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Recap: How your application reaches storage device
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• Unix File System 
• Hierarchical directory structure 
• File — metadata (inode) + data 
• Everything is files 

• BSD Fast File System — optimize for reads 
• Cylinder group — Layout data carefully with device characteristics, replicated metadata 
• Larger block size & fragments to fix the drawback 
• A few other new features 

• Sprite Log-structured File System — optimize for small random writes 
• Computers cache a lot — reads are no more the dominating traffic 
• Aggregates small writes into large sequential writes to the disk 
• Invalidate older copies to support recovery
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Recap: File systems on a computer



• Basically optimizations over FFS + Extent + Journaling (write-ahead logs) 
• Extent — consecutive disk blocks 
• A file in ext file systems — a list of extents 
• Journal 

• Write-ahead logs — performs writes as in LFS 
• Apply the log to the target location when appropriate 

• Block group 
• Modern H.D.Ds do not have the concept of “cylinders” 
• They label neighboring sectors with consecutive block addresses 
• Does not work for SSDs given the internal log-structured management of block 
addresses
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Recap: Extent file systems — ext2, ext3, ext4



• Asymmetric read/write behavior/performance 
• Wear-out faster than traditional magnetic disks 
• Another layer of indirection is introduced 

• Intensify log-on-log issues 
• We need to revise the file system design
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Recap: flash SSDs, NVM-based SSDs



The introduction of virtual file system interface 
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• NFS 
• Google file system
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Outline



Network File System
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The introduction of virtual file system interface 
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• The client gives it’s file system a tuple to describe data 
• Volume: Identify which server contains the file — represented by 
the mount point in UNIX 

• inode: Where in the server 
• generation numer: version number of the file 

• The local file system forwards the requests to the server 
• The server response the client with file system attributes as 
local disks
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How does NFS handle a file?



• NFS operations are expensive 
• Lots of network round-trips 
• NFS server is a user-space daemon 

• With caching on the clients 
• Only the first reference needs network communication 
• Later requests can be satisfied in local memory

17

Caching



• Given the same input, always give the same output regardless 
how many times the operation is employed 

• You only need to retry the same operation if it failed
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Idempotent operations



Think about this
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• Flush-on-close: flush all write buffer contents when close the 
file 
• Later open operations will get the latest content 

• Force-getattr:  
• Open a file requires getattr from server to check timestamps 
• attribute cache to remedy the performance
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Solution



The Google File System
Sanjay Ghemawat, Howard Gobioff, and 

Shun-Tak Leung
Google
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• Conventional file systems do not fit the demand of data centers 
• Workloads in data centers are different from conventional 
computers 
• Storage based on inexpensive disks that fail frequently 
• Many large files in contrast to small files for personal data 
• Primarily reading streams of data 
• Sequential writes appending to the end of existing files 
• Must support multiple concurrent operations 
• Bandwidth is more critical than latency
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Why we care about GFS



• Google Search (Web Search for a Planet: The Google Cluster Architecture, IEEE 
Micro, vol. 23, 2003) 

• MapReduce (MapReduce: Simplified Data Processing on Large Clusters, OSDI 
2004) 
• Large-scale machine learning problems 
• Extraction of user data for popular queries 
• Extraction of properties of web pages for new experiments and products 
• Large-scale graph computations 

• BigTable (Bigtable: A Distributed Storage System for Structured Data, OSDI 
2006) 
• Google analytics 
• Google earth 
• Personalized search
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Data-center workloads for GFS



• Maintaining the same interface 
• The same function calls 
• The same hierarchical directory/files 

• Files are decomposed into large chunks (e.g. 64MB) with 
replicas 

• Hierarchical namespace implemented with flat structure 
• Master/chunkservers/clients
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What GFS proposes?



Latency Numbers Every Programmer Should Know
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Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5   ns
L2 cache reference 7   ns 14x L1 cache
Mutex lock/unlock 25   ns
Main memory reference 100   ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000   ns 3 us
Send 1K bytes over 1 Gbps 
network

10,000   ns 10 us

Read 4K randomly from SSD* 150,000   ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from 
memory

250,000   ns 250 us

Round trip within same datacenter 500,000   ns 500 us
Read 1 MB sequentially from SSD* 1,000,000   ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Read 512B from disk 10,000,000   ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000   ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms



• Directories are illusions 
• Namespace maintained like a hash table
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Flat file system structure 



Distributed architecture
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decoupled data and control paths — 
only control path goes through master

load balancing, replicas among chunkservers



• Single master 
• maintains file system metadata including namespace, mapping, access control 
and chunk locations. 

• controls system wide activities including garbage collection and chunk migration. 
• Chunkserver 

• stores data chunks 
• chunks are replicated to improve reliability (3 replicas) 

• Client 
• APIs to interact with applications 
• interacts with masters for control operations 
• interacts with chunkservers for accessing data 
• Can run on chunkservers
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Distributed architecture



Reading data in GFS
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Writing data in GFS
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• Linux problems (section 7) 
• Linux driver issues — disks do not report their capabilities honestly 
• The cost of fsync — proportion to file size rather than updated 
chunk size 

• Single reader-writer lock for mmap 
• Due to the open-source nature of Linux, they can fix it and 
contribute to the rest of the community
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Real world, industry experience

• GFS is not open-sourced



• GFS claims this will not be a bottleneck 
• In-memory data structure for fast access 
• Only involved in metadata operations — decoupled data/
control paths 

• Client cache 
• What if the master server fails?
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Single master design



• Mentioned in “Spanner: Google's Globally-Distributed 
Database”, OSDI 2012 — “tablet’s state is stored in set of B-
tree-like files and a write-ahead log, all on a distributed file 
system called Colossus (the successor to the Google File 
System)” 

• Single master
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The evolution of GFS



• Support for smaller chunk size — gmail
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The evolution of GFS



• snapshots 
• namespace locking 
• replica placement 
• create, re-replication, re-balancing 
• garbage collection 
• stable replica detection 
• data integrity 
• diagnostic tools: logs are your friends
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Lots of other interesting topics



• Distributed, simple, efficient 
• Filename/metadata updates/creates are atomic 
• Consistency modes

• Consistent: all replicas have the same value 
• Defined: replica reflects the mutation, consistent 

• Applications need to deal with inconsistent cases themselves
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GFS: Relaxed Consistency model

Write — write to a specific offset Append — write to the end of a 
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MapReduce
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• Conventional file systems do not fit the demand of data centers 
• Workloads in data centers are different from conventional 
computers 
• Storage based on inexpensive disks that fail frequently 
• Many large files in contrast to small files for personal data 
• Primarily reading streams of data 
• Sequential writes appending to the end of existing files 
• Must support multiple concurrent operations 
• Bandwidth is more critical than latency

54

Why we care about GFS

— MapReduce is fault tolerant
— MapReduce aims at processing large amount of data once

— MapReduce reads chunks of large files

— Output file keep growing as workers keep writing
—MapReduce has thousands of workers simultaneously

—MapReduce only wants to finish tasks within “reasonable” amount of time


