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Recap: How your application reaches storage
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¥ What is a file? 
¥ A logical unit of storage (e.g. an mp3), a device or a directory 
¥ Operations: open, close, read, write 

¥ What is a file system? 
¥ A logically-structured collection of files 
¥ Defines the namespace of a file 
¥ Provides persistence, access control, and other protection/security 

mechanisms 
¥ Files / File System provides an abstraction for secondary 

storage
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Recap: The ÒfileÓ abstraction



¥ Process Ñ the abstraction of a von Neumann machine 
¥ Thread Ñ the abstraction of a processor 
¥ Virtual memory Ñ the abstraction of memory 
¥ File system Ñ the abstraction of space/location on a storage 

device, the storage device itself, as well as other peripherals
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Abstractions in operating systems



¥ The ÒOldÓ UNIX File System 
¥ BSDÕs Fast File System 
¥ Log-structured File System
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Outline



Recap: Numbering the disk space with block addresses
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¥ How do we locate files? 
¥ How do we manage hierarchical namespace? 
¥ How do we manage file and file system metadata? 

¥ How do we allocate storage space? 
¥ How do we make the file system fast? 
¥ How do we ensure file integrity?
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Questions for file systems



How the original UNIX file system use disk blocks
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¥ Contains critical file system information 
¥ The volume size 
¥ The number of nodes 
¥ Pointer to the head of the free list 

¥ Located at the very beginning of the file system
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Superblock Ñ metadata of the file system



¥ File types: directory, file 
¥ File size 
¥ Permission 
¥ Attributes
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inode Ñ metadata of each file



¥ File types: directory, file 
¥ File size 
¥ Permission 
¥ Attributes 
¥ Types of pointers: 

¥ Direct: Access single data block 
¥ Single Indirect: Access n data blocks 
¥ Double indirect: Access n2 data blocks 
¥ Triple indirect: Access n3 data blocks 

¥ inode has 15 pointers: 12 direct, 1 each 
single-, double-, and triple-indirect 

¥ If data block size is 512B and n = 256: 
max file size = 
(12+256+2562+2563)*512 = 8GB
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Unix inode



¥ For a file /home/hungwei/CS202/foo.c , how many disk 
accesses does the original/old, unoptimized UNIX file system 
need to perform to reach the actual file content in the worst 
case? 
A. 4 
B. 6 
C. 8 
D. 9 
E. At least 10
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Number of disk accesses
https://www.pollev.com/hungweitseng close in 



¥ For a file /home/hungwei/CS202/foo.c , how many disk 
accesses does the original/old, unoptimized UNIX file system 
need to perform to reach the actual file content in the worst 
case? 
A. 4 
B. 6 
C. 8 
D. 9 
E. At least 10
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Number of disk accesses



¥ Scenario: User wants to access 
/home/hungwei/CS202/foo.c 

¥ Procedure: File system willÉ 
¥ Open Ò/Ó file (This is in known from superblock.) 
¥ Locate entry for Òhome,Ó open that file 
¥ Locate entry for ÒhungweiÓ, open that file 
¥ É 
¥ Locate entry for Òfoo.cÓ and open that file 

¥ LetÕs use ÒstraceÓ to see what happens
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What must be done to reach your files



How to reach /home/hungwei/CS202/foo.c
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File Metadata

Superblock inode 1
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permission 755
type dir
address 24
É

/
usr 13
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home 15

inode 15
owner_id 0

permission 755
type dir
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É

index node (inode)
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tyler 20

hungwei 21

inode 21
owner_id 0

permission 755
type dir
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É

hungwei
CS202 16

Dropbox 17
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type dir
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É

#include 
<stdio.h> 
. 
. 
. 
. 
. 



A Fast File System for UNIX 
Marshall K. McKusick, William N. Joy, Samuel J. Leffler and Robert S. 

Fabry
Computer Systems Research Group
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¥ We want better performance!!! 
¥ We want new features!
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Why do we care about fast file system

LetÕs make file systems great again!



¥ Lots of seeks when accessing a file 
¥ inodes are separated from data locations 
¥ data blocks belong to the same file can be spread out 

¥ Low bandwidth utilization 
¥ only the very last is retrieving data 
¥ 1 out 11 in our previous example Ñ less than 10% if files are small 

¥ Limited file size 
¥ Crash recovery 
¥ Device oblivious
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Problems in the ÒoldÓ file system



¥ Cylinder groups 
¥ Larger block sizes 
¥ Fragments 
¥ Allocators 
¥ New features 

¥ long file names 
¥ file locking 
¥ symbolic links 
¥ renaming 
¥ quotas
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What does fast file system propose?



¥ How many of the following does FFS propose? 
! Cylinder groups to improve average access time 
" Larger block size to improve bandwidth 
# Larger block size to support larger files 
$ Replicated superblocks for data recovery 
% Pre-allocate blocks to improve write performance 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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What FFS proposes?
https://www.pollev.com/hungweitseng close in 



How FFS use disk blocks
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¥ Consists of one or more consecutive cylinders on a disk 
¥ Each cylinder group contains the following 

¥ redundant copy of the superblock 
¥ whatÕs the benefit? 
¥ why not a cylinder group for all superblocks? 

¥ inode space 
¥ bitmap of free blocks within the cylinder group 
¥ summary of block usage 
¥ data 

¥ Improves average disk access time 
¥ Allocating blocks within the same cylinder group for the same file 
¥ Placing inode along with data within the same cylinder group 
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Cylinder groups



¥ Which of the following factor of disk access can cylinder 
groups help to improve when manage files? 
A. Seek time 
B. Rotational delay 
C. Data transfer latency 
D. A and B 
E. A and C
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Cylinder groups
https://www.pollev.com/hungweitseng close in 
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¥ Which of the following factor of disk access can cylinder 
groups help to improve when manage files? 
A. Seek time 
B. Rotational delay 
C. Data transfer latency 
D. A and B 
E. A and C
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Cylinder groups

track
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cylinder



¥ The block size of the old file system is aligned with the block 
(sector) size of the disk 
¥ Each file can only contain a fixed number of blocks 
¥ Cannot fully utilize the I/O interface bandwidth 

¥ The new file system supports larger block sizes 
¥ Supports larger files 
¥ Each I/O request can carry more data to improve bandwidth 

¥ However, larger block size leads to internal fragments
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Larger block sizes



¥ SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8 
ms. Assume the controller overhead is 0.2ms. WhatÕs the 
bandwidth of accessing 512B sectors and 4MB consecutive 
sectors?
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How larger block sizes improves bandwidth

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time
= 8 ms+ 4.17ms+ 13.33ms+ 0.2 ms = 25.69ms

= 4MB
25.69ms

= 155.7MB/sec

= 8 ms+ 4.17ms+ 0.00167us+ 0.2 ms = 12.36ms
= 0.5KB

12.36ms
= 40.45KB/sec



¥ Addressable units within a block 
¥ Allocates fragments from a block with free fragments if the 

writing file content doesnÕt fill up a block
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Fragments



¥ Global allocators 
¥ Try to allocate inodes belong to same file together 
¥ Spread out directories across the disk to increase the successful rate 

of the previous 
¥ Local allocators Ñ allocate data blocks upon the request of the 

global allocator 
¥ Rotationally optimal block in the same cylinder 
¥ Allocate a block from the cylinder group if global allocator needs one 
¥ Search for blocks from other cylinder group if the current cylinder 

group is exhausted
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Allocators



¥ How many of the following does FFS propose? 
! Cylinder groups to improve average access time 
" Larger block size to improve bandwidth 
# Larger block size to support larger files 
$ Replicated superblocks for data recovery 
% Pre-allocate blocks to improve write performance 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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What FFS proposes?



¥ Regarding the performance of BSD FFS, please identify how many of the 
following statements is/are true 

! BSD FFS is performing better than UFS regardless of reads and writes 
" The performance of reading data is faster than writing data in BSD FFS, while 

the reading is slower than writing in UFS 
# The bandwidth utilization of BSD FFS is better than UFS 
$ The CPU overhead of BSD FFS is higher than UFS 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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How is BSD FFS doing?
https://www.pollev.com/hungweitseng close in 



Performance of FFS

45

writes in FFS are slower 
than readsnot the case for old FS

CPU load is fine given that 
UFS is way too slow!



¥ Regarding the performance of BSD FFS, please identify how many of the 
following statements is/are true 

! BSD FFS is performing better than UFS regardless of reads and writes 
" The performance of reading data is faster than writing data in BSD FFS, while 

the reading is slower than writing in UFS 
# The bandwidth utilization of BSD FFS is better than UFS 
$ The CPU overhead of BSD FFS is higher than UFS 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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How is BSD FFS doing?



¥ Larger overheads than the old file system as the new file 
system allocates blocks after write requests occur Ñ Why not 
optimize for writes? 
¥ 10% of overall time 
¥ writes are a lot faster already 

¥ Writing metadata is synchronous rather than asynchronous Ñ 
WhatÕs the benefit of synchronous writes? 
¥ Consistency
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Writes



¥ Cylinder groups 
¥ Larger block sizes 
¥ Fragments 
¥ Allocators 
¥ New features 

¥ long file names 
¥ file locking 
¥ symbolic links 
¥ renaming 
¥ quotas
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What does fast file system propose?

Ñ improve spread-out data locations

Ñ improve bandwidth and file sizes
Ñ improve low space utilization due to large blocks

Ñ address device oblivious 



The design and implementation of a 
log-structured file system

Mendel Rosenbaum and John K. Ousterhout
Univ. of California, Berkeley
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¥ How many of the following problems is/are Log-structured file 
systems trying address? 

! The performance of small random writes 
" The efficiency of large file accesses 
# The space overhead of metadata in the file system 
$ Reduce the main memory space used by the file system 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

50

Why LFS?
https://www.pollev.com/hungweitseng close in 



¥ How many of the following problems is/are Log-structured file 
systems trying address? 

! The performance of small random writes 
" The efficiency of large file accesses 
# The space overhead of metadata in the file system 
$ Reduce the main memory space used by the file system 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why LFS?



¥ Writes will dominate the traffic between main memory and 
disks Ñ Unix FFS is designed under the assumption that only 
10% of the traffic are writes 
¥ Who is wrong? 
¥ As system memory grows, frequently read data can be cached 

efficiently 
¥ Every modern OS aggressively caches Ñ use ÒfreeÓ in Linux to 

check 
¥ Gaps between sequential access and random access 
¥ Conventional file systems are not RAID aware
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Why LFS?

UFS is published in 1984 



¥ How many of the following problems is/are Log-structured file 
systems trying address? 

! The performance of small random writes 
" The efficiency of large file accesses 
# The space overhead of metadata in the file system 
$ Reduce the main memory space used by the file system 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why LFS?



¥ Data are spread out the whole disk 
¥ Can achieve sequential access within each file, but the distance between files can be 

far 
¥ An inode needs a standalone I/O in addition to file content 
¥ Creating files take at least five I/Os with seeks Ñ can only use 5% bandwidth for data 

¥ 2 for file attributes 
¥ You have to check if the file exists or not 
¥ You have to update after creating the file 

¥ 1 for file data 
¥ 1 for directory data 
¥ 1 for directory attributes 

¥ Writes to metadata are synchronous 
¥ Good for crash recovery, bad for performance
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Problems with BSD FFS



¥ Buffering changes in the system main memory and commit 
those changes sequentially to the disk with fewest amount of 
write operations
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What does LFS propose?



LFS in motion
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¥ How many of the following problems is/are Log-structured file 
systems trying address? 

! The performance of small random writes 
" The efficiency of large file accesses 
# The space overhead of metadata in the file system 
$ Reduce the main memory space used by the file system 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why LFS?

leave it for the hardware designer

increases due to garbage collection and inode maps

increases due to write caching 



¥ Checkpointing 
¥ Create a redundant copy of important file system metadata 

periodically 
¥ Roll-forward 

¥ Scan through/replay the log after checkpointing
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Crash recovery



LFS v.s. crash
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LFS v.s. write failed
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¥ Reclaim invalidated segments in the log once the latest 
updates are checkpointed 

¥ Rearrange the data allocation to make continuous segments 
¥ Must reserve enough space on the disk  

¥ Otherwise, every writes will trigger garbage collection 
¥ Sink the write performance
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Segment cleaning/Garbage collection



¥ Reading quizzes due next Tuesday 
¥ Project due 3/3 
¥ Office hour 

¥ Check Google Calendar 
¥ Use the office hour Zoom link, not the lecture one
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Announcement
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