Design philosophy of operating
systems (lll)

Hung-Wel Tseng

Outline

- The process interface in UNIX
- Mach: A New Kernel Foundation For UNIX Development

Each process has a separate virtual memory space

code code code code

static data static data static data static data

heap heap

heap

heap

They are isolated from one
another. Each of them is not Virtually, every process seems to have a
supposed to know what Processor processor, but only a few of them are

happens to another one physically executing.

Review the first demo

[2] 19110
[3] 19111

Process A is using : 1. Value o is 1052337033.000000 and address of a is 0x601080
Process is using : 3. Value is 1841722078.000000 and address of a is 0x601080
Process C is using : 0. Value is 451378955.000000 and address of a is 0x601090
Process D is using CPU: 0. Value is 1227583454.000000 and address of a is 0x601090
Process A is using CPU: 1. Value is 1052337033.000000 and address of a is 0x601090
Process is using : 3. Value is 1841722078.000000 and address of a is 0x601090
Process C is using Value is 451378955.000000 and address of a is 0x601090
(1] Done ./virtualization A

12] Done ./virtualization B

|3] Done ./virtualization C

Process D 1is using CPU: 0., Value of a is 1227583454.000000 and address of a is 0x601090
escal02 [/home/htseng3/courses/CSC501/virtualization] —htseng3-

The interface of managing
processes

The basic process API of UNIX

e fork
e walt
e eXec
e X1t

fork()

e pid t fork();:
- Tork used to create processes (UNIX)

- What does fork () do?
- Creates a hew address space (for child)
. Copies parent’s address space to child'’s
- Points kernel resources to the parent’s resources (e.g. open files)
- Inserts child process into ready queue

- fork () returns twice
. Returns the child’s PID to the parent
- Returns “0" to the child

10

ex1t()

e vold exit(int status)

. ex1t frees resources and terminates the process

- Runs an functions registered with atexit

- Flush and close all open files/streams

- Releases allocated memory.

- Remove process from kernel data structures (e.g. gueues)
- status is passed to parent process

- By convention, O indicates “normal exit”

20

Starting a new program with execvp()

. int execvp(char xprog, char xargv[])

.- Tork does not start a new program, just duplicates the current
program

- What execvp does:

. Stops the current process
- Overwrites process’ address space for the new program

- Initializes hardware context and args for the new program
- Inserts the process into the ready queue
« €eXecvVp does not create a new Process

34

Why separate fork () and exec ()

- Windows only has exec
- Flexibility
- Allows redirection & pipe

- The shell forks a new process whenever user invoke a program

- After Tork, the shell can setup any appropriate environment
variable to before exec

- The shell can easily redirect the output in shell: a.out > file

35

Let's write our own shells

How to implement redirection in shell

- Say, we want to do ./a > b.txt

. fork

- The forked code opens b.txt

- The forked code dup the file descriptor

- The forked code assigns b.txt to stdin/stdout
- The forked code closes b.txt

- exec("./a", NULL)

41

How to implement redirection in shell

Say, we want to do ./a > b.txt Homework for you:
fork Think about the case when
The forked code opens b.txt your fork isequivalentto fork+exec()

The forked code dup the file descriptor to stdin/stdout
The forked code closes b.txt
exec("./a", NULL)

int pid, fd;
char cmd[2048], prompt = "myshell$"
while(gets(cmd) != NULL) {
if ((pid = fork()) ==0) {
fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
dup2(fd,)z
close(fd);
execv(”./a",NULL);
}
else
printf(“%s ", prompt);
}

int pid, fd;
char cmd[2048], prompt = “myshell$"
while(gets(cmd) != NULL) {

+ ((pid = fork()) == 0) {

fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);

dup2(fd,);
close(fd);
execv(”./a",NULL);

}

else
orintf("%s ", prompt);

5

The shell can respond to next input

static data

walit()

e pid_t wait(int sxstat)

e p1d _t wailtpid(pid_t pid, 1int xstat, 1int
opts)

- walt /waltpid suspends process until a child process ends
- walt resumes when any child ends
- waltpid resumes with child with pid ends
- ex1t statusinfo 1is stored in *stat
- Returns pid of child that ended, or -1 on error

- Unix requires a corresponding wa1t for every fork

43

Starting a new program with exec ()

. int execvp(char xprog, char xargv[])

.- Tork does not start a new program, just duplicates the current
program

- What exec does:

. Stops the current process
- Overwrites process’ address space with a new one for prog

- Initializes hardware context and args for the new program
- Inserts the process into the ready queue
- exec does not create a new Process

44

How to implement redirection in windows

- Say, we want to do ./a > b.txt

- The shell opens b.txt

- The shell saves stdin/stdout

- The shell assigns b.txt to stdin/stdout
- exec("./a" NULL)

- The shell closes b.txt

- The shell restores stdin/stdout

47

Zombies, Orphans, and Adoption

- Zombie: process that exits but whose parent doesn't call wait
- Can't be killed normally
- Resources freed but pid remains in use

- Orphan: Process whose parent has exited before it has
- Orphans are adopted by init process, which calls wait periodically

48

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta, Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian,
Michael Young
Computer Science Department, Carnegie Mellon University

49

Why “Mach"?

- The hardware is changing

be built and future development of UNIX-like systems for new architectures

* MU|tIprOCeSSOrS can continue. The computing environment for which Mach is targeted spans a

wide class of systems, providing basic support for large, general purpose mul-

* Networked ComDUtlng tiprocessors, smaller multiprocessor networks and individual workstations (see
- The software

- The demand of extending an OS easily
- Repetitive but confusing mechanisms for similar stuffs

As the complexity of distributed environments and multiprocessor archi-
tectures increases, it becomes increasingly important to return to the original
UNIX model of consistent interfaces to system facilities. Moreover, there is a
clear need to allow the underlying system to be transparently extended to allow
user-state processes to provide services which in the past could only be fully
integrated into UNIX by adding code to the operating system kernel.

Make UNIX great again! N

53

Tasks/processes

Task #1 Task #2 Task #3 Task #4
CPl
e CPU 5C e CPU oo
Memory

/0

/O

/O

Each process has its own unique virtual memory address
space, its own states of execution, i't's”own set of |/Os

static data

static data static data static data

heap

heap

heap

heap

a = 0x01234567 a = OxDEADBEEF

a = Ox87654321

a = Ox95273310

58

The cost of creating processes

- Measure process creation overhead using Imbench http://
www.bitmover.com/Imbench/

59

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

Intel Sandy Bridge

. 21 S | uu-- |
Core|Core Core !

-{

3’

Q!?

!

l

ShareL3 $

Core|Core|Core|Core

Concept of chip multiprocessors

Processor

Core Core Core Core
Registers Registers Registers Registers

L1-$ L1-$ L1-$ L1-$
LY LY LY LY
L2-$ L2-$ L2-$ L2-$

SR SR SR SR

Main memory is eventually shared among processor
cores

62

Threads

Task #1 Task #2

Thread #1 Thread #2 Thread #3 Thread #1 Thread #2 Thread #3

pc@ m—pc‘ < hal o el B

Each process has its own unique virtual memory address
space, its own states of execution,its.own set.of 1/Os
Each thread has its own PC, states of execution, but shares
memory address spaces, |/Os without threads withinthe -
same process

a = 0x01234567 e LML TR

63

Why Threads?

- Process is an abstraction of a computer
- When you create a process, you duplicate everything

- However, you only need to duplicate CPU abstraction to parallelize
computation tasks

- Threads as lightweight processes

- Thread is an abstraction of a CPU in a computer
- Maintain separate execution context

- Share other resources (e.g. memory)

65

The virtual memory of single-threaded applications

static data

heap

The virtual memory of multithreaded applications

static data

heap

stack #1 T
stack

Case study: Chrome v.s. Firefox

o @)

Wi\
.each of these is a process

806 ¥ 4 M Home of theMozill . * | @ Moalla Frefex Sur. .~ | +

Welcome to Chrome w o) (8- s Dhie s s |=

You're using a fast new browser. Mouse over the markers below for three quick tips.

each of these is a thread

e 7 K

Sti“ reed help’) Learn More

Memory usage?

~Stability?
Security?
Latency?

70

static data static data static data static data

heap heap heap heap

Firefox

static data

Everything here is shared/
visible among all threads

within the same process!

Why “Mach"?

- The hardware is changing

be built and future development of UNIX-like systems for new architectures

* MU|t|prOceSSOrS can continue. The computing environment for which Mach is targeted spans a

N k d . wide class of systems, providing basic support for large, general purpose mul-
* etwor e ComDUtlng tiprocessors, smaller multiprocessor networks and individual workstations (see
- The software
- The demand of extending an OS easily

- Repetitive but confusing mechanisms for similar stuffs

As the complexity of distributed environments and multiprocessor archi-
tectures increases, it becomes increasingly important to return to the original
UNIX model of consistent interfaces to system facilities. Moreover, there is a
clear need to allow the underlying system to be transparently extended to allow
user-state processes to provide services which in the past could only be fully
integrated into UNIX by adding code to the operating system kernel.

/3

Interprocess communication

- UNIX provides a variety of mechanisms
- Pipes

- Pty's

- Signals

- Sockets

- No protection

- No consistency

- Location dependent

74

Ports/Messages

- Port is an abstraction of:

- Message queues

- Capability

- What do ports/messages promote?

- Location independence — everything is communicating with ports/
messages, ho matter where it is

/75

Ports/Messages

Port Z N
. Capability of Z

Capability of A #Q0 | read, write

Program A

message = “something”;
d t Z, I . s

send(port Z, message) Message queues

0

Capability of B

I

Program B

recv(port Z, message)

class JBT {

int variable = 5;

public static void main(String args[]) {

JBT obj = new IJIBT();

obj.method(20):
obj.method();

}

void method(int variable) {
variable = 10:;
System.out.println("Value
System.out.println("Value

}

void method() {
int variable = 40:
System.out.println("Value
System.out.println("Value

}

of Instance variable
of Local variable :"

of Instance variable :" + this.variable)

of Local variable :"

:" + this.variable);

+ variable);

+ variable);

°
)

What is capability? — Hydra

- An access control list associated with an object

- Contains the following:
- A reference to an object
- Alist of accessrights

- Whenever an operation is attempted:

- The requester supplies a capabillity of referencing the requesting
object — like presenting the boarding pass

- The OS kernel examines the access rights
- Type-independant rights
- Type-dependent rights

/8

Li)]

‘ < w |20 q :_‘5 0 - 4 [(xzle [|xs P xo [x/» % 0
' - -

- (< e =le ‘ wle il [<ie ule wle

“ | a6 (_ae | lale —aa [ae |_o@ [Jew o

= = =) . = = — =Y =)

‘ B BEICHE . v <o [|ala| [|«le T <o [|| | «le

; - s Vv e = R < 8 R

79

ECONOMY

LRI S IR IR I B IR

< < <i[an <o[cd/an
¥ 8 I B B K E

2

w3)

w
. 5t
oo B
- - 4

8 z
L -

- p—
aa .F
s =

Board the plane M .
| =
Business Class g, Business Class Cabin
Passenger
- ht amplificatiyn-"
Exit the plane g P 5 Economy Class Seat
Economy Class g (
_~— Passenger
Request a drink v Economy Class Cabin
Flight Attendant Galley - o -
- -
-ga 2990 oq

81

The impact of Mach

- Threads
- Extensible operating system kernel design

. Strongly influenced modern operating systems
- Windows NT/2000/XP/7/8/10
- MacQOS

94

Documentation Archive

g & developer.apple.com

Kernel Programming Cuide

¥ Tabhke of Contenis

About This Document
Keep Out

Kernel Architecturas
Overview

The Early Boot Frocess
Security Considerations
Performance Considerations
Kernel Programming Style
Mach Overview

Memory and Virtual Memory

Mach Scheduling and Thread

Interfaces

Bootstrap Contexts

1,0 Kit Overview

BSD Overview

File Systems Overview
Network Architecture
Boundary Crossings
Synchronization Primitives
Miscellancous Kernel
Services

Kernel Extension Overview

Building and Debugging
Kernels

Bibliography
Revision History
Glossary

Mach Overview

The fundamental services and primitives of the OS X kernel are based on Mach 3.0. Apple has mod fied and extercded Mach to better meet OS X functional and p

Mzch 3 0 was anginally conreived as a simple, extensihle, communications microkernel tis capable of running a< a stand-a one <ernel, with athar traditianal o
networking stacks rurring as user-mode servers.

Hawever, in OS5 X, Mach is 'inked with other kernel components into a single kernel address space. This is primarily for performance; it is much faster ta make a
messayges o1 do remole procedure calls (RPC) belween sepdrate tasks. This modular structure results in @ more robust and extensible system than a monolithic |
microkerrel.

Thus in OS X, Mach is not primarily a communication hub between clients and servers. Instead, its value consists of its abstractions, its extensibility, and its flax
* gbjact-based AP's with communication channels (for example, ports) as object references

« higny parallel execution, including preemptvely scheduled threads and support for SMP

« a flaxible scheduling framework, with sunoort for real-time usage

= a comglete set of JPC primitives, including messaging, RPC, synchronization, and notificaticn

» support for large virtual address spaces, shared memory regions, and memory objects backec by persistent store

« provan extensibility and portability, for examp e across instruction set architactures and in distributed environments

- security and resource management as a fundamental principle of design; all rescurces are virtualized

Mach Kernel Abstractions

Mach provides a small set of abstracticns that have been designed tc be both simp'e and powarful. Thase ara the main kernal abstractions:

e Tasks. The units of resource ownership, each task consists of a virtual address space. a port rigint narnespdce, and one or more threads. (Similar W0 a process.
o Threads. The units ¢f CPU execution within a task.

e Address space. In canjunction with memory managers, Mach implements the notion of a sparse virrua' address space and shared memory.

e Memory objects. The internal units of memory management. Memory chjects include named entries and regions; they are representations of potentizlly parsi
e FPorts. Secure, simplex commurication channels, accessible on'y via send and receive capabilities (known as port rights).

« JPC. Message queues, remote procedure calls, notifications, semaphores, and lock sets.

« Time. Clocks, timers, anc waiting. 95

Thread programming &
synchronization

The virtual memory of multithreaded applications

Everything here is shared/
visible among all threads
within the same process!

stack #1 T

Joint Banking

withdraw

$20 Bank of UCR

What is the new balance each would see?E
107 R ,_" IVERSIDER m——

deposit current balance: $40
$10

98

Processors/threads are not-deterministic

- Processor/compiler may reorder your memory operations/
Instructions

- Each processor core may not run at the same speed (cache
misses, branch mis-prediction, |/O, voltage scaling and etc..)

- Threads may not be executed/scheduled right after it's
spawned

107

Synchronization

- Concurrency leads to multiple active processes/threads that
share one or more resources

- Synchronization involves the orderly sharing of resources
- All threads must be on the same page
- Need to avoid race conditions

108

Critical sections

- Protect some pieces of code that access shared resources
(memory, device, etc.)

- For safety, critical sections should:
- Enforce mutual exclusion (i.e. only one thread at a time)
- Execute atomically (all-or-nothing) before allowing another thread

109

Solving the “Critical Section Problem”

Mutual exclusion — at most one process/thread in its critical
section

. Progress — a thread outside of its critical section cannot
block another thread from entering its critical section

. Fairness — a thread cannot be postponed indefinitely from
entering its critical section

. Accommodate nondeterminism — the solution should work
regardless the speed of executing threads and the number of
Processors

115

Bounded-Buffer Problem

- Also referred to as "producer-consumer” problem
- Producer places items in shared buffer
- Consumer removes items from shared buffer

e =] [| [=]e]fw

i

producer consumer

116

Without synchronization, you may write

int buffer[BUFF_SIZE]; // shared global

int main(int argc, char xargv[]) {
pthread_t p;
printf("parent: begin\n");
// init here

Pthread create(&p, NULL, child, NULL);:

int 1n = 0;
while(TRUE) {
int item = ..;
buffer[in] = 1item;
in = (in + 1) % BUFF_SIZE;

s
printf("parent: end\n");
return 9;

117

vold *child(void *arg) A
int out = 0;
printf("child\n");
while(TRUE) {
int item = buffer[out];
out = (out + 1) %
BUFF_SIZE;
// do something w/ item
s
return NULL;

T —

Use locks

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;
int main(int argc, char sxargvl[]) { | — ————
pthread_t p;
printf("parent: begin\n");
// init here
Pthread create(&p, NULL, child, NULL);

void *child(void xarg) {
int out = 0;

int in = 0; : :
: ' rintf("ch1ld\n");

while(TRUE) + while (TRUE) {
int 1item = ..; Pthread _mutex_lock(&lock):
Pthread mutex_lock(&lock): int item = bufferlout]:
bufferlin] = 1tem; out = (out + 1) % BUFF_SIZE;

in = (in + 1) % BUFF_SIZE;

Pthread_mutex_unlock(&lock):
Pthread mutex_unlock(&lock):

// do something w/ item

; }
printf("Parent: end\n"); return NULL:
} return 9; 1

121

How to implement lock/unlock

Tha hncnline

int main(int argc, char sxargvl[])

{

int max;
volatile i1nt balance = 0; // shared global varia

if (argc !'= 2) {
fprintf(stderr, "usage: main-first
<loopcount>\n");

exit(1);

¥
max = atoi(argv[1]); volid * mythread(void xarg) {
pthread _t pl, p2; char *xletter = arg;
printf("main: begin [balance = %d] [%x]1\n", \ int 1; // stack (private per

balance, (unsigned 1nt) &balance); thread)
Pthread create(&pl, NULL, mythread, "A"); printf("%s: begin [addr of 1:
Pthread_create(&p2, NULL, mythread, "B"); %pl\n", letter, &1i);
// join wailts for the threads to finish for (1 = 0; 1 < max; 1i++) {
Pthread join(pl, NULL): balance = balance + 1; //
Pthread _join(p2, NULL); shared: only one
printf("main: done\n [balance: %d]l\n [should: I3

%d]1\n", printf("%s: done\n", letter);
balance, maxx*2); return NULL:
return 0; ¥

Use pthread lock

int max;
volatile i1int balance = 0; // shared global variable
pthread_mutex_t lock PTHREAD _MUTEX_INITIALIZER;

T — e ————

int main(int argc, char xargv[])

h void * mythread(void xarg) {
if (arge != 2) { S char xletter = arg;
Zgﬁr(\‘iffstderr, usage: main-first <loopcount>\n"); printf("%s: begin\n", 1etter);
) ’ int l;
max = atoi(argv[l]); for (1 = 0; 1 < max, 1++) {
pthread_t pl, p2; .
printf("main: begin [balance = %d] [%x]1\n", balance, Pthread_mutex_lock(&lock);
(unsigned int) &balance); balance++;
Pthread_create(&pl, NULL, mythread, "A"); Pthread mutex unlock(&lock):
Pthread_create(&p2, NULL, mythread, "B"); - - '
// join waits for the threads to finish } .
Pthread_join(pl, NULL); printf("%s: done\n", letter);
Pthread _join(p2, NULL); .
printf("main: done\n [balance: %d]l\n [should: %dIl\n", return NULL;
balance, max%*2); ¥
return 0; — ——————————————
I
T — B ——————_

124

Use pthread_lock (coarser grain)

int max;
volatile int balance = @; // shared global variable
pthread_mutex_t lock PTHREAD _MUTEX_INITIALIZER;

T — e

int main(int argc, char sargv[])
{
if (argc !'= 2) {
fprintf(stderr, "usage: main-first <loopcount>\n");
exit(1);
¥
max = atoi(argv[1l]l);
pthread_t pl, p2;
printf("main: begin [balance = %d] [%x]\n", balance,
(unsigned int) &balance);
Pthread_create(&pl, NULL, mythread, "A");
Pthread_create(&p2, NULL, mythread, "B");
// join waits for the threads to finish
Pthread join(pl, NULL);
Pthread_join(p2, NULL);
printf("main: done\n [balance: %d]l\n [should: %dI\n",
balance, maxx2);
return 0;

void * mythread(void *xarg) {
char *xletter = arg;
printf("%s: begin\n", letter);
int 1;
Pthread_mutex_lock(&lock);
for (1 = 9; 1 < max; i++) {
balance++;
¥
Pthread_mutex_unlock(&lock);
printf("%s: done\n", letter);
return NULL;

Use spin locks

void * mythread(void s*arg) f{
char xletter = arg;
printf("%s: begin\n", letter);

int max;
volatile int balance = 0; // shared global variable
volatile unsigned int lock = 0;

int 1;
SpinLock(&lock):
balance++;
int main(int argc, char xargv[]) SpinUnlock(&lock);
{ }
if (argc !'= 2) { : N0/ o n .
fprintf(stderr, "usage: main-first <loopcount>\n"); printf("%s: done\n", letter);
exit(1); return NULL;
} }
max = atoi(argv[1]);
pthread_t pl, p2;
printf("main: begin [balance = %d] [%x]\n", balance, vold SpinLock(volatile unsigned 1nt *lock) {
(unsigned int) &balance . . : ——
pthread_create(sp1, NuLL, What If context switch while (xlock == 1) // TEST (lock)
Pthread create(&p2, NULL, o // spin
// join waits for the thr happens here* xlock = 1; // SET (lock)
Pthread_join(pl, NULL); 1
Pthread_join(p2, NULL);
printf("main: done\n [balance: %d]\n [should: %d]l\n",
balance, maxx2); void SpinUnlock(volatile unsigned int *lock)
return 0; — .
) xlock = 0;

T — T }

Use spin locks

void * mythread(void s*arg) f{
char xletter = arg;
printf("%s: begin\n", letter);

int max;
volatile int balance = 0; // shared global variable
volatile unsigned int lock = 0;

int 1;
— —————— for (1 = 0; 1 < max; 1i++) {
SpinLock(&lock):
balance++;
int main(int argc, char xargv[]) \ SpanI‘llOCk(&lOCk);
{
if (argc !'= 2) { : I . T .
fprintf(stderr, "usage: main-first <loopcount>\n"); prlntf(%s: done\n ! letter),
exit(1): return NULL;
Iy
max = atoi(argv[1]); ;
pthread_t pl, p2;)) .) .
printf("main: begin [balance = %d] [%x]\n", balance, vold SpinLock(volatile unsigned 1nt *lock) {
(unsigned int) &balance . . : ——
pthread_create(spl, NULL, ‘What if context switch while (xlock ==1) // TEST (lock)
Pthread create(&p2, NULL, // spin
// join waits for the thr happens here? xlock = 1; // SET (lock)

Pthread_join(pl, NULL);

pthread_join(p2, NLL); — the lock must be updated atomically

printf("main: done\n [balance: %d]\n [should: %dI\n",

balance, maxx2); void SpinUnlock(volatile unsigned int *lock)
return 0;
, *xlock = 0;
}
T — e

Use spin locks

int max; void * mythread(void *xarg) {

volatile int balance = 0; // shared global variable char *xletter = arg;

volatile unsigned int lock = 0O; printf("%s: begin\n", letter);
L — — int 1;

for (i = 0; i < max ; i++) {

int main(int argc, char xargv[]) static i1inline uilnt xchg(volatile unsigned int *addr,
{ ° .

if (arge 1= 2) { unsigned int newval) {

fprintf(stderr, "usage: main-first uint result;

exit(1); asm volatlle(” /@ %1" : "+m" (kaddr),
SO Caraviil) "=a" (result) : "1" (ewval) et ; . |
Eiﬁréaﬁ_ilpfggz; ; return result: exchangethecontent In %0 and %1

orintf("main: begin [balance = % a prefix to xchg1 that locks the whole cache line -

(unsigned int) &balance);

Pthread_create(&pl, NULL, mythre: : : : . .
Pthread_create(&p2, NULL, mythre: vold SplnLOCk(VOlatlle unSlgned int xlock) {

// join waits for the threads to // what code should go here?

Pthread_join(pl, NULL); +
Pthread_join(p2, NULL);

rintf("main: done\n [balance: %t
pbahmca max*2) : vold SpinUnlock(volatile unsigned 1nt *lock) {

return 0; // what code should go here?
; Iy

131

Use spin locks

int max; void * mythread(void *xarg) {

volatile int balance = 0; // shared global variable char *xletter = arg;

volatile unsigned int lock = 0O; printf("%s: begin\n", letter);
L — e int 1;

for (i = 0; i < max ; i++) {

int main(int argc, char sargv[1) static 1nline uilnt xchg(volatile unsigned int *addr, unsigned
o int newval) {
if (argc !'= 2) { . .
fprintf(stderr, "usage: main-first uint ZEeSLﬁyt,
exit(1); asm volatile("lock; xchgl %0, %1" : "+m" (xaddr),
; "=a" (result) : "1" (newval) : "cc");

max = atoi(argv[l1]);

pthread_t pl, p2;

printf("main: begin [balance = % ¥
(unsigned int) &balance);

Pthread_create(&pl, NULL, mythre: : : : . .
Pthread_create(&p2, NULL, mythre: vold SplnLOCk(VOlatlle unSlgned int xlock) {

// join waits for the threads to while (XChg(lOCk, 1) == 1);
Pthread_join(pl, NULL); +
Pthread_join(p2, NULL);

rintf("main: done\n [balance: %t
pbahmca max*2) : vold SpinUnlock(volatile unsigned 1nt *lock) {

return 0; XChg(10Ck, 9);
¥ ¥

return result;

132

Semaphores

Semaphores

- A synchronization variable

- Has an integer value — current value dictates if thread/process
can proceed

- Access granted if val > O, blocked if val ==
- Maintain a list of waiting processes

134

Semaphore Operations

e sem walit(S)
- iIf S> 0, thread/process proceeds and decrement S

- if S == 0, thread goes into “waiting” state and placed in a special
queue

e sem_post(S)
- if no one waiting for entry (i.e. waiting queue is empty), increment S
- otherwise, allow one thread in queue to proceed

135

Semaphore Op Implementations

sem_init(sem_t *s, int initvalue) {
s—>value = initvalue;

}

— T sem_wait(sem_t *s) {
while (s—>value <= 0)
put_self_to_sleep(); // put self to sleep
s—->value——;

sem_post(sem_t xs) {
s—>value++;
wake_one_waiting_thread(); // 1f there 1s one

136

Atomicity in Semaphore Ops

- Semaphore operations must operate atomically

- Requires lower-level synchronization methods requires (test-and-
set, etc.)

- Most implementations still require on busy waiting in spinlocks
- What did we gain by using semaphores?

- Easier for programmers

- Busy waiting time is limited

137

