Virtual Machines & Reflections

Hung-Wei Tseng



Virtual Machines



Taxonomy of virtualization

process virtualization

different ISA

AN

Java VM

same ISA

v

Operating

Systems (e.g.,
process)
We've learned

quite a lot of
these

system virtualization

different ISA

same ISA

1 Virtual Hosted /\
.| Machine Virtual
:| Monitor Machine

Monitor

hardware
based based
\ / \
VMWare || Virtual PC,
Workstation|| Emulator,
VirtualBox Binary
Translator
Most of them are

software

Transmeta
Crusoe

Xen
1 VMWare Servel

We are focusing on

these today gone



Virtual machine architecture

Applications

Virtual Machine Monitor

The Machine

4



Three Laws of Robotics

- A robot may not injure a human being or, through inaction, allow
a human being to come to harm.

- A robot must obey orders given it by human beings except
where such orders would conflict with the First Law.

- A robot must protect its own existence as long as such
protection does not conflict with the First or Second Law.

oy
~‘z

.f &
" /
Vs

https://s3-ap-southeast-1.amazonaws.com/cloud-skcript/wp-content/
uploads/2014/05/25090337/robots.jpg 5



https://s3-ap-southeast-1.amazonaws.com/cloud-skcript/wp-content/uploads/2014/05/25090337/robots.jpg
https://s3-ap-southeast-1.amazonaws.com/cloud-skcript/wp-content/uploads/2014/05/25090337/robots.jpg

Back to 1974...

Formal Requirements

for Virtualizable A virtual machine is taken to be an efficient, iso-
Thqu Generation lated duplicate of the real machine. We explain these
Architectures notions through the idea of a virfual machine monitor
Universiiy of Califocnia, Los Angeles (vmM). See Figure 1. As a piece of software a VMM has
and . : . .

Robert P, Goldbers three essential characteristics. First, the vmMM provides
Honeywell Information Systems and . . . . -

Harvard University an environment for programs which is essentially iden-

Fide“tytica] with the original machine; second, programs run
in this environment show at worst only minor decrcases
in speed; and last, the vMM is in complete control of

Safety and isolation system resources.

1w . i : x Al . s



Recap: virtualization

However, we don’t want everything to pass
through this API!

API AP API AP AP API AP AP

Too slow!!!

Do you really need to track all
Intermediate states?



Recap: privileged instructions

- The processor provides
normal instructions and privileged
Instructions

- Normal instructions; ADD, SUB, MUL, and
etc ...

- Privileged instructions: HLT, CLTS, LIDT,
LMSW, SIDT, ARPL, and etc...

- The processor provides different modes

- User processes can use hormal
instructions

- Privileged instruction can only be used if
the processor is in proper mode

= s
RINOES

Ring 2

Kernel

Device Drivers

Least privileged

I Most privileged



Recap: How applications can use privileged operations?
user program OS kernel

- Through the API: System calls
- Implemented Iin “trap” INStructionS e

and %cl, (%rbx)

trap

Ox1bad(%eax) ,%dh
%al, (%eax)

- Raise an exception in the processor Eirai=s e ot
- The processor saves the exception EE e, 925083 (i)
PC and jumps to the corresponding § . e

exception handler in the OS kernel E

return-from-trap

user kernel/privileged
mode mode



Hosted virtual machine

Applications Applications Applications

device emulation, Virtualized Virtualized Virtualized Virtualized
virtualization Iy storage network

Hosted virtual machine monitor

device emulation, .
. . Hosted operating system
virtualization




Virtual machine monitors on bare machines

Applications Applications Applications

device emulation, Virtualized Virtualized Virtualized Virtualized
virtualization Iy storage network

Virtual machine monitor




Three main ideas to classical VMs

- De-privileging
- Primary and shadow structures
- Tracing

12



CPU Virtualization: Trap-and-emulate

user . .
mode unprivilege Appllcatlons
instruction
(e.g.,add) [syscall return
reduced
privileged Guest OS
mode call trap executing trap
handler handler in reduced
pr|v||eged pnwleged mode
rivileged o .
P modi V|rtual Machlne Monltor
handling handling
update update

vCPU vCPU
states states

The Machine

13



Recap: address translation with TLB

- This is called virtually
indexed, physically
tagged cache

. . . P
. TLB hit: the translationis ettt v aces: I

in the TLB, no penalty !

- TLB miss: fetch the
translation from the page
table in main memory

Operating system

page table

main memory l
Physical Address

14



Address translation in VM

Virtual Address Applications

!

Guest Operating system

Processor

page table

!

Physical Address

Virtual Machine Monitor

main memory VMM page table

!

15 Machine Address



Address translation in VM

Virtual Address Applications

Guest Operating system
Processor
page table

shadow Physical Address
page table

MA Virtual Machine Monitor

7
\l{niss
main memory \Ji VMM page table

16 Machine Address




Tracing

- You nheed to make the shadow page table consistent with guest
OS page table
- Protect these structures with write-protected

- If anyone tries to modify the protected PTE — trigger a segfault
handler

- The segfault handler will deal with these write-protected locations
and consistency issues for both tables

17



A Comparison of Software and Hardware
Techniques for x86 Virtualization

Keith Adams and Ole Agesen
VMware

21



- Binary

- Dynamic

- On demand
. System level
. Subsetting

- Adaptive

Binary translator

22



Binary translation on x86

- If the virtualized CPU is in user mode
- Instructions execute directly

- If the virtualized CPU is in kernel mode

- VMM examines every instruction that the guest OS is about to
execute in the near future by prefetching and reading instructions
from the current program counter

- Non-special instructions run natively

- Special instructions (those instruction may have missing flags set)
are "“translated” into equivalent instructions with flags set

23



Trap-and-emulate with Binary Translation

user ‘ :
mode unprivilege Applications
instruction
(e.g.,add) |syscall roturn
reduced
privileged Guest OS

mode call trap executing trap
handler privileged | handler in reduced
privileged instruction| privileged mode
instruction! return 1(if special) | , ;. ...

rivileged . . -
P o d% Virtual Machine Monitor
handling handling translate &
update update update
vCPU vCPU vCPU
states states states

The Machine

24



Hardware virtualization in modern x86

- VMCB (Virtual machine control block)

- Settings that determine what actions cause the guest to exit to host
- All CPU state for a guest is located in VMCB data-structure

- A new, less privileged execution mode, guest mode

- vmrun instruction to enter VMX mode

- Many instructions and events cause VMX exits
- Control fields in VMCB can change VMX exit behavior

25



How hardware VM works

- VMM fills in VMCB exception table for Guest OS
- Sets bit in VMCB not exit on syscall exception

- VMM executes vmrun
- Application invokes syscall

- CPU—> CPL
table

O, does not trap, vectors to VMCB exception

26



Overhead (seconds)

Virtualization overhead

10 | | | | |
Software VMM 1
Hardware VMM

8

6 - —

4 + —_

2 - -

syscall Infout cr8wr callret  pgfault ptemod translate

Figure 5. Sources of virtualization overhead in an XI* boot/halt.
30



Nanobenchmarks

100000 | | . . L
. Native o |
Software VMM 1
: Hardware VMM o -
10000 ¢ R

£
8 1000 |
w
o}
= .
g 100 0| B
- !
o
<
Q 10 el | BB ee e
)
o
O

1 el | ... ..

01

syscall in crewr  callret pgfault divzero ptemod

Figure 4. Virtualization nanobenchmarks.

31



% of native {higher is better)

Macrobenchmarks

100 | T T |
Software VMM

Hardware VMM L

80 S S 0 S O S S S A A S S S S S S

(270 S

40

compileLin compileWin ApachelLin ApacheWin LargeRAM 2DGraphics

Figure 3. Macrobenchmarks.

32



Side-by-side comparison

- Binary Translation VMM:

- Converts traps to callouts
- Callouts faster than trapping

- Faster emulation routine
- VMM does not need to reconstruct state

- Avoids callouts entirely

- Hardware VMM:

- Preserves code density
- No precise exception overhead
- Faster system calls

34



Xen and the Art of Virtualization

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, lan Pratt, Andrew Warfield
University of Cambridge Computer Laboratory

35



Why “Xen and the Art of Virtualization”?

AN GENEEATION AND CONTINUES TO NSPIRF edlLLICONS
/EN anND
THE ART or

MOTORCYCLE
MAINTENANCE

ROBERT M. PIRSIG

. -

IHEIGRTS

WILT A MORROW NODTRN CrALsI0s -
@ ) LTERY EWS

& MCRE..

36




Why Xen?

. Server consolidation: improve the server utilization
. Server co-location
- Secure distributed computing

- We want to host many full OS instances efficiently
- The overhead of full virtualization/resource container is large

- Hard to achieve Quality of Service guarantee because a VM is
treated as a process in the host operating system

37



Xen hypervisor

user
mode
Applications Applications Applications
G

privileged Modified OS Modified OS Modified OS
mode

(ring 1)
. . Para- Para- Para- Para- Para-
device emulation, Virtualized Virtualized Virtualized Virtualized Virtualized
virtualization CPU memory storage > network
privileged
mode

41



Paravirtualization

- Solution to issues with x86 instruction set
- Don't allow guest OS to issue sensitive instructions
- Replace those sensitive instructions that don't trap to ones that will trap

- Guest OS makes “hypercalls” (like system calls) to interact with system
resources

- Allows hypervisor to provide protection between VMs

- Exceptions handled by registering handler table with Xen

- Fast handler for OS system calls invoked directly

- Page fault handler modified to read address from replica location
- Guest OS changes largely confined to arch-specific code

- Compile for ARCH=xen instead of ARCH=i686

- Original port of Linux required only 1.36% of OS to be modified

42



Trap-and-emulate

As we modified the OS code, no binary translation is necessary

user T
Applications
mode :

unprivileged
instruction syscall return
reduced
privileged Modified Guest OS
mode r ;

executing trap handler in
reduced privileged mode

........................................ catitrap--RAVIeged . L RIVIRged
instruction | return | instruction | return
handler
rivileged . . .
P g Virtual Machine Monitor
mode
update handling handling &
vCPU states update update vCPU
vCPU states states

43



MMVU Virtualization: Direct mode

- Modifying the guest OS to be involved only for page table
updates

- Restricting the guest OS to have only read access

- Writing to page tables is protected and must use a hypercall —
Xen can verify and allocate pages

47



Accessing a page — TLB miss

Application
PP Memory Read




Accessing a page — page fault

Application
PP Memory Read

Guest OS can batch hypercall updates
to further reduce overhead

Page Table

Exception —

page fault | RYREICAN O
Walk through request
the page physical
table v Pages

miss



Balloon driver

- Mechanism that forces guest OS to give up memory

- Balloon driver consumes physical memory allocated in the
guest OS

- The memory consumed by Balloon is given to Xen
- The guest OS uses hypercalls to see and change the state

50



/0O virtualization

. Exposes |/O devices as asynchronous |/O rings to guest OS

- Exposes the device abstraction to minimize the change In
device drivers

- Xen pins a few physical memory as DMA buffers and exposes
to the guest OS to avoid copying overhead

- Use an up call to notify the guest OS as opposed to interrupts

57



Network virtualization

- Virtual firewall for each physical network interface

- Virtual interface for each physical network interface in each
guest OS

. Circular Queue — Mechanism supporting |/O between Xen
and guest OSes

- Ring buffers for exchanging requests

- Producer-consumer problem
- Producers: guest OSes
- Consumer: Xen

52



Performance

11

567

567
554
bS50

1.0

0.9 M

J04

0.7 M

0.6 M

535

0.4 M

178

Relative score to Linux

0.3 i

01 X

0.0

| % W Ll | X v | | K Y L | X W 1l | X v y | o v )
SPEC INT2000 (score)  Linux build time (s) OSDB-IR (tupfs) OSDB-OLTP (tupfs) dbanch (scors) SPEC WEB99 (scors)

Figure 3: Relative performance of native Linux (I.), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).

53



Overhead

null null opensict sig sig fork exsc sh
Config| call /O slal closeTCP inst hndl proc proc proc

L-SM”| 0.53 0.81 210 351 23.2 0.83 2.94 143 601 4k2
L-UP | 045050128 192 5.70 0.68 2.49 110 530 4k0
Xen | 046050122 188 5.69 069 1.75 198 768 4k8

VMW | 0.73083 188 299 11.1 1.02 463 374 2k3 1Ck
UMI [247251361628399 260460 21k 33k 58k

Tahle 3: 1Imbench: Processes - timesin ji.2

D o0 80 8p 16p 16

Config| OK ?EK 64K 16K 64K 16K 64K ITXCPMTU '523( |T>(<:P MTU 503)(
L-SMP| 1.60 188 203 236 268 479 384 : _

L.UP | 0.77 091 106 1.03 243 361 376 Linux 897 897 602 544 |
Xen | 1.97 222 267 3.07 28.7 7.08 394 Xen 897 (0%) 897 (-0%) 516 (-14%) 467 (-14%)
VMW | 181 176 213 224 516 417 722 YNW 291 (68%) 615(-31%) 101 (-83%) 137 (-75%)
UML | 155 146 144 163 368 236 52.0 UML 165 (82%) 203 (-77%) 51.1(-90%) ©1.4(-83%)
Table 4: 1lmbench: Context switching dmes in ps Table 6: ttcp: Bandwidth in Mb/s

Conliyl OKFie 10KFile  Mmap Piol Page
create delete create delete lat fault fault
L-SMP| 449 242 123 452 990 133 188
L-UP | 321 608 €60 125 680 106 142
Xen 325 586 €82 136 139 140 273
VMW [ 353 93 856 214 620 753 124
UML | 130 657 250 113 1k4 218 263

Table 5: lmbench: File & VM system latencies in j22

54



Effort of porting
- Do you buy this?

OS subsection # lines
Linux XP
Architecture-independent 78 1299
Virtual network driver 484 —
Virtual block-device driver 1070 —
Xen-specific (non-driver) 1363 3321
Total 2995 4620

(Portion of total x86 code base 1.36% 0.04%)

55



Later evolution of Xen

.+ X86-64 removesring 1, 2
- Both applications and guest OSes inring 3
- Using guest mode in Intel VT-X/AMD VMX when necessary

- Higher performance NIC through segment offload

- Enhanced support for unmodified guest OSes using hardware
virtualization

. Secure isolation between VMs

56



Hints for computer system design

Butler W. Lampson
Computer Science Laboratory Xerox Palo Alto Research Center



Hints for computer system design

Why? I'unctionality Speed Fault-tolerance
Does it work? Is 1t fast enough? Does i1t keep working?
Where?
Compleleness Separale normal and Shed load
WOrst case — End to end End to end
Safety first
Interface Do one thing well: Make 1t fast End-to-end
Don’t generalize Split resources Log updates
Get 1t r1ght Static analysis Make actions atomic
Don’t hide power Dynamic translation
Use procedure argnments
Leave it to the client
Keep basic intertaces stable
Keep a place to stand
Implementation | Plan to throw one away Cache answers Make actions atomic

Keep secrets
Use a good 1dea again
Divide and conquer

58

Use hints Use hints
Use brute force
Compute 1n background

Batch processing




Completeness

. Separate normal and worst case
- Make normal case fast

- The worst case must make progress
- Saturation
- Thrashing

62



Interface — Keep it simple, stupid

- Do one thing at a time or do it well
- Don't generalize

- Example
- Interlisp-D stores each virtual page on a dedicated disk page
- 900 lines of code for files, 500 lines of code for paging
- fast — page fault needs one disk access, constant computing cost
- Pilot system allows virtual pages to be mapped to file pages
- 11000 lines of code

- Slower — two disk accesses in handling a page fault, under utilize the disk
speed

. Get it right

63



More on Interfaces

- Make it fast, rather than general or powerful
- CISC v.s.RISC

- Don't hide power

- Are we doing all right with FTL?

- Use procedure arguments to provide flexibility in an interface
- Thinking about SQL v.s. function calls

- Leave it to the client
- Monitors' scheduling
- Unix's |/O streams

64



Implementation

- Keep basic interfaces stable
- What happen if you changed something in the header file?

- Keep a place to stand if you do have to change interfaces

- Mach/Sprite are both compatible with existing UNIX even though they completely rewrote
the kernel

- Plan to throw one away

- Keep secrets of the implementation — make no assumption other system
components

- Don't assume you will definitely have less than 16K objects!
- Use a good idea again

- Caching!

- Replicas

- Divide and conquer

65



Speed

- Split resources in a fixed way if in doubt, rather than sharing them

- Processes

- VMM: Multiplexing resources Guest OSs aren't even aware that they're sharing
- Use static analysis — compilers

- Dynamic translation from a convenient (compact, easily modified or easily
displayed) representation to one that can be quickly interpreted is an
iImportant variation on the old idea of compiling

- Java byte-code
- LLVM

- Cache answers to expensive computations, rather than doing them over

- Use hints to speed up normal execution
- The Ethernet: carrier sensing, exponential backoff

66



Speed

- When in doubt, use brute force

- Compute in background when possible

- Free list instead of swapping out on demand

- Cleanup in log structured file systems: segment cleaning could be scheduled at nighttime.
- Use batch processing if possible

- Soft timers: uses trigger states to batch process handling events to avoid trashing the cache more
often than necessary

- Write buffers
- Safety first

- Shed load to control demand, rather than allowing the system to become overloaded
- Thread pool

- MLQ scheduling

- Working set algorithm

- Xenv.s. VMWare

67



Fault-tolerance

- End-to-end

- Network protocols

- Log updates

- Logs can be reliably written/read

- Logs can be cheaply forced out to disk, which can survive a crash

- Log structured file systems
- RAID5 in Elephant

- Make actions atomic or restartable
- NFS
. atomic instructions for locks

68



