
Virtual Memory (III) — Policies
Hung-Wei Tseng

Recap: Demand paging

2

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3In

st
ru

ct
io

ns 00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

Virtual Address Space for Apple MusicVirtual Address Space for Chrome

Memory

00c2e800
00000008
00c2f000
00000008

instruction
0x0

0f00bb27
509cbd23
00005d24
0000bd24

data
0x80000000 instruction

0x0

0f00bb27
509cbd23
00005d24
0000bd24

00c2f800
00000008
00c30000
00000008

data
0x80008000

Page fault!
Page fault! Page fault! Page fault!

each of this is a
fix-sized page

Physical memory

0x000000000000

0xFFFFFFFFFFFF

3

Virtual memory

Code

Static Data

Data

Heap

Stack

CPU(1) an instruction accesses virtual
address 0xDEADBEEF

page
table

(2) page fault! — exception

(3) running out of space on DRAM

(4) kick some page out and store it in the
secondary storage

(5) map the requesting page to the
freed space

Recap: Demand paging + Swapping

4

Recap: Hierarchical page table to make paging feasible

63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
SignExt L4 index L3 index L2 index L1 index page offset

X86
Processor

CR3 Reg.

……
…
512 entries

……
…

512 entries

……
…

512 entries

……
…

512 entries

11:0 (12 bits)
physical page # page offset

• Make page table “nodes” demand-pagable — not all of them has to
be residual in main memory

• Save the space for nodes belong to addresses not being used
• Upon a context switch, program the CR3 reg (PTBR) and load the

root node of the hierarchical page table

• Goal: Identify page to remove that will avoid future page faults (i.e. utilize
locality as much as possible)

• Implementation Goal: Minimize the amount of software and hardware
overhead
• Example:

• Memory (i.e. RAM) access time: 100ns
• Disk access time: 10ms
• Pf: probability of a page fault
• Effective Access Time = 10-7 + Pf * 10-3

• When Pf = 0.001:
Effective Access Time = 10,100ns

• Takeaway: Disk access tolerable only when it is extremely rare
5

Recap: Page replacement policy

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

6

What VAX/VMS proposed to achieve these goals?

also helps reduce disk loads

• We’re still using their proposed techniques almost everyday!
• It’s basically the baseline UNIX VM design

Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures
Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David Black,

William Bolosky, and Jonathan Chew
Carnegie-Mellon University, NeXT, University of Rochester

7

Recap: Overview of Mach’s VM

8

Memory object #1 Memory object #2 Memory object #3memory
objects

Virtual memory space of Task #1
virtual

address
space

Virtual memory space of Task #2

vm_start,
vm_end,

memory object #,
protection,
inheritance,
*prev, *next

Page Page Page Page Page Page Page

Pager

address
map

accessing 0xDEADBEEF

offset in an memory
object

Resident
page
table

hash bucket

a memory object could be anything — a
file, a network buffer, remote network
memory, device buffer, or physical DRAM

Nothing in this slide is machine dependent!

Recap: Address allocation is sparse in multithreading model!

9

Virtual memory

heap

code

static data

stack #1

stack #2

stack #3

Unused

Unused

Unused

address
map

• Page replacement policies
• Page replacement policy once used in UNIX: Converting a

Swap-Based System to do Paging in an Architecture Lacking
Page-Reference Bits

• Another popular page replacement policy: WSClcok - A Simple
and Effective Algorithm for Virtual Memory Management

10

Outline

Page replacement policies from
textbooks

11

• We need to determine:
• Which page(s) to remove
• When to remove the page(s)

• Goals
• Identify page to remove that will avoid future page faults (i.e. utilize

locality as much as possible)
• Minimize the amount of software and hardware overhead

12

Page replacement policy

• FIFO: Replace the oldest page
• LRU: Replace page that was the least recently used (longest

since last use)

13

Page replacement algorithms

• Assume your OS uses FIFO policy when handle page faults. Also assume that
we have 3 physical memory pages available. Compared with the same
machine using an OS with LRU page replacement police, how many more
page faults will you see for the FIFO based OS in the following page reference
sequence?

A. 0
B. 1
C. 2
D. 3
E. 4

14

FIFO v.s. LRU

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

https://www.pollev.com/hungweitseng close in

15

• Assume your OS uses FIFO policy when handle page faults. Also assume that
we have 3 physical memory pages available. Compared with the same
machine using an OS with LRU page replacement police, how many more
page faults will you see for the FIFO based OS in the following page reference
sequence?

A. 0
B. 1
C. 2
D. 3
E. 4

16

FIFO v.s. LRU

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

https://www.pollev.com/hungweitseng close in

17

• Assume your OS uses FIFO policy when handle page faults. Also assume that
we have 3 physical memory pages available. Compared with the same
machine using an OS with LRU page replacement police, how many more
page faults will you see for the FIFO based OS in the following page reference
sequence?

A. 0
B. 1
C. 2
D. 3
E. 4

18

FIFO v.s. LRU

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2 5 5 5 5 3 3 3 3
3 3 3 3 2 2 2 2 2 5 5

1 1 1 4 4 4 4 4 2
FIFO

LRU 2 2 2 2 2 2 2 2 3 3 3 3
3 3 3 5 5 5 5 5 5 5 5

1 1 1 4 4 4 2 2 2

FIFO v.s. LRU

19

FIFO LRU

Implementation Easy — circular queue
May require hardware support or

linked list or additional
timestamps in page tables

Execution overhead Low High — you need to manipulate
the list or update every counter

Performance Usually not as good as LRU Usually better than FIFO

Converting a Swap-Based System to do Paging
in an Architecture Lacking Page-Reference Bits

Özalp Babaoglu and William Joy*
Cornell University and University of California, Berkeley

20

• Regarding the original UNIX VM (basically the VMS), please identify how many
of the following statements are correct.
① VAX machine provides no hardware support for page replacement policies
② VMS implements FIFO policy for page replacement
③ A process’s resident set cannot be adjusted even though that process is the only

process in the system
④ VMS swaps out all memory page belong to a process when that process is

switched out
A. 0
B. 1
C. 2
D. 3
E. 4

21

The VMS/Old UNIX VM
https://www.pollev.com/hungweitseng close in

22

• Regarding the original UNIX VM (basically the VMS), please identify how many
of the following statements are correct.
① VAX machine provides no hardware support for page replacement policies
② VMS implements FIFO policy for page replacement
③ A process’s resident set cannot be adjusted even though that process is the only

process in the system
④ VMS swaps out all memory page belong to a process when that process is

switched out
A. 0
B. 1
C. 2
D. 3
E. 4

23

The VMS/Old UNIX VM
https://www.pollev.com/hungweitseng close in

24

• Regarding the original UNIX VM (basically the VMS), please identify how many
of the following statements are correct.
① VAX machine provides no hardware support for page replacement policies
② VMS implements FIFO policy for page replacement
③ A process’s resident set cannot be adjusted even though that process is the only

process in the system
④ VMS swaps out all memory page belong to a process when that process is

switched out
A. 0
B. 1
C. 2
D. 3
E. 4

25

The VMS/Old UNIX VM

— Really inefficient if you have frequent context switches or if you have many applications in-fly

• The original UNIX is a swap-based system
• Whenever you have a context switch, swap the whole process out

from the memory
• Really inefficient if you have frequent context switches or if you

have many applications in-fly
• Imply that the modern UNIX or Linux does not do this

• Efficient page replacement policies and other virtual
optimization techniques cannot be implemented easily without
appropriate hardware support

26

The Why of Babaoglu new UNIX VM

• How many of following statements fit the page replacement policy that the paper
implements?
① It uses LRU (least-recently-used) as the page replacement policy
② Page replacement policy are only triggered whenever a page fault occurs
③ It attaches a timestamp to each page table entry instead of using the reference bit

from hardware
④ Processes are allocated a fixed set of pages and swap in/out to/from those pages
⑤ The page replacement policy helps to guarantee the response time of short programs
A. 0
B. 1
C. 2
D. 3
E. 4

27

The page replacement policy proposed
https://www.pollev.com/hungweitseng close in

28

• How many of following statements fit the page replacement policy that the paper
implements?
① It uses LRU (least-recently-used) as the page replacement policy
② Page replacement policy are only triggered whenever a page fault occurs
③ It attaches a timestamp to each page table entry instead of using the reference bit

from hardware
④ Processes are allocated a fixed set of pages and swap in/out to/from those pages
⑤ The page replacement policy helps to guarantee the response time of short programs
A. 0
B. 1
C. 2
D. 3
E. 4

29

The page replacement policy proposed
https://www.pollev.com/hungweitseng close in

30

Clock algorithm

31

A

B

C

D

E

F
G

H

I

J

K

L

R

R

R

attach a “reference bit”
to each PTE, set to true

when the page is
referenced

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

Where to put ?

Clock algorithm in motion

32

A

B

C

D

E

F
G

H

I

J

K

L

R

R

R

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

33

A

B

C

D

E

F
G

H

I

J

K

L

R

R

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

34

A

B

C

D

E

F
G

H

I

J

K

L

R

R

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

M

Where to put ?

Clock algorithm in motion

35

A

B

C

D

E

F
G

H

I

J

K

L

R

R

Clock hand move
sequentially to swap out

the first page without
reference bit set. Clear
the reference bit when

it’s set

M

C will be selected to
swap out, but Rs of A

and B are cleared

• Assume your OS uses LRU policy when handle page faults. Also
assume that we have 3 physical memory pages available. How many
page faults will you see in the following page reference sequence?

A. 5
B. 6
C. 7
D. 8
E. 9

36

Recap: LRU

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2 2 2 2 2 3 3 3 3
3 3 3 5 5 5 5 5 5 5 5

1 1 1 4 4 4 2 2 2

• Assume your OS uses the clock policy when handle page faults. Also
assume that we have 3 physical memory pages available. How many
page faults will you see in the following page reference sequence?

A. 5
B. 6
C. 7
D. 8
E. 9

37

How good is clock?

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

https://www.pollev.com/hungweitseng close in

38

• Assume your OS uses the clock policy when handle page faults. Also
assume that we have 3 physical memory pages available. How many
page faults will you see in the following page reference sequence?

A. 5
B. 6
C. 7
D. 8
E. 9

39

How good is clock?

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

https://www.pollev.com/hungweitseng close in

40

• Assume your OS uses the clock policy when handle page faults. Also
assume that we have 3 physical memory pages available. How many
page faults will you see in the following page reference sequence?

A. 5
B. 6
C. 7
D. 8
E. 9

41

How good is clock?

2 2* 2*+ 2*+ 2 2+ 2+ 2*+ 2* 2+* 2* 2+*

3 3 3 5 5 5 5+ 5 5 5+ 5+

1 1* 1* 4 4 3 3 3 3

+ means the reference bit is set
* means the current hand

0 1 2 3 4 5 6 7 8 9 10 11

Page # 2 3 2 1 5 2 4 5 3 2 5 2

Physical Memory

• Evicted pages will be put into one of the lists in DRAM
• Free list: clean pages
• Modified list: dirty pages — needs to copy data to the disk

• Page fault to any of the page in the lists will bring the page back
• Reduces the demand of accessing disks

42

Recap: Page caching to cover the performance loss

RS of Process B FreelistModified
List

PagePage PagePage

RS of Process A

Page Page Page PagePage Page

2 pages 2 pages4 pages 4 pages

page fault!

Page Page

page fault!

PagePage

page fault!

PagePage

• How many of the following statements regarding the “free list” is/are
correct?
① It can improve the latency of a page fault
② It can reduce the latency of swapping out a page
③ It can incur disk accesses without page faults
④ It doesn’t allow a page in the list to be used for other purpose
A. 0
B. 1
C. 2
D. 3
E. 4

43

Free list in Babaoglu’s UNIX
https://www.pollev.com/hungweitseng close in

44

• How many of the following statements regarding the “free list” is/are
correct?
① It can improve the latency of a page fault
② It can reduce the latency of swapping out a page
③ It can incur disk accesses without page faults
④ It doesn’t allow a page in the list to be used for other purpose
A. 0
B. 1
C. 2
D. 3
E. 4

45

Free list in Babaoglu’s UNIX
https://www.pollev.com/hungweitseng close in

46

• How many of the following statements regarding the “free list” is/are
correct?
① It can improve the latency of a page fault
② It can reduce the latency of swapping out a page
③ It can incur disk accesses without page faults
④ It doesn’t allow a page in the list to be used for other purpose
A. 0
B. 1
C. 2
D. 3
E. 4

47

Free list in Babaoglu’s UNIX

— instead of swapping a page during the page fault, just take one from the free list

— No! This completely depend on how fast your disk/storage is!

— Do you remember how UNIX page replacement is triggered?

— No! You can use those pages as disk caches!

• So far, we need to trigger clock policy and swap in/out on each page
fault

• Why don’t we prepare more free pages each time so that we can
feed page faults with pages from the list?

• Free list
• When we need a page, take one from the free list
• Have a daemon running the background, managing this free list — you

can do this when system is not loaded
• If size of free list gets too small, trigger the clock algorithm to add pages

into the free list (by swapping out to disk)
• Free list can be used as a disk cache

48

Free list

• How many of following statements fit the page replacement policy that the paper
implements?
① It uses LRU (least-recently-used) as the page replacement policy
② Page replacement policy are only triggered whenever a page fault occurs
③ It attaches a timestamp to each page table entry instead of using the reference bit

from hardware
④ Processes are allocated a fixed set of pages and swap in/out to/from those pages
⑤ The page replacement policy helps to guarantee the response time of short programs
A. 0
B. 1
C. 2
D. 3
E. 4

49

The page replacement policy proposed

clock

free list is under a threshold

reference bit

• How many of following statements fit the page replacement policy that the paper
implements?
① It uses LRU (least-recently-used) as the page replacement policy
② Page replacement policy are only triggered whenever a page fault occurs
③ It attaches a timestamp to each page table entry instead of using the reference bit

from hardware
④ Processes are allocated a fixed set of pages and swap in/out to/from those pages
⑤ The page replacement policy helps to guarantee the response time of short programs
A. 0
B. 1
C. 2
D. 3
E. 4

50

The page replacement policy proposed

clock

free list is under a threshold

reference bit

Process just get a page from the free list whenever it needs

• Say, we want to implement a shell that interprets command line commands and executes “./a”
• The following program can serve for this purpose:

• Do we actually need the code segment of the parent?

51

How to implement a simple shell?

int main(int argc, char *argv[]) {
 int child_pid;
 char cmd[1024];
 memset(cmd, 0 , 1024);
 fprintf(stderr,"CSC501-myshell$ ");
 while(fgets_wrapper(cmd,1024,stdin)) {
 if(strcmp("exit",cmd)==0)
 exit(1);
 child_pid = fork();
 if (child_pid == 0)
 execvp(cmd,NULL);
 else {
 fprintf(stderr,"CSC501-myshell$ ");
 memset(cmd, 0 , 1024);
 }
 }
 return 0;
}

• Create a new page table
• Copy data page-by-page
• 80% of fork occurs in shell command interpreter

52

What happens on a fork?

• How many of the following statements regarding “vfork” is/are correct?
① vfork can improve the response time of the parent process
② vfork does not create a new address space upon the creation of new process
③ vfork allows the child process to execute within the parent’s memory

address
④ The child process created by vfork can potentially corrupt the parent process
A. 0
B. 1
C. 2
D. 3
E. 4

53

virtual fork — vfork
Poll close in

• How many of the following statements regarding “vfork” is/are correct?
① vfork can improve the response time of the parent process
② vfork does not create a new address space upon the creation of new process
③ vfork allows the child process to execute within the parent’s memory

address
④ The child process created by vfork can potentially corrupt the parent process
A. 0
B. 1
C. 2
D. 3
E. 4

54

virtual fork — vfork
Poll close in

• How many of the following statements regarding “vfork” is/are correct?
① vfork can improve the response time of the parent process
② vfork does not create a new address space upon the creation of new process
③ vfork allows the child process to execute within the parent’s memory

address
④ The child process created by vfork can potentially corrupt the parent process
A. 0
B. 1
C. 2
D. 3
E. 4

55

virtual fork — vfork

hurt, because it delays the parent until exec()

WSClcok - A Simple and Effective
Algorithm for Virtual Memory Management

Richard Carr and John Hennessy

56

• Local: select one page from the same process’ physical pages
for storing the demanding page when swapping is necessary
• VAX/VMS
• Original UNIX

• Global: select any page that was previously belong to any
process when swapping is necessary
• UNIX after Babaoglu
• Mach

57

Brief recap: what policies are used?

• How many of the following would happen in Babaoglu’s UNIX VM if we
keep increase the amount of concurrent processes and assume each
process uses some virtual memory in the system?
① The CPU utilization will keep increasing and stay at 100%
② The system may spend more time in context switching than real computation
③ The system may spend more time in swap in/out than real computation
④ Some process may not respond due to the high paging overhead
A. 0
B. 1
C. 2
D. 3
E. 4

58

Degree of parallelism and performance
https://www.pollev.com/hungweitseng close in

59

• How many of the following would happen in Babaoglu’s UNIX VM if we
keep increase the amount of concurrent processes and assume each
process uses some virtual memory in the system?
① The CPU utilization will keep increasing and stay at 100%
② The system may spend more time in context switching than real computation
③ The system may spend more time in swap in/out than real computation
④ Some process may not respond due to the high paging overhead
A. 0
B. 1
C. 2
D. 3
E. 4

60

Degree of parallelism and performance
https://www.pollev.com/hungweitseng close in

61

• The system overcommitted memory to tasks
• The system spends most time in paging, instead of making

meaningful progress

62

Thrashing: Paging overhead

Previously, we have seen how scheduling
policies can help improving “saturation”.

Now, let’s see how page replacement
policies can address this “thrashing”

Saturation: Context Switch Overhead

63

You think round robin should act like this —

0 1 2 3 4 5 6 7 8 9 10

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1

But the fact is —
P1 P2 P3Overhead

P1 -> P2
Overhead
P2 -> P3

Overhead
P3 -> P1

0 1 1 2 2 3

P1 P2Overhead
P1 -> P2

Overhead
P2 -> P3

3 4 4 5

•Your processor utilization can be very low if you switch frequently

•No process can make sufficient amount of progress within a given period of time

•It also takes a while to reach your turn

• Thrashing — when memory are overcommitted
• The system is busy paging
• The processor is idle waiting

• Saturation — when processors are overcommitted
• The system is busy context switching and scheduling
• The processor is busy but not contributing to the running program

64

Thrashing v.s. Saturation

• How many of the following would happen in Babaoglu’s UNIX VM if we
keep increase the amount of concurrent processes and assume each
process uses some virtual memory in the system?
① The CPU utilization will keep increasing and stay at 100%
② The system may spend more time in context switching than real computation
③ The system may spend more time in swap in/out than real computation
④ Some process may not respond due to the high paging overhead
A. 0
B. 1
C. 2
D. 3
E. 4

65

Degree of parallelism and performance

• Take advantages from both local and global page replacement
policies
• Global — simplicity, adaptive to process demands
• Local — prevent thrashing

66

Why WS-Clock

• Working set: the set of pages used in a certain number of
recent accesses

• Assume these recently referenced pages are likely to be
referenced again soon (temporal locality)

• Evict pages that are not referenced in a certain period of time
• Swap out may occur even if there is no page faults

• A process is allowed to be executed only if the working set size
fits in the physical memory

67

Working Set Algorithm

• Use working set policy to decide how many pages can a
process use
• Return a page to the free list if there exists a page in the process’

working set that hasn’t been access for a certain period of time
• If the free list is lower than a threshold

• Trigger the clock policy to select pages from any process
• On a page fault

• Take a page from the free list

68

WSClock

• Wherever you need to reclaim a page —
1. Examine the PTE pointed to by clock hand.
2. If reference bit is set

1. Clear reference bit;
2. Advance clock hand;
3. Goto Done.

3. If reference bit is not set
1. If the timestamp of the PTE is older than a threshold

1. Write the page to disk if it’s dirty and use this page
2. Goto Done

2. Otherwise
1. Advance clock hand
2. Goto 1.

4. Done
5. If no victim page is chosen, randomly pick one

69

WSClock

• One of the most important page replacement policies in
practice

70

The impact of WSClock

• No lecture this Thursday — relocate those 80 minutes to
anytime you like before 2/11 11:59:00pm.

• Reading quizzes due next Tuesday
• Start working on your project ASAP

71

Announcement

つづく

Computer
Science &
Engineering

202

