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Virtual Machines
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Taxonomy of virtualization
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Virtual machine architecture
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• A robot may not injure a human being or, through inaction, allow 
a human being to come to harm.  

• A robot must obey orders given it by human beings except 
where such orders would conflict with the First Law. 

• A robot must protect its own existence as long as such 
protection does not conflict with the First or Second Law.
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Three Laws of Robotics

https://s3-ap-southeast-1.amazonaws.com/cloud-skcript/wp-content/
uploads/2014/05/25090337/robots.jpg
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Back to 1974…
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Operating System

Recap: virtualization
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• The processor provides 
normal instructions and privileged 
instructions 
• Normal instructions: ADD, SUB, MUL, and 
etc … 

• Privileged instructions: HLT, CLTS, LIDT, 
LMSW, SIDT, ARPL, and etc…  

• The processor provides different modes 
• User processes can use normal 
instructions 

• Privileged instruction can only be used if 
the processor is in proper mode
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• Through the API: System calls 
• Implemented in “trap” instructions 

• Raise an exception in the processor 
• The processor saves the exception 
PC and jumps to the corresponding 
exception handler in the OS kernel
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Recap: How applications can use privileged operations?

add    0x1bad(%eax),%dh 
add    %al,(%eax) 
decb   0x52(%edi) 
in     $0x8d,%al 
mov    %eax,0x101c 
lea    -0x2bb84(%ebx),%eax 
mov    %eax,-0x2bb8a(%ebx) 
lgdtl  -0x2bb8c(%ebx) 
lea    -0x2bf3d(%ebx),%eax 
push   $0x10 
…… 
…… 
…… 
…… 
…… 
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb    %ecx,0x13(%rcx) 
and    %cl,(%rbx) 
xor    $0x19,%al 
add    %edx,(%rbx) 
add    %al,(%rax) 
syscall 
add    %al,(%rbx) 
…… 
…… 
…… 
…… 
…… 
…… 
…… 
……

trap

return-from-trap



Hosted virtual machine
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Virtual machine monitors on bare machines
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• De-privileging 
• Primary and shadow structures 
• Tracing
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Three main ideas to classical VMs
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• This is called virtually 
indexed, physically 
tagged cache 

• TLB hit: the translation is 
in the TLB, no penalty 

• TLB miss: fetch the 
translation from the page 
table in main memory
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Recap: address translation with TLB
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Address translation in VM
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Address translation in VM
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• You need to make the shadow page table consistent with guest 
OS page table 

• Protect these structures with write-protected 
• If anyone tries to modify the protected PTE — trigger a segfault 
handler 

• The segfault handler will deal with these write-protected locations 
and consistency issues for both tables
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Tracing



A Comparison of Software and Hardware 
Techniques for x86 Virtualization 

Keith Adams and Ole Agesen 
VMware
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• Binary 
• Dynamic 
• On demand 
• System level 
• Subsetting 
• Adaptive
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Binary translator



• If the virtualized CPU is in user mode 
• Instructions execute directly 

• If the virtualized CPU is in kernel mode 
• VMM examines every instruction that the guest OS is about to 
execute in the near future by prefetching and reading instructions 
from the current program counter 

• Non-special instructions run natively 
• Special instructions (those instruction may have missing flags set) 
are “translated” into equivalent instructions with flags set
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Binary translation on x86
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• VMCB (Virtual machine control block) 
• Settings that determine what actions cause the guest to exit to host 
• All CPU state for a guest is located in VMCB data-structure 

• A new, less privileged execution mode, guest mode 
• vmrun instruction to enter VMX mode 
• Many instructions and events cause VMX exits 
• Control fields in VMCB can change VMX exit behavior
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Hardware virtualization in modern x86



• VMM fills in VMCB exception table for Guest OS 
• Sets bit in VMCB not exit on syscall exception 

• VMM executes vmrun 
• Application invokes syscall 
• CPU —> CPL #0, does not trap, vectors to VMCB exception 
table
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How hardware VM works



Virtualization overhead

30



Nanobenchmarks
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Macrobenchmarks
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• Binary Translation VMM: 
• Converts traps to callouts 

• Callouts faster than trapping 
• Faster emulation routine 

• VMM does not need to reconstruct state 
• Avoids callouts entirely 

• Hardware VMM: 
• Preserves code density 
• No precise exception overhead 
• Faster system calls
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Side-by-side comparison



Xen and the Art of Virtualization
Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, 

Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield
University of Cambridge Computer Laboratory

35



Why “Xen and the Art of Virtualization”?

36



• Server consolidation: improve the server utilization 
• Server co-location 
• Secure distributed computing 
• We want to host many full OS instances efficiently 

• The overhead of full virtualization/resource container is large 
• Hard to achieve Quality of Service guarantee because a VM is 
treated as a process in the host operating system
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Why Xen?



Xen hypervisor
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• Solution to issues with x86 instruction set 
• Don’t allow guest OS to issue sensitive instructions 
• Replace those sensitive instructions that don’t trap to ones that will trap 

• Guest OS makes “hypercalls” (like system calls) to interact with system 
resources 
• Allows hypervisor to provide protection between VMs 

• Exceptions handled by registering handler table with Xen 
• Fast handler for OS system calls invoked directly 
• Page fault handler modified to read address from replica location 

• Guest OS changes largely confined to arch-specific code 
• Compile for ARCH=xen instead of ARCH=i686 
• Original port of Linux required only 1.36% of OS to be modified
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Paravirtualization



Trap-and-emulate
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• Modifying the guest OS to be involved only for page table 
updates 

• Restricting the guest OS to have only read access 
• Writing to page tables is protected and must use a hypercall — 
Xen can verify and allocate pages
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MMU Virtualization: Direct mode



Accessing a page — TLB miss
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Accessing a page — page fault
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• Mechanism that forces guest OS to give up memory 
• Balloon driver consumes physical memory allocated in the 
guest OS 

• The memory consumed by Balloon is given to Xen 
• The guest OS uses hypercalls to see and change the state
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Balloon driver



• Exposes I/O devices as asynchronous I/O rings to guest OS 
• Exposes the device abstraction to minimize the change in 
device drivers 

• Xen pins a few physical memory as DMA buffers and exposes 
to the guest OS to avoid copying overhead 

• Use an up call to notify the guest OS as opposed to interrupts
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I/O virtualization



• Virtual firewall for each physical network interface 
• Virtual interface for each physical network interface in each 
guest OS 

• Circular Queue — Mechanism supporting I/O between Xen 
and guest OSes 
• Ring buffers for exchanging requests 
• Producer-consumer problem 

• Producers: guest OSes 
• Consumer: Xen
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Network virtualization



Performance
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Overhead
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• Do you buy this?
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Effort of porting



• x86-64 removes ring 1, 2 
• Both applications and guest OSes in ring 3 
• Using guest mode in Intel VT-X/AMD VMX when necessary 

• Higher performance NIC through segment offload 
• Enhanced support for unmodified guest OSes using hardware 
virtualization 

• Secure isolation between VMs
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Later evolution of Xen



Hints for computer system design
Butler W. Lampson 

Computer Science Laboratory Xerox Palo Alto Research Center
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Hints for computer system design
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• Separate normal and worst case 
• Make normal case fast 
• The worst case must make progress 

• Saturation 
• Thrashing
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Completeness



• Do one thing at a time or do it well 
• Don’t generalize 
• Example 

• Interlisp-D stores each virtual page on a dedicated disk page 
• 900 lines of code for files, 500 lines of code for paging 
• fast — page fault needs one disk access, constant computing cost 

• Pilot system allows virtual pages to be mapped to file pages  
• 11000 lines of code 
• Slower — two disk accesses in handling a page fault, under utilize the disk 

speed 
• Get it right
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Interface — Keep it simple, stupid



• Make it fast, rather than general or powerful 
• CISC v.s. RISC 

• Don’t hide power 
• Are we doing all right with FTL? 

• Use procedure arguments to provide flexibility in an interface 
• Thinking about SQL v.s. function calls 

• Leave it to the client 
• Monitors’ scheduling 
• Unix’s I/O streams
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More on Interfaces



• Keep basic interfaces stable 
• What happen if you changed something in the header file? 

• Keep a place to stand if you do have to change interfaces 
• Mach/Sprite are both compatible with existing UNIX even though they completely rewrote 
the kernel 

• Plan to throw one away 
• Keep secrets of the implementation — make no assumption other system 
components 
• Don’t assume you will definitely have less than 16K objects! 

• Use a good idea again 
• Caching! 
• Replicas 

• Divide and conquer
65

Implementation



• Split resources in a fixed way if in doubt, rather than sharing them 
• Processes 
• VMM: Multiplexing resources Guest OSs aren’t even aware that they’re sharing 

• Use static analysis — compilers 
• Dynamic translation from a convenient (compact, easily modified or easily 
displayed) representation to one that can be quickly interpreted is an 
important variation on the old idea of compiling 
• Java byte-code 
• LLVM 

• Cache answers to expensive computations, rather than doing them over 
• Use hints to speed up normal execution 

• The Ethernet: carrier sensing, exponential backoff
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Speed



• When in doubt, use brute force 
• Compute in background when possible 

• Free list instead of swapping out on demand 
• Cleanup in log structured file systems: segment cleaning could be scheduled at nighttime. 

• Use batch processing if possible 
• Soft timers: uses trigger states to batch process handling events to avoid trashing the cache more 
often than necessary 

• Write buffers 
• Safety first 
• Shed load to control demand, rather than allowing the system to become overloaded 

• Thread pool 
• MLQ scheduling 
• Working set algorithm 
• Xen v.s. VMWare
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Speed



• End-to-end 
• Network protocols 

• Log updates 
• Logs can be reliably written/read 
• Logs can be cheaply forced out to disk, which can survive a crash 

• Log structured file systems 
• RAID5 in Elephant 

• Make actions atomic or restartable 
• NFS 
• atomic instructions for locks
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Fault-tolerance 


