
I/O & Basics of File Systems
Hung-Wei Tseng

2

Recap: von Neumman Architecture

3

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

Operating System

Operating Systems — Virtualization, Concurrency, Persistency

4

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

CPU
Memory

I/O

API API API API API API API API

Process

Thread
Virtual Memory

System call

• Process — the abstraction of a von Neumann machine
• Virtual memory — the abstraction of memory
• Thread — the abstraction of a processor

• Threads can share virtual memory if they come from the same
process

• You don’t have to create another page table when creating a thread

5

Recap: abstractions in operating systems

• Mechanisms of maintaining the abstraction
• Segmentation
• Demanding page + Swapping

• Hierarchical page table to save space overhead in mapping
• TLB (translation look-aside buffer) to reduce the translation latency — CS203

• Policies to decide how big the space in the physical main memory each process
can enjoy

• Working set/page local replacement — VMS/UNIX/Mach
• Global page replacement — Babaoglu’s UNIX

• Policies to decide what page to stay in the physical main memory
• FIFO + freelist — VMS/UNIX/Mach
• Clock+ freelist — Babaoglu’s UNIX
• WS-Clock — After Carr and Hennessy

6

Recap: Virtual memory

• How our systems interact with I/O
• The basics of storage devices
• File

7

Outline

The computer is now like a small network

8

SATA SSD

HDD

Wireless NIC

NIC

Processor

DRAM

processor-memory bus

GPU
Accelerator

NVMe SSD
FPGA/ASIC

Physical main memory is not directly linking to
the system interconnect

• Registers
• Command: receiving commands from host
• Status: tell the host the status of the device
• Data: the location of exchanging data

• Microcontroller
• Memory
• ASICs

9

What’s in each device?

Registers Microcontroller

MemoryASICs

ASIC (e.g. NAND)
DRAM

Controller + Registers

How your application interact with peripherals

10

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

How do I know if the device has something for me? Or …
How the device know if I have something for it?

• Comparing polling and interrupt, how many of the following statements are
true
! Polling mechanism itself generally consume more CPU time than interrupt
" Interrupt can improve CPU utilization if the device only needs service from the

processor occasionally
Interrupt allows asynchronous I/O in programs
$ The number of instructions of handling an event after polling is higher than

handling the same event after receiving an interrupt
A. 0
B. 1
C. 2
D. 3
E. 4

11

Polling v.s. Interrupt — Round 1
https://www.pollev.com/hungweitseng close in

• Comparing polling and interrupt, how many of the following statements are
true
! Polling mechanism itself generally consume more CPU time than interrupt
" Interrupt can improve CPU utilization if the device only needs service from the

processor occasionally
Interrupt allows asynchronous I/O in programs
$ The number of instructions of handling an event after polling is higher than

handling the same event after receiving an interrupt
A. 0
B. 1
C. 2
D. 3
E. 4

15

Polling v.s. Interrupt — Round 1

Not related to polling/interrupt

You can context switch!
Your function can return immediately

You need to have a loop that periodically polls

• The device signals the processor only when
the device requires the processor/OS
handle some tasks/data

• The processor only signals the device when
necessary

16

Interrupt

System Interconnect

CPU System Memory

(3)

(4) (1)

(2)

Registers Microcontroller

MemoryASICs

System Interconnect

• The processor/OS constantly asks if the
device (e.g. examine the status register of
the device) is ready to or requires the
processor/OS handle some tasks/data

• The OS/processor executes corresponding
handler if the device can handle demand
tasks/data or has tasks/data ready

17

Polling

(2) (3)

CPU System Memory

Registers Microcontroller

MemoryASICs

(1) (4)

• Regarding using interrupts and polling for communicating peripheral devices, how
many of the followings is/are correct?
! Using interrupts may increase the end-to-end latency for a process comparing with

polling
" Using interrupts may increase the cache miss rates comparing with polling
Using interrupts for high-speed storage devices may decrease the power consumption of

the processor
$ The latency of serving I/O requests using interrupts can be longer than using polling if

context switches occur during the I/O
A. 0
B. 1
C. 2
D. 3
E. 4

18

Interrupt v.s. Polling — Round 2
https://www.pollev.com/hungweitseng close in

• Load architectural states from process control block (somewhere in the main memory,
potentially a cache miss, TLB miss) — takes several microseconds if everything is in the
physical memory

• Set processor registers according to the loaded architectural states
• Set the CR3 (page table base register in x86) register to identify the root page table

node in the hierarchical page table
• Set the RIP (program counter in x86) to the previous execution

• Restore virtual memory address
• You must load the root page table node to the main memory at least.
• TLB flush

• Invalidate all entries in the TLB
• Most TLBs are not tagged, so you’ve to do this

• You DO NOT have to load every page content back from disk — remember that we
have demand paging!

22

Recap: What happens during context switch

To switch or not to switch that’s the question.

23

CPU

I/O Device

P1 P2 P1

Accessing Device

Context Switch
P1 -> P2

Context Switch
P2 -> P1I/O stack

system call

Kernel

device received
the command interrupt

If TContext switch P1->P2 + TContext switch P2->P1 < T Accessing peripherals

makes sense to context switch

I/O stack
Kernel

• Cache warm up cost when you switch back
• TLB warm up cost

24

But context switch overhead is not the only thing

What if we don’t switch?

25

CPU

I/O Device

P1 P1

Accessing Device

I/O stack

system call

Kernel

device received
the command interrupt

I/O stack
Kernel

CPU is idle!
Let’s lower the frequency to save power!

Now, this will take longer as we need to
wait for the clock rate back to normal!

• Regarding using interrupts and polling for communicating peripheral devices, how
many of the followings is/are correct?
! Using interrupts may increase the end-to-end latency for a process comparing with

polling
" Using interrupts may increase the cache miss rates comparing with polling
Using interrupts for high-speed storage devices may decrease the power consumption of

the processor
$ The latency of serving I/O requests using interrupts can be longer than using polling if

context switches occur during the I/O
A. 0
B. 1
C. 2
D. 3
E. 4

26

Interrupt v.s. Polling — Round 2

Because you context switched!

Because you context switched!

True, because your processor is free and may be idle — allowing DVFS to lower the clock rate

Yes. It’s still because you have to switch back and warm up cache

• Interrupt is only a good option if the benefit from context
switching or energy saving is larger than waiting for the I/O to
finish

• In general, applying polling on faster devices
• DRAM
• Non-volatile memory (e.g., flash, PCM)

27

When should we poll? When should we interrupt

Case study: interacting with hard
disk drives

28

• Position the head to proper track
(seek time)

• Rotate to desired sector.
(rotational delay)

• Read or write data from/to disk to
in the unit of sectors (e.g. 512B)

• Takes at least 5ms for each
access

29

Hard Disk Drive
tracksector

cylinder

Each sector is identified, locate by an “block address”

head

Latency Numbers Every Programmer Should Know
(2020 Version)

30

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 3 ns
L2 cache reference 4 ns 14x L1 cache
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 us
Read 1 MB sequentially from memory 3,000 ns 3 us
Read 4K randomly from SSD* 16,000 ns 16 us
Read 1 MB sequentially from SSD* 49,000 ns 49 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from disk 825,000 ns 825 us
Disk seek 2,000,000 ns 2,000 us 2 ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html

• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What’s the
latency and bandwidth of accessing a 512B sector?

31

Seagate Barracuda 12

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+
0.5

1024
300 +0.2 ms

= 8 ms + 4.17 ms + 0.00167 us + 0.2 ms = 12.36 ms

= 0.5KB
12.36ms = 40.45KB/sec

• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What’s the
latency and bandwidth of accessing consecutive 4MB data?

32

Seagate Barracuda 12

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+ 4
300 +0.2 ms

= 8 ms + 4.17 ms + 13.33 ms + 0.2 ms = 25.69 ms

= 4MB
25.69ms = 155.7 MB/sec

Numbering the disk space with block addresses

33

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks

How your application interact with peripherals

34

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

The application needs to be tightly coupled with the underlying device —
Not generic

Not portable

read/write — 0, 512, 4096, … (block address)

–David Wheeler

All problems in computer science can be solved by
another level of indirection

35

The file & file system abstraction

36

• Regarding “files” in the “basic” UNIX operating system, how many of the
following statements is/are correct?
! Every device can be mapped to a file
" The UNIX file system uses a hierarchical structure and directory is also a file in

UNIX
The UNIX file system runs in the kernel space
$ The UNIX file system needs to maintain the information regarding the content

type of files (e.g. image, text, C program)
A. 0
B. 1
C. 2
D. 3
E. 4

37

File abstraction in UNIX
https://www.pollev.com/hungweitseng close in

What we’ve learned in the past…

41

• Regarding “files” in the “basic” UNIX operating system, how many of the
following statements is/are correct?
! Every device can be mapped to a file
" The UNIX file system uses a hierarchical structure and directory is also a file in

UNIX
The UNIX file system runs in the kernel space
$ The UNIX file system needs to maintain the information regarding the content

type of files (e.g. image, text, C program)
A. 0
B. 1
C. 2
D. 3
E. 4

42

File abstraction in UNIX

How your application interact with peripherals

43

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite/
fopen/fclose open/close

How your application reaches H.D.D.

44

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite — input.bin/output.bin

fread/fwrite — input.bin/output.bin

Buffer
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses

read/write — block addresses

The application only needs
to interact with files!

int fd, nr, nw;
void *in_buff;
in_buff = malloc(BUFF_SIZE);

fd1 = open(“infile.txt”, O_RDONLY);
fd2 = open(“outfile.txt”, O_RDWR | O_CREAT);
nr = read(fd1, in_buff, BUFF_SIZE);
nw = write(fd2, in_buff, BUFF_SIZE);
lseek(fd1, -8, SEEK_END);
nr = read(fd1, in_buff, 8); // read last 8 bytes
// more fancy stuff here…
close(fd1);
close(fd2);

45

How you access files in C

Kernel

File System

open

46

infile.txt

fd PIDs Location
0 8,12
1
2
3

fd = open(“infile.txt”); 22

file descriptor table

1

• Why do we have an open call, as opposed to specifying the file
path for read and write?

A. To check file permissions
B. To improve performance
C. To lookup the file’s location on disk
D. Exactly two of the above
E. All of the above (i.e. A, B, and C)

47

Why open system call?
https://www.pollev.com/hungweitseng close in

• Why do we have an open call, as opposed to specifying the file
path for read and write?

A. To check file permissions
B. To improve performance
C. To lookup the file’s location on disk
D. Exactly two of the above
E. All of the above (i.e. A, B, and C)

51

Why open system call?

Kernel

File System

read

52

infile.txt

fd PIDs Location
0 8,12
1
2
3

read(fd, buff, n); 22

file descriptor table

1

buff:

• Namespace has tree-like structure
• Root directory (/) with subdirectories, each containing its own

subdirectories
• Links break the tree analogy

53

Hierarchical File System Structure

/

usr home var

local bin hungwei tyler spool logsrc

tylervim

• The “/“ on storage device A will become /backup now!

54

Mount

Storage Device A

/

usr home var

local bin hungwei tyler spool logsrc

tylervim

Storage Device B
/

usr home var backup

• Average: 82 72
• You may find your grade and reference solution

in eLearn
• One week regrading policy, no regrading request

after 2/22 (we finished the grading this morning)
• Check the website for the protocol of regrading
• We will regrade your whole exam

• It’s published on the webpage since 0th week.
• pity points will be off (e.g., we currently give points for

missing ; and mis-spelling)
• It’s only 20% — more important to figure out how

much you learned rather than minor points.
• The only case will fail your CS202 is cheating or

being absent in final — we identified 5 cases.

69

Midterm

0
10
20
30
40
50
60
70
80
90

100

1 11 21 31 41 51 61

Weighted Total (eLearn)

A+ A A- B+ B B-

• Project
• What’s the high-level idea of the project?

• Challenges?
• What’s your high-level system architecture

• What are the system components: data structures? additional facilities?
• What are the communication, data exchange, signaling mechanisms and

scheduling policies
• How to accomplish the goal?
• Due 3/3 — no late submission is allowed

70

Project

• Reading quizzes due next Tuesday
• Office hour

• Check Google Calendar
• Use the office hour Zoom link, not the lecture one

71

Announcement

ͺͻͥ

Computer
Science &
Engineering

202

