
Virtual memory (II): System
Architecture and Design

Hung-Wei Tseng

Recap: Virtual memory

2

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Memory

data
0x80000000 instruction

0x0

data
0x80008000

Virtual Memory Space

0f00bb27
509cbd23
00005d24
0000bd24

00c2e800
00000008
00c2f000
00000008

Virtual Memory Space

0f00bb27
509cbd23
00005d24
0000bd24

00c2f800
00000008
00c30000
00000008

instruction
0x0

Recap: Demand paging

3

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Virtual Address Space for Apple MusicVirtual Address Space for Chrome

Memory

00c2e800
00000008
00c2f000
00000008

instruction
0x0

0f00bb27
509cbd23
00005d24
0000bd24

data
0x80000000 instruction

0x0

0f00bb27
509cbd23
00005d24
0000bd24

00c2f800
00000008
00c30000
00000008

data
0x80008000

Page fault!
Page fault! Page fault! Page fault!

each of this is a
fix-sized page

• How many of the following statements is/are correct regarding
segmentation and demand paging?
! Segments can cause more external fragmentations than demand paging
" Paging can still cause internal fragmentations
The overhead of address translation in segmentation is higher
$ Consecutive virtual memory address may not be consecutive in physical

address if we use demand paging
A. 0
B. 1
C. 2
D. 3
E. 4

4

Recap: Segmentation v.s. demand paging

— you need to provide finer-grained mapping in paging — you may need to handle page faults!

— within a page— the main reason why we love paging!

We haven’t seen pure/true implementation of
segmentations for a while, but we still use segmentation

fault errors all the time!

page offsetphysical page number

page offsetvirtual page number

0x D E A D B

• Processor receives virtual addresses from the running
code, main memory uses physical memory addresses

• Virtual address space is organized into “pages”
• The system references the page table to translate

addresses
• Each process has its own

page table
• The page table

content is maintained
by OS

• In addition to valid bit and physical page #, the page
table may also store

• Reference bit
• Modified bit
• Permissions

5

Recap: Address translation
Virtual

address 0x 0 0 0 0 B E E F

va
lid

ac
ce

ss
pe

rm
iss

ion

Physical
address E E F

Page
table

• Assume that we have 64-bit virtual address space, each page
is 4KB, each page table entry is 8 bytes (64-bit addresses),
what magnitude in size is the page table for 32 processes?

A. MB — 220 Bytes
B. GB — 230 Bytes
C. TB — 240 Bytes
D. PB — 250 Bytes
E. EB — 260 Bytes

6

Recap: Size of page table

8 bytes × 264 B
4 KB = 23B × 264 B

212 B
= 255 B = 32 PB

32 PB × 32 = 260B = 1 EB

“Paged” page table

7

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 11 1 0 1 1 1 0 1 0 0 1 1

Virtual Address SpaceCode Data Heap Stack

0x0 0xFFFFFFFFFFFFFFFF

These are nodes are not presented
if they are not referenced at all — save space

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1

Break up entries into pages!
Each of these occupies exactly a page
— PTEs per node212 B

23 B
= 29

Otherwise, you always need to find more
than one consecutive pages — difficult!

1 1 0 1 1 1 0 1 0 0 1 1

Allocate page table entry nodes “on demand”

Question:
These nodes are spread out,
how to locate them in the memory?

Hierarchical Page Table

8

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 11 1 0 1 1 1 0 1 0 0 1 1

 page table entries/leaf nodes (worst case)264 B
212 B

1 1 0 1 1 1 0 1 0 0 1 1

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1

1 1 0 1 1 1 0 1 0 0 1 11 1 0 1 1 1 0 1 0 0 1 1

Virtual Address SpaceCode Data Heap Stack

0x0 0xFFFFFFFFFFFFFFFF

 levels⌈log29
264 B
212 B

⌉ = ⌈log29252⌉ = 6

These are nodes are not presented
as they are not referenced at all.

9

Why: If we expose memory directly to the processor (III)

Memory

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

?

What if both programs
need to use memory?

Segmentation or paging

10

If we expose memory directly to the processor (I)

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Memory

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Da
ta

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008
00c2e800
00000008
00c2f000
00000008

00c2e800
00000008
00c2f000
00000008

00c2f800
00000008
00c30000
00000008

? What if my program
needs more memory?

Swapping

11

If we expose memory directly to the processor (II)

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Memory

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3

00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Memory

?

What if my program
runs on a machine

with a different
memory size?

Swapping

• Swapping
• VAX/VMS Design
• Mach VM

12

Outline

Physical memory

0x000000000000

0xFFFFFFFFFFFF

Demand Paging + Swapping

13

Virtual memory

Code
Static Data

Data

Heap

Stack

CPU

(1) an instruction accesses virtual
address 0xDEADBEEF

page
table

(2) page fault! — exception

(3) running out of space on DRAM

(4) kick some page out and store it in the
secondary storage

(5) map the requesting page to the freed space

• Divide physical & virtual memory spaces into fix-sized units — pages
• Allocate a physical memory page whenever the virtual memory page

containing your data is absent
• In case if we are running out of physical memory —

• Reserve space on disks
• Disks are slow: the access time for HDDs is around 10 ms, the access time for SSDs

is around 30us - 1 ms
• Disks are orders of magnitude larger than main memory

• When you need to make rooms in the physical main memory, allocate a page
in the swap space and put the content of the evicted page there

• When you need to reference a page in the swap space, make a room in the
physical main memory and swap the disk space with the evicted page

14

The mechanism: demand paging + swapping

Latency Numbers Every Programmer Should Know
(2020 Version)

15

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 3 ns
L2 cache reference 4 ns 14x L1 cache
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 us
Read 1 MB sequentially from memory 3,000 ns 3 us
Read 4K randomly from SSD* 16,000 ns 16 us
Read 1 MB sequentially from SSD* 49,000 ns 49 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from disk 825,000 ns 825 us
Disk seek 2,000,000 ns 2,000 us 2 ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html

• How much slower (approximately) is your average memory
access time in a system when the probability of a page fault/
swapping is 0.1% comparing with the case when there is no
page fault/swapping?
(Assume you swap to a hard disk)

A. 10x
B. 100x
C. 1000x
D. 10000x
E. 100000x

16

The swapping overhead

Operations Latency (ns)
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 1K bytes over 1 Gbps network 10,000 ns
Read 4K randomly from SSD* 150,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from SSD* 1,000,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA-Netherlands-CA 150,000,000 ns

https://www.pollev.com/hungweitseng close in

• How much slower (approximately) is your average memory access time in
a system when the probability of a page fault/swapping is 0.1%
comparing with the case when there is no page fault/swapping?
(Assume you swap to a hard disk)

20

The swapping overhead

• Memory (i.e. RAM) access time: 100ns
• Disk access time: 10ms
• Pf: probability of a page fault
• Effective Access Time = 100 ns + Pf * 107 ns
• When Pf = 0.001:

Effective Access Time = 10,100ns

• Takeaway: disk accesses are tolerable only
when they are extremely rare

• When Pf = 0.001, even with an SSD
Effective Access Time = 100 ns + 10-3 * 105
ns = 200 ns

Operations Latency (ns)
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 1K bytes over 1 Gbps network 10,000 ns
Read 4K randomly from SSD* 150,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from SSD* 1,000,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA-Netherlands-CA 150,000,000 ns

• How much slower (approximately) is your average memory
access time in a system when the probability of a page fault/
swapping is 0.1% comparing with the case when there is no
page fault/swapping?
(Assume you swap to a hard disk)

A. 10x
B. 100x
C. 1000x
D. 10000x
E. 100000x

21

The swapping overhead

Operations Latency (ns)
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 1K bytes over 1 Gbps network 10,000 ns
Read 4K randomly from SSD* 150,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from SSD* 1,000,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA-Netherlands-CA 150,000,000 ns

• Goal: Identify page to remove that will avoid future page faults (i.e. utilize
locality as much as possible)

• Implementation Goal: Minimize the amount of software and hardware
overhead
• Example:

• Memory (i.e. RAM) access time: 100ns
• Disk access time: 10ms
• Pf: probability of a page fault
• Effective Access Time = 10-7 + Pf * 10-3

• When Pf = 0.001:
Effective Access Time = 10,100ns

• Takeaway: Disk access tolerable only when it is extremely rare
22

Page replacement policy

Big picture

23

DRAM

Storage

Processor

$

Processor
Core

Registers

TLB$

Processor
Core

Registers

TLB$

Processor
Core

Registers

TLB$

Processor
Core

Registers

TLB

Last-Level $

Program

Page Table

Virtual Memory

TLB hit TLB miss

Virtual Memory Management in the VAX/
VMS Operating System

H. M. Levy and P. H. Lipman
Digital Equipment Corporation

24

• How many of the following statements is/are true regarding the
optimization goals of VAX/VMS?
! Reducing the disk load of paging
" Reducing the startup cost of a program
Reducing the overhead of page tables
$ Reducing the interference from heavily paging processes
A. 0
B. 1
C. 2
D. 3
E. 4

25

Why: The goals of VAX/VMS
https://www.pollev.com/hungweitseng close in

• The system needs to execute various
types of applications efficiently

• The system runs on different types of
hardware

• As a result, the memory management
system has to be capable of
adjusting the changing demands
characteristic of time sharing while
allowing predictable performance
required by real-time and batch
processes

29

The “Why” behind VAX/VMS VM

— Reducing the disk load of paging

— Reducing the interference from heavily paging processes

— Reducing the startup cost of a program

— Reducing the overhead of page tables

• How many of the following statements is/are true regarding the
optimization goals of VAX/VMS?
! Reducing the disk load of paging
" Reducing the startup cost of a program
Reducing the overhead of page tables
$ Reducing the interference from heavily paging processes
A. 0
B. 1
C. 2
D. 3
E. 4

30

Why: The goals of VAX/VMS

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

31

What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

https://www.pollev.com/hungweitseng close in

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

35

What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

Virtual Memory Space for Process #1

What happens on a fork?

36

virtual
page #1

virtual
page #2

virtual
page #3

Virtual Memory Space for Process #2

fork()

virtual
page #1

virtual
page #2

virtual
page #3

• Copy the page content to different locations before the new process can start

copy

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

copy copy

Virtual Memory Space for Process #1

Copy-on-write

37

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

virtual
page #1

virtual
page #2

virtual
page #3

Virtual Memory Space for Process #2

fork()

virtual
page #1

virtual
page #2

virtual
page #3

write

• The modified bit of a writable page will be set when it’s loaded from the executable file
• The process eventually will have its own copy of that page

Demand zero

38

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

Virtual Memory Space for Process #2virtual
page #1

virtual
page #2

virtual
page #3

write

• The linker does not embed the pages with all 0s in the compiled program
• When page fault occurs, allocate a physical page fills with zeros
• Set the modified bit so that the page can be written back

page
with “0”s

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

39

What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

Physical Memory

Virtual Memory Space for Process A

• Each process has a maximum size of memory
• When the process exceeds the maximum size, replaces from its own set of memory

pages
• Control the paging behavior within each process

40

Local page replacement policy

Page for
Process

A

Page for
Process

A

Page for
Process

A

Page for
Process

B
Page for
Process

B

Page for
Process

C

Virtual
page #1

Virtual
page #2

Virtual
page #3

Page for
Process

C

Virtual
page #4

Virtual page #4 can only
go one of these if 3 is the
maximum memory size of

the process

swap
out

What’s the policy? FIFO! Low overhead!

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

41

What VAX/VMS proposed to achieve these goals?

• Read or write a cluster of pages that are both consecutive in
virtual memory and the disk

• Combining consecutive writes into single writes

42

Page clustering

Latency Numbers Every Programmer Should Know
(2020 Version)

43

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 3 ns
L2 cache reference 4 ns 14x L1 cache
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 us
Read 1 MB sequentially from memory 3,000 ns 3 us
Read 4K randomly from SSD* 16,000 ns 16 us
Read 1 MB sequentially from SSD* 49,000 ns 49 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from disk 825,000 ns 825 us
Disk seek 2,000,000 ns 2,000 us 2 ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

for a 512B sector

sequential access for a larger block is faster

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Physical Memory

• Evicted pages will be put into one of the lists in DRAM
• Free list: clean pages
• Modified list: dirty pages — needs to copy data to the disk

• Page fault to any of the page in the lists will bring the page back
• Reduces the demand of accessing disks

44

Page caching to cover the performance loss

RS of Process B FreelistModified
List

PagePage PagePage

RS of Process A

Page Page Page PagePage Page

2 pages 2 pages4 pages 4 pages

page fault!

Page Page

page fault!

PagePage

page fault!

PagePage

Page caching

45

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

46

What VAX/VMS proposed to achieve these goals?

also helps reduce disk loads

Process memory layout

47

P0 (Program) Region

P1 (Control) Region

System Region

Reserved

Code
Heap

Stack
Other data

System: software vectors, hardware data structures,
executive data, executive procedures, record

management, dynamic storage

The VAX/VMS allows the OS code to
access user-space memory

• Each segment has its own page table
• Entries between stack and heap boundaries do not need to be

allocated — reduce the size of page table

48

Why segmented layout?

P0 (Program) Region

P1 (Control) Region
Only need just enough

entries

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

49

What VAX/VMS proposed to achieve these goals?

also helps reduce disk loadssegmented memory layout

• VAX is popular in universities and UNIX is later ported to VAX
— a popular OS research platform

• Affect the UNIX virtual memory design
• Affect the Windows virtual memory design

50

The impact of VAX/VMS

Other physical
memory

64-bit Linux process memory layout

51

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

Physical memory
reserved for kernel

Kernel logical address Kernel logical address

B B

A A

Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures
Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David Black,

William Bolosky, and Jonathan Chew
Carnegie-Mellon University, NeXT, University of Rochester

52

• Task: process in UNIX
• Thread: the basic scheduling identity
• Port: message queues protected by the kernel
• Message: data objects for inter-thread communication
• Memory object: data mapped into the address space of a task/

process

53

Mach abstractions

We mentioned previously

• Machine-independent virtual memory design by maintaining all
VM state in a machine-independent module

• Treat hardware page tables/TLBs as caches of machine-
independent information

54

What Mach VM proposed?

Overview of Mach’s VM

55

Memory object #1 Memory object #2 Memory object #3memory
objects

Virtual memory space of Task #1
virtual

address
space Virtual memory space of Task #2

vm_start,
vm_end,

memory object #,
protection,
inheritance,
*prev, *next

Page Page Page Page Page Page Page

Pager

address
map

accessing 0xDEADBEEF

offset in an memory
object

Resident page table
(Inverted page)

hash bucket
a memory object could be anything — a
file, a network buffer, remote network
memory, device buffer, or physical DRAM

virtual
addresses

• Pmap is just a cache of virtual to physical address mapping
• It accelerates address translation by caching the address

mapping, but not required
• As a result, it can be a small as several KBs

56

Where is the physical map (pmap)?

https://developer.apple.com/library/archive/documentation/
Darwin/Conceptual/KernelProgramming/vm/vm.html

https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/vm/vm.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/vm/vm.html

• MacOS X uses a “hybrid” kernel — BSD + Mach
• The kernel itself is BSD-based — modular, not microkernel-

based
• MacOS X’s virtual memory resembles the Mach VM design

• Why?

57

The impact of Mach VM

• MacOS does not adopt the microkernel idea from Mach but takes Mach’s
VMS design instead of a VAX/UNIX style one. Why?
! Mach’s VM would provide better average memory access latency
" Mach’s VM would make the page table more efficient for sparse address

allocations
Mach’s VM would make the process creation more efficient
$ Mach’s VM would be less dependent on hardware architecture
A. 0
B. 1
C. 2
D. 3
E. 4

58

VAX v.s. Mach
https://www.pollev.com/hungweitseng close in

• MacOS does not adopt the microkernel idea from Mach but takes Mach’s VMS
design instead of a VAX/UNIX style one. Why?
! Mach’s VM would provide better average memory access latency
" Mach’s VM would make the page table more efficient for sparse address

allocations
Mach’s VM would make the process creation more efficient
$ Mach’s VM would allow the system more adaptive to various hardware

architectures
A. 0
B. 1
C. 2
D. 3
E. 4

62

VAX v.s. Mach

— both of them uses FIFO by default + Mach has more context switches
— think about it’s linked-list nature

Address allocation is sparse in multithreading model!

63

Virtual memory

heap

code

static data

stack #1

stack #2

stack #3
Unused

Unused

Unused

• MacOS does not adopt the microkernel idea from Mach but takes Mach’s VMS
design instead of a VAX/UNIX style one. Why?
! Mach’s VM would provide better average memory access latency
" Mach’s VM would make the page table more efficient for sparse address

allocations
Mach’s VM would make the process creation more efficient
$ Mach’s VM would allow the system more adaptive to various hardware

architectures
A. 0
B. 1
C. 2
D. 3
E. 4

64

VAX v.s. Mach

— both of them uses FIFO by default + Mach has more context switches
— think about it’s linked-list nature

— both of them uses copy-on-reference…
— what’s the title of the paper?

— what’s the benefit? — multithreading!

• Groups in 2 (3 at most)
• 25—30 groups expected
• 18 clones only(?)

— each of you should work on
the code

• The project is NOT EASY
• You will meet questions related to

the project in exams.
— No free rider is allowed!

• We have office hours to address each of your need.
• Pull the latest version — had some changes for later kernel versions

https://github.com/hungweitseng/CS202-MMA
• Install an Ubuntu Linux 20.04 VM as soon as you can!
• Please do not use a real machine — you may not be able to reboot again

65

Please start your project early!!!

https://github.com/hungweitseng/CS202-MMA

• Reading quizzes due next Tuesday
• Midterm

• Will release on 2/10/2021 0:00am and due on 2/11/2021
11:59:00pm

• You will have to find a consecutive, non-stop 80-minute slot with
this period

• One time, cannot reinitiate — please make sure you have a stable
system and network. We cannot provide service during your exam
and we are not obligated to.

• No late submission is allowed
66

Announcement

ͺͻͥ

Computer
Science &
Engineering

202

Sample Midterm

68

• This is just a sample midterm for you to practice.
• Questions listed in multiple choices can be transformed as free

answer or short answer questions in the midterm.
• Same thing for sample free answer questions and short answer

questions

69

Disclaimer

• Rules
• Cheating is not allowed and you will receive an F once we identified that
• Will release on 2/10/2021 0:00am and due on 2/11/2021 11:59:00pm
• No lecture on 2/10/2021
• You will have to find a consecutive, non-stop 80-minute slot with this period
• One time, cannot reinitiate — please make sure you have a stable system and

network
• No late submission is allowed

• Format (tentatively)
• 15 multiple choices
• 4 short answer questions

— You have to explain everything within 30 words.
• 3 free answer questions

70

Regarding the “true” midterm

• Which of the following information does NOT the OS need to
track?

A. Stack pointer
B. Program counter
C. Scheduling information
D. Registers
E. None of the above

71

What OS must track for a process?

• Which process component(s) must we replicate in order to take
advantage of multiple cores/CPUs?

A. The address space (i.e. memory)
B. Misc. resources (e.g. open files)
C. Execution state (e.g. PC, registers, stack pointer)
D. More than one of the above
E. None of the above (explain).

72

What do we need for parallel processing

• How many the following is/are true regarding the proposed hierarchical
design in Dijkstra’s THE.
! Hierarchical design facilitates debugging
" Hierarchical design makes verification of system components easier
Hierarchical design reduces the overhead of running a single process
$ The proposed hierarchical design allows layer 0 to schedule

I/O & peripherals
A. 0
B. 1
C. 2
D. 3
E. 4

73

Is hierarchical design a good idea?

• Regarding “system nucleus”, how many of the following statements are
correct?
! The system nucleus is a process
" The system nucleus allows multiple operating systems to execute concurrently
The system nucleus provides primitives to load and swap programs
$ Operating systems are user-level processes in the system nucleus architecture
A. 0
B. 1
C. 2
D. 3
E. 4

74

What is “system nucleus”

• Regarding processes (or say tasks in Mach) and threads, how many of the
following statements is/are correct?
! Threads within a process share the same address space
" Threads within a process can communicate and synchronize using shared

memory
Processes can communicate through messages
$ Two processes may only be able to communicate through messages
A. 0
B. 1
C. 2
D. 3
E. 4

75

Processes and threads

• Although Mach’s design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

76

Why not microkernels?

• Which of the following is true about kernel?
A. It executes as a process
B. It is always executing, in support of other processes
C. It should execute as little as possible.
D. A & B
E. B & C

77

What we learned about kernel

• How many of the following statements is/are true regarding interrupt
and trap?
! Both interrupt and trap can incur context switch
" Both interrupt and trap are raised from hardware
Both interrupt and trap require OS kernel to handle
$ Both interrupt and trap are machine dependent features
A. 0
B. 1
C. 2
D. 3
E. 4

78

Interrupt and Trap

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

79

Did they achieve their goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• How many of the following tasks in virtual memory management
always requires the assistance of operating system?
! Address translation
" Growth of process address space
Tracking free physical memory locations
$ Maintaining mapping tables
A. 0
B. 1
C. 2
D. 3
E. 4

80

The role of the OS in virtual memory management

• The above shows the address partition in x86-64. According to this information,
how many of the following is/are true?
! x86-64 provides 16EB virtual memory space
" each node in the hierarchical page contains 512 entries
the default page size is 4KB
$ if only three level indexes are used, x86-64 can support 2MB page size
A. 0
B. 1
C. 2
D. 3
E. 4

81

Address translation in x86-64
63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)

SignExt L4 index L3 index L2 index L1 index page offset

• How many of the following statements regarding the “free list” is/are
correct?
! It can improve the latency of a page fault
" It can reduce the latency of swapping out a page
It can incur disk accesses without page faults
$ It doesn’t allow a page in the list to be used for other purpose
A. 0
B. 1
C. 2
D. 3
E. 4

82

Free list

• Which of the following can disabling interrupts guarantee for
for the bounded-buffer example?

A. At most one process/thread in its critical section
B. A thread outside of its critical section cannot block another

thread from entering its critical section
C. A thread cannot be postponed indefinitely from entering its

critical section
D. The solution should work regardless the speed of executing

threads and the number of processors
E. None of the above

83

Disable interrupts?

• How many of the following statements fulfill the requirements of wait-free
synchronization?
! Any operation from a process accessing the shared data structure must be completed

within a finite number of steps
" No process can be prevented from completing its operation by failures from other

processes
The implementation of wait-free synchronization cannot depend on hardware support
$ The implementation of wait-free synchronization should work regardless of the

processing speed
A. 0
B. 1
C. 2
D. 3
E. 4

84

Wait-free synchronization

• Differences among 4 types of kernels
• Differences between threads and processes
• The pros and cons between using threads and processes to parallelize an

application
• Differences between global and local page replacement policy. Examples of

using global/local page replacement policies?
• What is “free list”? How is it used in the system?
• Differences among VAX/VMS and Mach’s VM. Why initial version of UNIX’s

VM resembles VAX/VMS?
• Differences between UNIX in the 70’s paper and now. Why?
• What is segmentation fault? What is page fault?
• What is thrashing? What’s saturation?

85

Answer the following within 30 words

• What problem does multi-level scheduling policy try to
address? What they proposed to address the issue?

• How Linux’s CFS works? What problem would occur if we
carelessly apply CFS to multicore systems?

• What must happen during a context switch? How expensive is
a context?

• What must happen when creating a process? How expensive is
creating a process? How about creating a thread?

• Can you support threads without bothering the kernel? Pros
and cons?

86

Think deep

• Assume your OS uses LRU policy when handle page faults.
Also assume that we have 3 physical memory pages available.
How many page faults will you see in the following page
reference sequence?

• What if we use FIFO?
• What if we use Clock policy?
• Can you propose a policy outperform both FIFO and Clock?

87

Page replacement policy

0 1 2 3 4 5 6 7 8 9 10 11

Page # 9 4 8 7 9 4 8 7 9 4 8 7

• What kind of code are you going to replace in A, B, C to perform
“deletion” of a node in a linked list using RCU?

88

Programming using “RCU”
1 void delete(struct el *p)
2 {
3 A;
4 p->next->prev = p->prev;
5 p->prev->next = p->next;
6 B;
7 C;
8 }

• Consider the following code
fork();
printf(“moo\n”);
fork();
printf(“oink\n”);
fork();
printf(“baa\n”);

What is the output?

89

More forks

• How to implement a simple shell that can launch a user
program given from the command line?

• How to implement a shell that can redirect program output to a
file?

90

Programming questions in C

