3244 2 4
0x3245 3 6
0x3246 2 7



What happens on a write with FTL
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Block #1 …………………
Block #2 …………………

Block #0 …………………

Block #3 …………………
Block #4 …………………

SSD 
Controller

CPU Write 0x3241 LBA Flash Block Flash Page
0x3241 0 0
0x3242 0 63
0x3243 1 3
0x3244 2 4
0x3245 3 6
0x3246 2 7

3 7 invalid page
valid page
free page



Garbage Collection in FTL
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Block #1 …………………
Block #2 …………………

Block #0 …………………

Block #3 …………………
Block #4 …………………

SSD 
Controller

CPU LBA Flash Block Flash Page
0x3241 3 7
0x3242 0 63
0x3243 1 3
0x3244 2 4
0x3245 3 6
0x3246 2 7DRAM Buffer

Write 0x3241 invalid page
valid page
free page

Erase

0 2



• We are always lazy to modify our applications 
• FTL maintains an abstraction of LBAs (logic block addresses) used 

between hard disk drives and software applications 
• FTL dynamically maps your logical block addresses to physical 

addresses on the flash memory chip 
• FTL performs copy-on-write when there is an update 
• FTL reclaims invalid data regions and data blocks to allow future 

updates 
• FTL executes wear-leveling to maximize the life time 

• It needs your SSD to have a processor in it now
45

Flash Translation Layer (FTL)



• Flash memories have different characteristics than 
conventional storage and memory technologies 

• We want to minimize the modifications in our software
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Why eNVy



• A file system inside flash that performs 
• Transparent in-place update 
• Page remapping 
• Caching/Buffering 
• Garbage collection 

• Exactly like LFS

47

What eNVy proposed



• Performance degrades as your store more data 
• Modern SSDs provision storage space to address this issue
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Utilization and performance

Flash array size

Flash chip type

# of Flash chips

# of Flash banks

Read time

Write time

Program time

Erase time

2 Gbytes

1 Mbyte x 8 bits

2048

8

256

100ns

100ns

4000ns

50ms

# of Flash chips/bank

Flash Parameters

Erase blocks/chip 16

BTree size 32 pointers/node

Branch records 155

2

Teller records 1550

3

Account records 15.5 million
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  # of index levels

  # of index levels

  # of index levels

TPC Parameters

SRAM array size

SRAM chip size

# of SRAM chips

# of SRAM banks

# of SRAM chips/bank

Read time

Write time

64 Kbytes x 8

256

1

256

100ns

100ns

16 MBytes

SRAM Parameters (write buffer)
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• Your SSD structured exactly like this!
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The impact of eNVy

ASIC (e.g. NAND)
DRAM

Controller + Registers

Stores the mapping table

Perform FTL algorithms



Don’t stack your log on my log
Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and 

Swaminathan Sundararaman
SanDisk Corporation
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• Log is everywhere 
• Application: database 
• File system 
• Flash-based SSDs 

• They can interfere with each 
other! 

• An issue with software 
engineering nowadays
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Why should we care about this paper?

I/O interface

File system

Flash translation layer (also log-structured)

logic block addresses

logic block addresses

physical addresses

Log
files, offsets

Write-ahead Log



File system

For example, garbage collection
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I/O interface

logic block addresses

logic block addresses

Block #1
A B F

Block #2 Block #3

invalid
valid
free

A B C D EF G HI J K

C D E G HI J K

OL M N

OL M N

LBA block # page #
0 1 0
1 1 1
2 - -
3 - -
4 - -
5 1 5
6 - -
7 - -
8 2 0
9 2 1

10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 3 0
17 3 1
18 3 2
19 3 3
20 - -
21 - -
22 - -
23 - -

FTL mapping table

LBA: 0

SSD



File systemLBA: 0

Now, SSD wants to reclaim a block 
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I/O interface

Flash SSD

logic block addresses

logic block addresses

Block #1
A B F

Block #2 Block #3

invalid
valid
free

A B C D EF G HI J K

C D E G HI J K

OL M N

OL M N A B F

LBA block # page #
0 1 0
1 1 1
2 - -
3 - -
4 - -
5 1 5
6 - -
7 - -
8 2 0
9 2 1

10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 3 0
17 3 1
18 3 2
19 3 3
20 - -
21 - -
22 - -
23 - -

SSD

3 4
3 5

3 6

FTL mapping table



File systemLBA: 0
File system log

Garbage collection on the SSD done!
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I/O interface

Flash SSD

logic block addresses

logic block addresses

Block #1 Block #2 Block #3

invalid
valid
free

A B C D EF G HI J K

C D E G HI J K

OL M N

OL M N A B F

LBA block # page #
0 1 0
1 1 1
2 - -
3 - -
4 - -
5 1 5
6 - -
7 - -
8 2 0
9 2 1

10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 3 0
17 3 1
18 3 2
19 3 3
20 - -
21 - -
22 - -
23 - -

SSD

3 4
3 5

3 6

FTL mapping table



File systemLBA: 0
File system log

What will happen if the FS wants to perform GC?
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I/O interface

File system log

Flash SSD

logic block addresses

logic block addresses

Block #1 Block #2 Block #3

invalid
valid
free

A B C D EF G HI J K

C D E G HI J K

OL M N

OL M N A B F

A B F

3 7
1 0
1 1

AB F

We could have avoided writing the 
stale A, B, F if they are coordinated!

LBA block # page #
0 1 0
1 1 1
2 - -
3 - -
4 - -
5 1 5
6 - -
7 - -
8 2 0
9 2 1

10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 3 0
17 3 1
18 3 2
19 3 3
20 - -
21 - -
22 - -
23 - -

SSD

3 4
3 5

3 6

FTL mapping table

- -
- -

- -

3 7
1 0
1 1



–David Wheeler

All problems in computer science can be solved by another level of 
indirection
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...except for the problem of too many layers of indirection.



• Still an open research question 
• Software designer should be aware of the characteristics of underlying 

hardware components 
• Revising the layered design to expose more SSD information to the file 

system or the other way around
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File systems for flash-based SSDs



KAML: Modernize the storage interface
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Processor

NVMe SSD

File systems

Caches

Set/Get/Delete/Append…

Flash translation layer

keys

keys

physical addresses

❖ Yanqin Jin, Hung-Wei Tseng, Steven Swanson and Yannis 
Papakonstantinou. KAML: A Flexible, High-Performance Key-Value 
SSD. In HPCA 2017.

❖  


