
Virtual Memory (IV) — Policies
Hung-Wei Tseng

• Page replacement policies
• Page replacement policy once used in UNIX: Converting a
Swap-Based System to do Paging in an Architecture Lacking
Page-Reference Bits

• Another popular page replacement policy: WSClcok - A Simple
and Effective Algorithm for Virtual Memory Management

• Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures

7

Outline

Swapping policies

8

• We need to determine:
• Which page(s) to remove
• When to remove the page(s)

• Goals
• Identify page to remove that will avoid future page faults (i.e. utilize
locality as much as possible)

• Minimize the amount of software and hardware overhead

9

Page replacement policy

• FIFO: Replace the oldest page
• LRU: Replace page that was the least recently used (longest
since last use)

10

Page replacement algorithms

FIFO v.s. LRU

17

FIFO LRU

Implementation Easy — circular queue
May require hardware support or

linked list or additional
timestamps in page tables

Execution overhead Low High — you need to manipulate
the list or update every counter

Performance Usually not as good as LRU Usually better than FIFO

Converting a Swap-Based System to do Paging
in an Architecture Lacking Page-Reference Bits

Özalp Babaoglu and William Joy*
Cornell University and University of California, Berkeley

18

• The original UNIX is a “swap-based” system
• Whenever you have a context switch, swap the whole process out
from the memory

• Really inefficient if you have frequent context switches or if you
have many applications in-fly

• Efficient page replacement policies and other virtual
optimization techniques cannot be implemented easily without
appropriate hardware support

22

The Why of Babaoglu new UNIX VM

Clock algorithm

25

A
B

C

D

E

F
G

H

I

J

K

L
R

R

R

attach a “reference bit”
to each PTE, set to true

when the page is
referenced

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

Where to put ?

Clock algorithm in motion

26

A
B

C

D

E

F
G

H

I

J

K

L
R

R

R

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

27

A
B

C

D

E

F
G

H

I

J

K

L

R

R

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

28

A
B

C

D

E

F
G

H

I

J

K

L

R

R

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

29

A
B

C

D

E

F
G

H

I

J

K

L

R

R

Clock hand move
sequentially to swap out
the first page without
reference bit set. Clear
the reference bit when

it’s set

M
C will be selected to
swap out, but Rs of A

and B are cleared

• Assume your OS uses LRU policy when handle page faults. Also
assume that we have 3 physical memory pages available. How many
page faults will you see in the following page reference sequence?

A. 5
B. 6
C. 7
D. 8
E. 9

30

Recap: LRU

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2 2 2 2 2 3 3 3 3
3 3 3 5 5 5 5 5 5 5 5

1 1 1 4 4 4 2 2 2

Physical Memory

• Evicted pages will be put into one of the lists in DRAM
• Free list: clean pages
• Modified list: dirty pages — needs to copy data to the disk

• Page fault to any of the page in the lists will bring the page back
• Reduces the demand of accessing disks

34

Page caching to cover the performance loss

RS of Process B FreelistModified
List

PagePage PagePage

RS of Process A

Page Page Page PagePage Page

2 pages 2 pages4 pages 4 pages

page fault!

Page Page

page fault!

PagePage

page fault!

PagePage

• So far, we need to trigger clock policy and swap in/out on each page
fault

• Why don’t we prepare more free pages each time so that we can
feed page faults with pages from the list?

• Free list
• When we need a page, take one from the free list
• Have a daemon running the background, managing this free list — you
can do this when system is not loaded

• If size of free list gets too small, trigger the clock algorithm to add pages
into the free list (by swapping out to disk)

• Free list can be used as a disk cache
38

Free list

• Create a new page table
• Copy data page-by-page
• 80% of fork occurs in shell command interpreter

44

What happens on a fork?

• Say, we want to implement a shell that interprets command line commands and executes “./a”
• The following program can serve for this purpose:

• Do we actually need the code segment of the parent?

45

How to implement a simple shell?

int main(int argc, char *argv[]) {
 int child_pid;
 char cmd[1024];
 memset(cmd, 0 , 1024);
 fprintf(stderr,"CSC501-myshell$ ");
 while(fgets_wrapper(cmd,1024,stdin)) {
 if(strcmp("exit",cmd)==0)
 exit(1);
 child_pid = fork();
 if (child_pid == 0)
 execvp(cmd,NULL);
 else {
 fprintf(stderr,"CSC501-myshell$ ");
 memset(cmd, 0 , 1024);
 }
 }
 return 0;
}

WSClcok - A Simple and Effective
Algorithm for Virtual Memory Management

Richard Carr and John Hennessy

46

• Local: select one page from the same process’ physical pages
for storing the demanding page when swapping is necessary
• VAX/VMS
• Original UNIX

• Global: select any page that was previously belong to any
process when swapping is necessary
• UNIX after Babaoglu
• Mach

47

Brief recap: what policies are used?

• The system overcommitted memory to tasks
• The system spends most time in paging, instead of making
meaningful progress

50

Thrashing!

Previously, we have seen how scheduling
policies can help improving “saturation”.
Now, let’s see how page replacement
policies can address this “thrashing”

• Thrashing — when memory are overcommitted
• The system is busy paging
• The processor is idle waiting

• Saturation — when processors are overcommitted
• The system is busy context switching and scheduling
• The processor is busy but not contributing to the running program

51

Thrashing v.s. Saturation

• Take advantages from both local and global page replacement
policies
• Global — simplicity, adaptive to process demands
• Local — prevent thrashing

53

Why WS-Clock

• Working set: the set of pages used in a certain number of
recent accesses

• Assume these recently referenced pages are likely to be
referenced again soon (temporal locality)

• Evict pages that are not referenced in a certain period of time
• Swap out may occur even if there is no page faults

• A process is allowed to be executed only if the working set size
fits in the physical memory

54

Working Set Algorithm

• Use working set policy to decide how many pages can a
process use
• Return a page to the free list if there exists a page in the process’
working set that hasn’t been access for a certain period of time

• If the free list is lower than a threshold
• Trigger the clock policy to select pages from any process

• On a page fault
• Take a page from the free list

55

WSClock

• Wherever you need to reclaim a page —
1. Examine the PTE pointed to by clock hand.
2. If reference bit is set

1. Clear reference bit;
2. Advance clock hand;
3. Goto Done.

3. If reference bit is not set
1. If the timestamp of the PTE is older than a threshold

1. Write the page to disk if it’s dirty and use this page
2. Goto Done

2. Otherwise
1. Advance clock hand
2. Goto 1.

4. Done
5. If no victim page is chosen, randomly pick one

56

WSClock

• One of the most important page replacement policies in
practice

57

The impact of WSClock

