
Virtual Machines & Reflections
Hung-Wei Tseng

Virtual Machines

2

Taxonomy of virtualization

3

system virtualizationprocess virtualization

Operating
Systems (e.g.,

process)

same ISA

Java VM

different ISA
same ISA different ISA

Xen
VMWare Server

Virtual
Machine
Monitor

VMWare
Workstation,
VirtualBox

Hosted
Virtual

Machine
Monitor

Virtual PC,
Emulator,
Binary

Translator

software
based

Transmeta
Crusoe

hardware
based

We are focusing on
these today

We’ve learned
quite a lot of

these
Most of them are

gone…

Virtual machine architecture

4

Virtual Machine Monitor

Guest OS

Applications

The Machine

• A robot may not injure a human being or, through inaction, allow
a human being to come to harm.

• A robot must obey orders given it by human beings except
where such orders would conflict with the First Law.

• A robot must protect its own existence as long as such
protection does not conflict with the First or Second Law.

5

Three Laws of Robotics

https://s3-ap-southeast-1.amazonaws.com/cloud-skcript/wp-content/
uploads/2014/05/25090337/robots.jpg

https://s3-ap-southeast-1.amazonaws.com/cloud-skcript/wp-content/uploads/2014/05/25090337/robots.jpg
https://s3-ap-southeast-1.amazonaws.com/cloud-skcript/wp-content/uploads/2014/05/25090337/robots.jpg

Back to 1974…

6

Fidelity
Performance

Safety and isolation

Operating System

Recap: virtualization

7

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

API API API API API API API API

However, we don’t want everything to pass
through this API!

Too slow!!!
Do you really need to track all

intermediate states?

• The processor provides
normal instructions and privileged
instructions
• Normal instructions: ADD, SUB, MUL, and
etc …

• Privileged instructions: HLT, CLTS, LIDT,
LMSW, SIDT, ARPL, and etc…

• The processor provides different modes
• User processes can use normal
instructions

• Privileged instruction can only be used if
the processor is in proper mode

8

Recap: privileged instructions

Kernel

Ring 3
Ring 2
Ring 1
Ring 0

Device Drivers

Device Drivers

ApplicationsLeast privileged

Most privileged

• Through the API: System calls
• Implemented in “trap” instructions

• Raise an exception in the processor
• The processor saves the exception
PC and jumps to the corresponding
exception handler in the OS kernel

9

Recap: How applications can use privileged operations?

add 0x1bad(%eax),%dh
add %al,(%eax)
decb 0x52(%edi)
in $0x8d,%al
mov %eax,0x101c
lea -0x2bb84(%ebx),%eax
mov %eax,-0x2bb8a(%ebx)
lgdtl -0x2bb8c(%ebx)
lea -0x2bf3d(%ebx),%eax
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx)
and %cl,(%rbx)
xor $0x19,%al
add %edx,(%rbx)
add %al,(%rax)
syscall
add %al,(%rbx)
……
……
……
……
……
……
……
……

trap

return-from-trap

Hosted virtual machine

10

Virtualized
CPU

Hosted virtual machine monitor

OSOSOS

ApplicationsApplicationsApplications

Hosted operating system

Virtualized
memory

Virtualized
storage

Virtualized
network

Virtualized
…device emulation,

virtualization

device emulation,
virtualization

Virtual machine monitors on bare machines

11

Virtualized
CPU

Virtual machine monitor

OSOSOS

ApplicationsApplicationsApplications

Virtualized
memory

Virtualized
storage

Virtualized
network

Virtualized
…device emulation,

virtualization

• De-privileging
• Primary and shadow structures
• Tracing

12

Three main ideas to classical VMs

reduced
privileged

mode

CPU Virtualization: Trap-and-emulate

13

Virtual Machine Monitor

Guest OS

Applications

The Machine

user
mode

privileged
mode

unprivileged
instruction
(e.g., add) syscall

handling
update
vCPU
states

call trap
handler

executing trap
handler in reduced
privileged modeprivileged

instruction return

handling
update
vCPU
states

return

• This is called virtually
indexed, physically
tagged cache

• TLB hit: the translation is
in the TLB, no penalty

• TLB miss: fetch the
translation from the page
table in main memory

14

Recap: address translation with TLB

Processor

$

main memory

1.
VA

PA2.
TLB

1.
VA

PA2.
=
miss

Operating system

ApplicationsVirtual Address

Physical Address

page table

Address translation in VM

15

Processor

$

main memory

1.
VA

PA2.
TLB

1.
VA

PA2.
=
miss

Guest Operating system

ApplicationsVirtual Address

Physical Address

page table

Virtual Machine Monitor

Machine Address

VMM page table

?

Address translation in VM

16

Processor

$

main memory

1.
VA

PA2.
TLB

1.
VA

PA2.
=
miss

Guest Operating system

ApplicationsVirtual Address

Physical Address

page table

Virtual Machine Monitor

Machine Address

VMM page table

shadow
page table

MAMA

• You need to make the shadow page table consistent with guest
OS page table

• Protect these structures with write-protected
• If anyone tries to modify the protected PTE — trigger a segfault
handler

• The segfault handler will deal with these write-protected locations
and consistency issues for both tables

17

Tracing

A Comparison of Software and Hardware
Techniques for x86 Virtualization

Keith Adams and Ole Agesen
VMware

21

• Binary
• Dynamic
• On demand
• System level
• Subsetting
• Adaptive

22

Binary translator

• If the virtualized CPU is in user mode
• Instructions execute directly

• If the virtualized CPU is in kernel mode
• VMM examines every instruction that the guest OS is about to
execute in the near future by prefetching and reading instructions
from the current program counter

• Non-special instructions run natively
• Special instructions (those instruction may have missing flags set)
are “translated” into equivalent instructions with flags set

23

Binary translation on x86

reduced
privileged

mode

Trap-and-emulate with Binary Translation

24

Virtual Machine Monitor

Guest OS

Applications

The Machine

user
mode

privileged
mode

unprivileged
instruction
(e.g., add) syscall

handling
update
vCPU
states

call trap
handler

executing trap
handler in reduced
privileged modeprivileged

instruction return

handling
update
vCPU
states

return

privileged
instruction
(if special) return

translate &
update
vCPU
states

• VMCB (Virtual machine control block)
• Settings that determine what actions cause the guest to exit to host
• All CPU state for a guest is located in VMCB data-structure

• A new, less privileged execution mode, guest mode
• vmrun instruction to enter VMX mode
• Many instructions and events cause VMX exits
• Control fields in VMCB can change VMX exit behavior

25

Hardware virtualization in modern x86

• VMM fills in VMCB exception table for Guest OS
• Sets bit in VMCB not exit on syscall exception

• VMM executes vmrun
• Application invokes syscall
• CPU —> CPL #0, does not trap, vectors to VMCB exception
table

26

How hardware VM works

Virtualization overhead

30

Nanobenchmarks

31

Macrobenchmarks

32

• Binary Translation VMM:
• Converts traps to callouts

• Callouts faster than trapping
• Faster emulation routine

• VMM does not need to reconstruct state
• Avoids callouts entirely

• Hardware VMM:
• Preserves code density
• No precise exception overhead
• Faster system calls

34

Side-by-side comparison

Xen and the Art of Virtualization
Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield
University of Cambridge Computer Laboratory

35

Why “Xen and the Art of Virtualization”?

36

• Server consolidation: improve the server utilization
• Server co-location
• Secure distributed computing
• We want to host many full OS instances efficiently

• The overhead of full virtualization/resource container is large
• Hard to achieve Quality of Service guarantee because a VM is
treated as a process in the host operating system

37

Why Xen?

Xen hypervisor

41

Modified OSModified OSModified OS

ApplicationsApplicationsApplications

Xen
Para-

Virtualized
CPU

Para-
Virtualized
memory

Para-
Virtualized
storage

Para-
Virtualized
network

Para-
Virtualized

…
device emulation,

virtualization

user
mode

reduced
privileged
mode
(ring 1)

privileged
mode

• Solution to issues with x86 instruction set
• Don’t allow guest OS to issue sensitive instructions
• Replace those sensitive instructions that don’t trap to ones that will trap

• Guest OS makes “hypercalls” (like system calls) to interact with system
resources
• Allows hypervisor to provide protection between VMs

• Exceptions handled by registering handler table with Xen
• Fast handler for OS system calls invoked directly
• Page fault handler modified to read address from replica location

• Guest OS changes largely confined to arch-specific code
• Compile for ARCH=xen instead of ARCH=i686
• Original port of Linux required only 1.36% of OS to be modified

42

Paravirtualization

Trap-and-emulate

43

Virtual Machine Monitor

Modified Guest OS

Applications

unprivileged
instruction syscall

handling
update

vCPU states

user
mode

reduced
privileged
mode

privileged
mode

call trap
handler

executing trap handler in
reduced privileged mode

privileged
instruction

handling
update

vCPU states

return

return

privileged
instruction

handling &
update vCPU

states

return

As we modified the OS code, no binary translation is necessary

• Modifying the guest OS to be involved only for page table
updates

• Restricting the guest OS to have only read access
• Writing to page tables is protected and must use a hypercall —
Xen can verify and allocate pages

47

MMU Virtualization: Direct mode

Accessing a page — TLB miss

48

Guest OS

Xen

CPU MMU

Page Table

TLB

Application Memory Read

TLB
miss

Walk through the page table

Accessing a page — page fault

49

Guest OS

Xen

CPU MMU

Page Table

TLB

Application Memory Read

TLB
miss

Walk through
the page
table

Exception —
page fault

not
found

hypercall to
request
physical
pages

Guest OS can batch hypercall updates
to further reduce overhead

• Mechanism that forces guest OS to give up memory
• Balloon driver consumes physical memory allocated in the
guest OS

• The memory consumed by Balloon is given to Xen
• The guest OS uses hypercalls to see and change the state

50

Balloon driver

• Exposes I/O devices as asynchronous I/O rings to guest OS
• Exposes the device abstraction to minimize the change in
device drivers

• Xen pins a few physical memory as DMA buffers and exposes
to the guest OS to avoid copying overhead

• Use an up call to notify the guest OS as opposed to interrupts

51

I/O virtualization

• Virtual firewall for each physical network interface
• Virtual interface for each physical network interface in each
guest OS

• Circular Queue — Mechanism supporting I/O between Xen
and guest OSes
• Ring buffers for exchanging requests
• Producer-consumer problem

• Producers: guest OSes
• Consumer: Xen

52

Network virtualization

Performance

53

Overhead

54

• Do you buy this?

55

Effort of porting

• x86-64 removes ring 1, 2
• Both applications and guest OSes in ring 3
• Using guest mode in Intel VT-X/AMD VMX when necessary

• Higher performance NIC through segment offload
• Enhanced support for unmodified guest OSes using hardware
virtualization

• Secure isolation between VMs

56

Later evolution of Xen

Hints for computer system design
Butler W. Lampson

Computer Science Laboratory Xerox Palo Alto Research Center

57

Hints for computer system design

58

• Separate normal and worst case
• Make normal case fast
• The worst case must make progress

• Saturation
• Thrashing

62

Completeness

• Do one thing at a time or do it well
• Don’t generalize
• Example

• Interlisp-D stores each virtual page on a dedicated disk page
• 900 lines of code for files, 500 lines of code for paging
• fast — page fault needs one disk access, constant computing cost

• Pilot system allows virtual pages to be mapped to file pages
• 11000 lines of code
• Slower — two disk accesses in handling a page fault, under utilize the disk

speed
• Get it right

63

Interface — Keep it simple, stupid

• Make it fast, rather than general or powerful
• CISC v.s. RISC

• Don’t hide power
• Are we doing all right with FTL?

• Use procedure arguments to provide flexibility in an interface
• Thinking about SQL v.s. function calls

• Leave it to the client
• Monitors’ scheduling
• Unix’s I/O streams

64

More on Interfaces

• Keep basic interfaces stable
• What happen if you changed something in the header file?

• Keep a place to stand if you do have to change interfaces
• Mach/Sprite are both compatible with existing UNIX even though they completely rewrote
the kernel

• Plan to throw one away
• Keep secrets of the implementation — make no assumption other system
components
• Don’t assume you will definitely have less than 16K objects!

• Use a good idea again
• Caching!
• Replicas

• Divide and conquer
65

Implementation

• Split resources in a fixed way if in doubt, rather than sharing them
• Processes
• VMM: Multiplexing resources Guest OSs aren’t even aware that they’re sharing

• Use static analysis — compilers
• Dynamic translation from a convenient (compact, easily modified or easily
displayed) representation to one that can be quickly interpreted is an
important variation on the old idea of compiling
• Java byte-code
• LLVM

• Cache answers to expensive computations, rather than doing them over
• Use hints to speed up normal execution

• The Ethernet: carrier sensing, exponential backoff
66

Speed

• When in doubt, use brute force
• Compute in background when possible

• Free list instead of swapping out on demand
• Cleanup in log structured file systems: segment cleaning could be scheduled at nighttime.

• Use batch processing if possible
• Soft timers: uses trigger states to batch process handling events to avoid trashing the cache more
often than necessary

• Write buffers
• Safety first
• Shed load to control demand, rather than allowing the system to become overloaded

• Thread pool
• MLQ scheduling
• Working set algorithm
• Xen v.s. VMWare

67

Speed

• End-to-end
• Network protocols

• Log updates
• Logs can be reliably written/read
• Logs can be cheaply forced out to disk, which can survive a crash

• Log structured file systems
• RAID5 in Elephant

• Make actions atomic or restartable
• NFS
• atomic instructions for locks

68

Fault-tolerance

