
The Design of File systems
Hung-Wei Tseng

Recap: How your application reaches storage

2

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer

data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite Ñ input.bin/output.bin

fread/fwrite Ñ input.bin/output.bin

Buffer
data

read/write Ñ 0, 512, 4096, É (block address)

read/write Ñ block addresses

read/write Ñ block addresses

¥ What is a file?
¥ A logical unit of storage (e.g. an mp3), a device or a directory
¥ Operations: open, close, read, write

¥ What is a file system?
¥ A logically-structured collection of files
¥ Defines the namespace of a file
¥ Provides persistence, access control, and other protection/security

mechanisms
¥ Files / File System provides an abstraction for secondary

storage

3

Recap: The ÒfileÓ abstraction

¥ Process Ñ the abstraction of a von Neumann machine
¥ Thread Ñ the abstraction of a processor
¥ Virtual memory Ñ the abstraction of memory
¥ File system Ñ the abstraction of space/location on a storage

device, the storage device itself, as well as other peripherals

4

Abstractions in operating systems

¥ The ÒOldÓ UNIX File System
¥ BSDÕs Fast File System
¥ Log-structured File System

5

Outline

Recap: Numbering the disk space with block addresses

6

track
sector

cylinder

0 7

8 15

16 23

24 31

32 39

40 47

48 55

56 63

Disk blocks

¥ How do we locate files?
¥ How do we manage hierarchical namespace?
¥ How do we manage file and file system metadata?

¥ How do we allocate storage space?
¥ How do we make the file system fast?
¥ How do we ensure file integrity?

7

Questions for file systems

How the original UNIX file system use disk blocks

8

track
sector

cylinder

0 7

8 15

16 23

24 31

32 39

40 47

48 55

56 63

Disk blocks
File System Metadata (Superblock)

Information about the Òfile systemÓ itself.
(e.g. free blocks)

File Metadata Information about the
ÒfilesÓ. e.g. inodes

Data

Data

¥ Contains critical file system information
¥ The volume size
¥ The number of nodes
¥ Pointer to the head of the free list

¥ Located at the very beginning of the file system

9

Superblock Ñ metadata of the file system

¥ File types: directory, file
¥ File size
¥ Permission
¥ Attributes

10

inode Ñ metadata of each file

¥ File types: directory, file
¥ File size
¥ Permission
¥ Attributes
¥ Types of pointers:

¥ Direct: Access single data block
¥ Single Indirect: Access n data blocks
¥ Double indirect: Access n2 data blocks
¥ Triple indirect: Access n3 data blocks

¥ inode has 15 pointers: 12 direct, 1 each
single-, double-, and triple-indirect

¥ If data block size is 512B and n = 256:
max file size =
(12+256+2562+2563)*512 = 8GB

11

Unix inode

¥ For a file /home/hungwei/CS202/foo.c , how many disk
accesses does the original/old, unoptimized UNIX file system
need to perform to reach the actual file content in the worst
case?
A. 4
B. 6
C. 8
D. 9
E. At least 10

12

Number of disk accesses
https://www.pollev.com/hungweitseng close in

¥ For a file /home/hungwei/CS202/foo.c , how many disk
accesses does the original/old, unoptimized UNIX file system
need to perform to reach the actual file content in the worst
case?
A. 4
B. 6
C. 8
D. 9
E. At least 10

16

Number of disk accesses

¥ Scenario: User wants to access
/home/hungwei/CS202/foo.c

¥ Procedure: File system willÉ
¥ Open Ò/Ó file (This is in known from superblock.)
¥ Locate entry for Òhome,Ó open that file
¥ Locate entry for ÒhungweiÓ, open that file
¥ É
¥ Locate entry for Òfoo.cÓ and open that file

¥ LetÕs use ÒstraceÓ to see what happens

17

What must be done to reach your files

How to reach /home/hungwei/CS202/foo.c

18

0 7

8 15

16 23

24 31

32 39

40 47

48 55

56 63

Disk blocks
File System Metadata (Superblock)

File Metadata

Superblock inode 1
owner_id 0
permission 755
type dir
address 24
É

/
usr 13
var 14

home 15

inode 15
owner_id 0

permission 755
type dir

address 31
É

index node (inode)

home
tyler 20

hungwei 21

inode 21
owner_id 0

permission 755
type dir

address 34
É

hungwei
CS202 16

Dropbox 17

inode 16
owner_id 0

permission 755
type dir

address 44
É

CS202
bar.c 18
foo.c 19

inode 19
owner_id 0

permission 755
type file

address 55
É

#include
<stdio.h>
.
.
.
.
.

A Fast File System for UNIX
Marshall K. McKusick, William N. Joy, Samuel J. Leffler and Robert S.

Fabry
Computer Systems Research Group

19

¥ We want better performance!!!
¥ We want new features!

20

Why do we care about fast file system

LetÕs make file systems great again!

¥ Lots of seeks when accessing a file
¥ inodes are separated from data locations
¥ data blocks belong to the same file can be spread out

¥ Low bandwidth utilization
¥ only the very last is retrieving data
¥ 1 out 11 in our previous example Ñ less than 10% if files are small

¥ Limited file size
¥ Crash recovery
¥ Device oblivious

21

Problems in the ÒoldÓ file system

¥ Cylinder groups
¥ Larger block sizes
¥ Fragments
¥ Allocators
¥ New features

¥ long file names
¥ file locking
¥ symbolic links
¥ renaming
¥ quotas

22

What does fast file system propose?

¥ How many of the following does FFS propose?
! Cylinder groups to improve average access time
" Larger block size to improve bandwidth
Larger block size to support larger files
$ Replicated superblocks for data recovery
% Pre-allocate blocks to improve write performance
A. 1
B. 2
C. 3
D. 4
E. 5

23

What FFS proposes?
https://www.pollev.com/hungweitseng close in

How FFS use disk blocks

29

track
sector

cylinder

0 7

8 15

16 23

24 31

32 39

40 47

48 55

56 63

Disk blocks
File System Metadata (Superblock)

File Metadata

Data

Data

cylinder groupBackup Superblock

File Metadata

Data

Data

cylinder group

¥ Consists of one or more consecutive cylinders on a disk
¥ Each cylinder group contains the following

¥ redundant copy of the superblock
¥ whatÕs the benefit?
¥ why not a cylinder group for all superblocks?

¥ inode space
¥ bitmap of free blocks within the cylinder group
¥ summary of block usage
¥ data

¥ Improves average disk access time
¥ Allocating blocks within the same cylinder group for the same file
¥ Placing inode along with data within the same cylinder group

30

Cylinder groups

¥ Which of the following factor of disk access can cylinder
groups help to improve when manage files?
A. Seek time
B. Rotational delay
C. Data transfer latency
D. A and B
E. A and C

31

Cylinder groups
https://www.pollev.com/hungweitseng close in

track
sector

cylinder

¥ Which of the following factor of disk access can cylinder
groups help to improve when manage files?
A. Seek time
B. Rotational delay
C. Data transfer latency
D. A and B
E. A and C

35

Cylinder groups

track
sector

cylinder

¥ The block size of the old file system is aligned with the block
(sector) size of the disk
¥ Each file can only contain a fixed number of blocks
¥ Cannot fully utilize the I/O interface bandwidth

¥ The new file system supports larger block sizes
¥ Supports larger files
¥ Each I/O request can carry more data to improve bandwidth

¥ However, larger block size leads to internal fragments

36

Larger block sizes

¥ SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. WhatÕs the
bandwidth of accessing 512B sectors and 4MB consecutive
sectors?

37

How larger block sizes improves bandwidth

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time
= 8 ms+ 4.17ms+ 13.33ms+ 0.2 ms = 25.69ms

= 4MB
25.69ms

= 155.7MB/sec

= 8 ms+ 4.17ms+ 0.00167us+ 0.2 ms = 12.36ms
= 0.5KB

12.36ms
= 40.45KB/sec

¥ Addressable units within a block
¥ Allocates fragments from a block with free fragments if the

writing file content doesnÕt fill up a block

38

Fragments

¥ Global allocators
¥ Try to allocate inodes belong to same file together
¥ Spread out directories across the disk to increase the successful rate

of the previous
¥ Local allocators Ñ allocate data blocks upon the request of the

global allocator
¥ Rotationally optimal block in the same cylinder
¥ Allocate a block from the cylinder group if global allocator needs one
¥ Search for blocks from other cylinder group if the current cylinder

group is exhausted

39

Allocators

¥ How many of the following does FFS propose?
! Cylinder groups to improve average access time
" Larger block size to improve bandwidth
Larger block size to support larger files
$ Replicated superblocks for data recovery
% Pre-allocate blocks to improve write performance
A. 1
B. 2
C. 3
D. 4
E. 5

40

What FFS proposes?

¥ Regarding the performance of BSD FFS, please identify how many of the
following statements is/are true

! BSD FFS is performing better than UFS regardless of reads and writes
" The performance of reading data is faster than writing data in BSD FFS, while

the reading is slower than writing in UFS
The bandwidth utilization of BSD FFS is better than UFS
$ The CPU overhead of BSD FFS is higher than UFS
A. 0
B. 1
C. 2
D. 3
E. 4

41

How is BSD FFS doing?
https://www.pollev.com/hungweitseng close in

Performance of FFS

45

writes in FFS are slower
than readsnot the case for old FS

CPU load is fine given that
UFS is way too slow!

¥ Regarding the performance of BSD FFS, please identify how many of the
following statements is/are true

! BSD FFS is performing better than UFS regardless of reads and writes
" The performance of reading data is faster than writing data in BSD FFS, while

the reading is slower than writing in UFS
The bandwidth utilization of BSD FFS is better than UFS
$ The CPU overhead of BSD FFS is higher than UFS
A. 0
B. 1
C. 2
D. 3
E. 4

46

How is BSD FFS doing?

¥ Larger overheads than the old file system as the new file
system allocates blocks after write requests occur Ñ Why not
optimize for writes?
¥ 10% of overall time
¥ writes are a lot faster already

¥ Writing metadata is synchronous rather than asynchronous Ñ
WhatÕs the benefit of synchronous writes?
¥ Consistency

47

Writes

¥ Cylinder groups
¥ Larger block sizes
¥ Fragments
¥ Allocators
¥ New features

¥ long file names
¥ file locking
¥ symbolic links
¥ renaming
¥ quotas

48

What does fast file system propose?

Ñ improve spread-out data locations

Ñ improve bandwidth and file sizes
Ñ improve low space utilization due to large blocks

Ñ address device oblivious

The design and implementation of a
log-structured file system

Mendel Rosenbaum and John K. Ousterhout
Univ. of California, Berkeley

49

¥ How many of the following problems is/are Log-structured file
systems trying address?

! The performance of small random writes
" The efficiency of large file accesses
The space overhead of metadata in the file system
$ Reduce the main memory space used by the file system
A. 0
B. 1
C. 2
D. 3
E. 4

50

Why LFS?
https://www.pollev.com/hungweitseng close in

¥ How many of the following problems is/are Log-structured file
systems trying address?

! The performance of small random writes
" The efficiency of large file accesses
The space overhead of metadata in the file system
$ Reduce the main memory space used by the file system
A. 0
B. 1
C. 2
D. 3
E. 4

54

Why LFS?

¥ Writes will dominate the traffic between main memory and
disks Ñ Unix FFS is designed under the assumption that only
10% of the traffic are writes
¥ Who is wrong?
¥ As system memory grows, frequently read data can be cached

efficiently
¥ Every modern OS aggressively caches Ñ use ÒfreeÓ in Linux to

check
¥ Gaps between sequential access and random access
¥ Conventional file systems are not RAID aware

55

Why LFS?

UFS is published in 1984

¥ How many of the following problems is/are Log-structured file
systems trying address?

! The performance of small random writes
" The efficiency of large file accesses
The space overhead of metadata in the file system
$ Reduce the main memory space used by the file system
A. 0
B. 1
C. 2
D. 3
E. 4

56

Why LFS?

¥ Data are spread out the whole disk
¥ Can achieve sequential access within each file, but the distance between files can be

far
¥ An inode needs a standalone I/O in addition to file content
¥ Creating files take at least five I/Os with seeks Ñ can only use 5% bandwidth for data

¥ 2 for file attributes
¥ You have to check if the file exists or not
¥ You have to update after creating the file

¥ 1 for file data
¥ 1 for directory data
¥ 1 for directory attributes

¥ Writes to metadata are synchronous
¥ Good for crash recovery, bad for performance

57

Problems with BSD FFS

¥ Buffering changes in the system main memory and commit
those changes sequentially to the disk with fewest amount of
write operations

58

What does LFS propose?

LFS in motion

59

Disk Space

disk space (log)

inode
map

disk

write
buffer

Data chuck
#1

Data chuck
#1

inode
#1

Data chuck
#1

Data chuck
#2

Data chuck
#2

Data chuck
#2

inode
#2

Updated Data
chuck #1

Updated Data
chuck #1

Updated Data
chuck #1

inode
#1invalidated

¥ How many of the following problems is/are Log-structured file
systems trying address?

! The performance of small random writes
" The efficiency of large file accesses
The space overhead of metadata in the file system
$ Reduce the main memory space used by the file system
A. 0
B. 1
C. 2
D. 3
E. 4

60

Why LFS?

leave it for the hardware designer

increases due to garbage collection and inode maps

increases due to write caching

¥ Checkpointing
¥ Create a redundant copy of important file system metadata

periodically
¥ Roll-forward

¥ Scan through/replay the log after checkpointing

61

Crash recovery

LFS v.s. crash

62

Disk Space

disk space (log)

inode
map

disk

write
buffer

inode
#1

Data chuck
#1

Data chuck
#2

inode
#2

Updated Data
chuck #1

Updated Data
chuck #1

Updated Data
chuck #1

crash occurs
You still have a copy of

data at some point

Updated Data
chuck #1

LFS v.s. write failed

63

Disk Space

disk space (log)

inode
map

disk

write
buffer

inode
#1

Data chuck
#1

Data chuck
#2

inode
#2

Updated Data
chuck #1

Updated Data
chuck #1

Updated Data
chuck #1

write failed
You still have a copy of

data at some point

Updated Data
chuck #1

You can try again!

¥ Reclaim invalidated segments in the log once the latest
updates are checkpointed

¥ Rearrange the data allocation to make continuous segments
¥ Must reserve enough space on the disk

¥ Otherwise, every writes will trigger garbage collection
¥ Sink the write performance

64

Segment cleaning/Garbage collection

¥ Reading quizzes due next Tuesday
¥ Project due 3/3
¥ Office hour

¥ Check Google Calendar
¥ Use the office hour Zoom link, not the lecture one

71

Announcement

�z�{�e

Computer
Science &
Engineering

202

