
Process/Thread/Task Scheduling
Hung-Wei Tseng

• Mechanisms of changing processes
• Basic scheduling policies
• An experimental time-sharing system — The Multi-Level

Scheduling Algorithm
• Scheduler Activations
• Getting locks done correctly with modern OS scheduling

10

Outline

The mechanisms of changing
processes

11

• Cooperative Multitasking (non-preemptive multitasking)
• Preemptive Multitasking

12

The mechanisms of changing the running processes

• The OS controls the scheduling — can change the running
process even though the process does not give up the
resource

• But how?

16

Preemptive Multitasking

• System calls / trap instructions — raised by applications
• Display images, play sounds

• Exceptions — raised by processor itself
• Divided by zero, unknown memory addresses

• Interrupts — raised by hardware
• Keystroke, network packets

20

Three ways to invoke OS handlers

add 0x1bad(%eax),%dh
add %al,(%eax)
decb 0x52(%edi)
in $0x8d,%al
mov %eax,0x101c
lea -0x2bb84(%ebx),%eax
mov %eax,-0x2bb8a(%ebx)
lgdtl -0x2bb8c(%ebx)
lea -0x2bf3d(%ebx),%eax
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx)
and %cl,(%rbx)
xor $0x19,%al
add %edx,(%rbx)
add %al,(%rax)
syscall
add %al,(%rbx)
……
……
……
div %ecx
……
……
……
……

trap

return-from-trap

exception

return from
exception handler

interrupt
return from

interrupt handler

• Setup a timer (a hardware feature by the processor)event
before the process start running

• After a certain period of time, the timer generates interrupt
to force the running process transfer the control to OS
kernel

• The OS kernel code decides if the system wants to
continue the current process
• If not — context switch
• If yes, return to the process

21

How preemptive multitasking works

Scheduling Policies from
Undergraduate OS classes

22

• Virtualizing the processor
• Multiple processes need to share a single processor
• Create an illusion that the processor is serving my task by rapidly

switching the running process
• Determine which process gets the processor for how long

23

CPU Scheduling

• Non-preemptive/cooperative: the task runs until it finished
• FIFO/FCFS: First In First Out / First Come First Serve
• SJF: Shortest Job First

• Preemptive: the OS periodically checks the status of processes
and can potentially change the running process
• STCF: Shortest Time-to-Completion First
• RR: Round robin

24

What you learned before

An experimental time-sharing system
Fernando J. Corbató, Marjorie Merwin-Daggett and Robert C. Daley
Massachusetts Institute of Technology, Cambridge, Massachusetts

31

• System saturation — the demand of computing is larger than
the physical processor resource available

• Service level degrades
• Lots of program swap ins-and-outs (known as context switches

in our current terminology)
• User interface response time is bad

— you have to wait until your turn
• Long running tasks cannot make

good progress — frequent
swap in-and-out

35

What happens to round robin when the system is saturated?Why Multi-level scheduling algorithm?

Context Switch Overhead

36

You think round robin should act like this —

0 1 2 3 4 5 6 7 8 9 10
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1

But the fact is —
P1 P2 P3Overhead

P1 -> P2
Overhead
P2 -> P3

Overhead
P3 -> P1

0 1 1 2 2 3
P1 P2Overhead

P1 -> P2
Overhead
P2 -> P3

3 4 4 5

•Your processor utilization can be very low if you switch frequently
•No process can make sufficient amount of progress within a given period of time
•It also takes a while to reach your turn

• Place new process in the one of the queue
• Depending on the program size

• Schedule processes in one of N queues
• Start in initially assigned queue n
• Run for 2n quanta (where n is current depth)
• If not complete, move to a higher queue (e.g. n +1)

• Level m is run only when levels 0 to m-1 are empty
37

The Multilevel Scheduling Algorithm

wp is the program memory size — smaller ones are
assigned to lower numbered queues

• Smaller tasks are given higher priority in the beginning
Why?

• Larger process will execute longer before switch

• Smaller process, newer process are given higher priority

• Not optimized for anything — it’s never possible to have an
optimized scheduling algorithm without prior knowledge
regarding all running processes

• It’s practical — many scheduling algorithms used in modern
OSes still follow the same idea

38

The Multilevel Scheduling Algorithm

Lottery Scheduling: Flexible Proportional-
Share Resource Management

Carl A. Waldspurger and William E. Weihl

39

Why Lottery

40

We want Quality of Service

Most approaches are not flexible, responsive

The overhead of running those
algorithms are high!

No body knows how they work…

Solution — Lottery and Tickets

41

• Each process hold a certain number of lottery tickets
• Randomize to generate a lottery
• If a process wants to have higher priority

• Obtain more tickets!

44

What lottery proposed?

• Ticket transfers
• Ticket inflation
• Ticket currencies
• Compensation tickets

46

Ticket economics

• The overhead is not too bad
• 1000 instructions ~ less than 500 ns on a 2

GHz processor
• Fairness

• Figure 5: average ratio in proportion to the
ticket allocation

• Flexibility
• Allows Monte-Carlo

algorithm to dynamically
inflate its tickets

• Ticket transfer
• Client-server setup

47

How good is lottery?

• Data center scheduling
• You buy “times”
• Lottery scheduling of your virtual machine

48

The impact of “lottery”

• Will it be good for
• Event-driven application
• Real-time application
• GUI-based system

• Is randomization a good idea?
• The authors later developed a deterministic stride-scheduling

49

Will you use lottery for your system?

Scheduler Activations: Effective Kernel Support
for the User-level Management of Parallelism

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska and Henry M. Levy
University of Washington

50

User-level v.s kernel threads

53

user-level threads

Kernel

privilege boundary

user-
level

kernel
mode

Process

runtime
library

thread list

process list

The process is a
virtual processor

kernel threads

Process

Kernel

process list

thread list

thread
thread

• The OS kernel is unaware of user-level threads
• Switching threads does not require kernel mode operations
• A thread can block other threads within the same process

• The kernel can control threads directly
• Thread switch requires kernel/user mode switch and system calls
• Thread works individually

• User-level threads
• Efficient, flexible, safer, customizable

• Kernel threads
• Slower, more powerful
• Better matches the multiprocessor hardware

• Problems
• OS is only aware of kernel threads
• OS is unaware of user-level threads as they are hidden behind each

process

55

Why — the “dilemma” of thread implementations

• The OS kernel provides each user-level thread system with its
own virtual multiprocessor

• Communication mechanism between kernel and user-level

56

What does “Scheduler Activations” propose?

• The kernel allocates processors to an address space/process
• An address space is shared by all threads within the same process
• The kernel controls the number of processors to an address space

• Each process has complete control over the processor-thread
allocation

• The kernel notifies the address space when the allocated
number of processors changes

• The process notifies the kernel when it needs more or fewer
processors

• Transparent to users/programmers
57

The virtual multiprocessor abstraction

• Create a scheduler activation when the system create a process on a processor
• Create a scheduler activation when the kernel needs to perform an “upcall”

user-level
• Add a processor
• Processor has been preempted
• Scheduler activation has blocked
• Scheduler activation has unblocked

• Downcalls — hints for kernel to perform resource management
• Add more processors
• This processor is idle

• Key difference from a kernel thread
• Kernel never restarts user thread after it is blocked

58

How scheduler activation works?

• Once been implemented in NetBSD, FreeBSD, Linux
• A user-level thread gets preempted whenever there is

scheduling-related event
• Overhead
• You may preempt a performance critical thread

• Blocking system call

59

Will you use Scheduler activation?

• Linux treat all schedule identities as “tasks” — context of
executions

• COEs can share parts of their contexts with each
• Processes share nothing
• Threads share everything but the CPU states

• http://www.evanjones.ca/software/threading-linus-msg.html

60

Linux’s thread implementation

http://www.evanjones.ca/software/threading-linus-msg.html

