
File systems over the network
Hung-Wei Tseng

Recap: How your application reaches storage device

2

HDD #1

Device Controller

User

Kernel

Hardware

Applications

SSD
Device Controller

FTL

File system

Device independent I/O interface (e.g. ioctl)Buffer

Device Driver Device Driver Device Driver
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses

read/write — block addresses

fread/fwrite — input.bin/output.bin

I/O libraries Buffer
fread/fwrite — input.bin/output.bin

data

data

Network?

• Unix File System
• Hierarchical directory structure
• File — metadata (inode) + data
• Everything is files

• BSD Fast File System — optimize for reads
• Cylinder group — Layout data carefully with device characteristics, replicated metadata
• Larger block size & fragments to fix the drawback
• A few other new features

• Sprite Log-structured File System — optimize for small random writes
• Computers cache a lot — reads are no more the dominating traffic
• Aggregates small writes into large sequential writes to the disk
• Invalidate older copies to support recovery

3

Recap: File systems on a computer

• Basically optimizations over FFS + Extent + Journaling (write-ahead logs)
• Extent — consecutive disk blocks
• A file in ext file systems — a list of extents
• Journal

• Write-ahead logs — performs writes as in LFS
• Apply the log to the target location when appropriate

• Block group
• Modern H.D.Ds do not have the concept of “cylinders”
• They label neighboring sectors with consecutive block addresses
• Does not work for SSDs given the internal log-structured management of block
addresses

4

Recap: Extent file systems — ext2, ext3, ext4

• Asymmetric read/write behavior/performance
• Wear-out faster than traditional magnetic disks
• Another layer of indirection is introduced

• Intensify log-on-log issues
• We need to revise the file system design

5

Recap: flash SSDs, NVM-based SSDs

The introduction of virtual file system interface

6

HDD #1

Device Controller

User-space

Kernel

Hardware

Applications, user-space libraries

SSD
Device Controller

FTL

File system #2 (e.g. f2fs)

Device independent I/O interface (e.g. ioctl)
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses data

Virtual File System

open, close, read, write, …

File system #1 (e.g. ext4)

Device Driver Device Driver

open, close, read, write, …

read/write — block addresses

• NFS
• Google file system

8

Outline

Network File System

9

The introduction of virtual file system interface

10

HDD #1

Device Controller

User-space

Kernel

Hardware

Applications, user-space libraries

SSD
Device Controller

FTL

File system #2 (e.g. f2fs)

Device independent I/O interface (e.g. ioctl)
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses data

Virtual File System

open, close, read, write, …

File system #1 (e.g. ext4)

Device Driver Device Driver

open, close, read, write, …

read/write — block addresses

File system #3 — NFS
open, close, read, write, …

NIC

Device Controller

Network Device Driver

Network Stack
open, close, read, write, …

open, close,
read, write, …

open, close,
read, write, …

NFS Client/Server

11

User-
space

Kernel

Hardware

Applications, user-
space libraries

Virtual File System

NFS

NIC
Device Controller

Network Stack

Network Device Driver

open, close,
read, write, …

NFS Server

Virtual File System

NIC
Device Controller

Network Stack

Network Device Driver

open, close,
read, write, …

Disk File System

HDD #1
Device Controller

I/O interface

Device Driver

read/write —
block addresses

• The client gives it’s file system a tuple to describe data
• Volume: Identify which server contains the file — represented by
the mount point in UNIX

• inode: Where in the server
• generation numer: version number of the file

• The local file system forwards the requests to the server
• The server response the client with file system attributes as
local disks

12

How does NFS handle a file?

• NFS operations are expensive
• Lots of network round-trips
• NFS server is a user-space daemon

• With caching on the clients
• Only the first reference needs network communication
• Later requests can be satisfied in local memory

17

Caching

• Given the same input, always give the same output regardless
how many times the operation is employed

• You only need to retry the same operation if it failed

21

Idempotent operations

Think about this

22

Network

Server
File Server

File System

Network Stack Disk

Client A
Application

File System

Cache

Network Stack

Client B
Application

File System

Cache

Network Stack

Client C
Application

File System

Cache

Network Stack

foo.txtfoo.txtfoo.txt

update foo.txt in cache

Client C won’t be
aware of the change

in Client A

• Flush-on-close: flush all write buffer contents when close the
file
• Later open operations will get the latest content

• Force-getattr:
• Open a file requires getattr from server to check timestamps
• attribute cache to remedy the performance

23

Solution

The Google File System
Sanjay Ghemawat, Howard Gobioff, and

Shun-Tak Leung
Google

24

• Conventional file systems do not fit the demand of data centers
• Workloads in data centers are different from conventional
computers
• Storage based on inexpensive disks that fail frequently
• Many large files in contrast to small files for personal data
• Primarily reading streams of data
• Sequential writes appending to the end of existing files
• Must support multiple concurrent operations
• Bandwidth is more critical than latency

28

Why we care about GFS

• Google Search (Web Search for a Planet: The Google Cluster Architecture, IEEE
Micro, vol. 23, 2003)

• MapReduce (MapReduce: Simplified Data Processing on Large Clusters, OSDI
2004)
• Large-scale machine learning problems
• Extraction of user data for popular queries
• Extraction of properties of web pages for new experiments and products
• Large-scale graph computations

• BigTable (Bigtable: A Distributed Storage System for Structured Data, OSDI
2006)
• Google analytics
• Google earth
• Personalized search

29

Data-center workloads for GFS

• Maintaining the same interface
• The same function calls
• The same hierarchical directory/files

• Files are decomposed into large chunks (e.g. 64MB) with
replicas

• Hierarchical namespace implemented with flat structure
• Master/chunkservers/clients

30

What GFS proposes?

Latency Numbers Every Programmer Should Know

34

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps
network

10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from
memory

250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Read 512B from disk 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

• Directories are illusions
• Namespace maintained like a hash table

35

Flat file system structure

Distributed architecture

43

decoupled data and control paths —
only control path goes through master

load balancing, replicas among chunkservers

• Single master
• maintains file system metadata including namespace, mapping, access control
and chunk locations.

• controls system wide activities including garbage collection and chunk migration.
• Chunkserver

• stores data chunks
• chunks are replicated to improve reliability (3 replicas)

• Client
• APIs to interact with applications
• interacts with masters for control operations
• interacts with chunkservers for accessing data
• Can run on chunkservers

44

Distributed architecture

Reading data in GFS

45

Application

GFS Client Master

filename, size
filename, chunk index

chunk handle, chunk
locations

Chunk server

Chunk server

Chunk server

chunk handle, byte
range

data from file

data

Writing data in GFS

46

Application

GFS Client Master

filename, data
filename, chunk index

chunk handle, primary
and secondary replicas

Chunk server

Chunk server

Chunk server

data

primary defines the
order of updates in

chunk servers

response

data

data

write command primaryresponse

• Linux problems (section 7)
• Linux driver issues — disks do not report their capabilities honestly
• The cost of fsync — proportion to file size rather than updated
chunk size

• Single reader-writer lock for mmap
• Due to the open-source nature of Linux, they can fix it and
contribute to the rest of the community

47

Real world, industry experience

• GFS is not open-sourced

• GFS claims this will not be a bottleneck
• In-memory data structure for fast access
• Only involved in metadata operations — decoupled data/
control paths

• Client cache
• What if the master server fails?

48

Single master design

• Mentioned in “Spanner: Google's Globally-Distributed
Database”, OSDI 2012 — “tablet’s state is stored in set of B-
tree-like files and a write-ahead log, all on a distributed file
system called Colossus (the successor to the Google File
System)”

• Single master

49

The evolution of GFS

• Support for smaller chunk size — gmail

50

The evolution of GFS

• snapshots
• namespace locking
• replica placement
• create, re-replication, re-balancing
• garbage collection
• stable replica detection
• data integrity
• diagnostic tools: logs are your friends

51

Lots of other interesting topics

• Distributed, simple, efficient
• Filename/metadata updates/creates are atomic
• Consistency modes

• Consistent: all replicas have the same value
• Defined: replica reflects the mutation, consistent

• Applications need to deal with inconsistent cases themselves
52

GFS: Relaxed Consistency model

Write — write to a specific offset Append — write to the end of a
file

Serial success Defined
Defined with interspersed with

inconsistent
Concurrent success Consistent but undefined

Failure inconsistent

MapReduce

53

read
read

Output File #0

Output File #1

write

User application

Workers

Workers

fork
Master

fork

Map Reduce

assign
map

assign
reduceWorkers

Workers

Workers

fork

Split 0

Split 1

Split 2

Split 3

Split 4

Input

write

Intermediate
Result

Sharing among workers? — No
Overwrite input? — No

16-64MB

• Conventional file systems do not fit the demand of data centers
• Workloads in data centers are different from conventional
computers
• Storage based on inexpensive disks that fail frequently
• Many large files in contrast to small files for personal data
• Primarily reading streams of data
• Sequential writes appending to the end of existing files
• Must support multiple concurrent operations
• Bandwidth is more critical than latency

54

Why we care about GFS

— MapReduce is fault tolerant
— MapReduce aims at processing large amount of data once

— MapReduce reads chunks of large files

— Output file keep growing as workers keep writing
—MapReduce has thousands of workers simultaneously

—MapReduce only wants to finish tasks within “reasonable” amount of time

