File Systems & The Era of Flash-
based SSD

Hung-Wel Tseng

Recap: Abstractions in operating systems

- Process — the abstraction of a von Neumann machine

- Thread — the abstraction of a processor
- Virtual memory — the abstraction of memory

- File system — the abstraction of space/location on a storage
device, the storage device itself, as well as other peripherals

Recap: How vour application reaches H.D.D.

User data - fread/fwrite — input.bin/output.bin

M Aeiy Buffer

File system
read/write — 0, 512, 4096, .. (block address)

Buffer Device independent I/O interface (e.g.ioctl)
read/write — block addresses

Device Driver Device Driver Device Driver

Device Controller [Device Controller Device Controller
Hardware

3

Kernel 4,15

Recap: what BSD FFS proposes?

. Cylinder groups — improve spread-out data locations

Larger block sizes — improve bandwidth and file sizes

Fragments —improve low space utilization due to large blocks

Allocators — address device oblivious

New features

- long file names
- file locking

- symbolic links
- renaming

- quotas

Recap: Performance of FFS

Table I1a. Reading Rates of the Old and New UNIX File Systems

Type of Processor and Speed Read % CPU
file system bus measured (Kbytes/s) bandwidth %

01d 1024 750/UNIBUS 29 29/983 3 11
New 4096/1024 750/UNIBUS 221/983 22 43
New 8192/1024 750/UNIBUS 233/983 24 29
New 4096/1024 750/ MASSBI 466/983 47 73
New 8192/1024 750/MASSBUS 466/983 47 54

not the case for old F
Table IIb. Writing Rates

the O1d and Neb UNTY PEVKDS

rites in FFS are slower
ads

Type of Pracessor and Write % CPU
file system bus measured bandwidth % ?

Old 1024 750/UNIBUS 48/983 5 29
New 4096/1024 750/UNIBUS 142/983 14 43
New 8192/1024 750/UNIBUS 215/983 22 46
New 4096/1024 750/MASSBUS 323/983 33 94
New 8192/1024 750/MASSBUS 466/983 47 95

CPU load is fine given that UFS

is way too slow!

Recap: Why LFS?

- Writes will dominate the traffic between main memory and
disks — Unix FFS is designed under the assumption that a
majority of traffic is large files

- Who is wrong? UFSis published in1984

- As system memory grows, frequently read data can be cached
efficiently

- Every modern OS aggressively caches — use “free” in Linux to
check

- Gaps between sequential access and random access
- Conventional file systems are not RAID aware

6

Recap: What does LFS propose?

- Buffering changes in the system main memory and commit
those changes sequentially to the disk with fewest amount of
write operations

Recap: LFS in motion

write
buffer

Data chuck | Data chuck Updated Data
chuck #1

Data chuck inode UpdatedData inode
#2 #2 chuck #1 #1

disk

disk space (log)

LFS v.s. crash

write
buffer

inode- Data chuck inode Datachuck inode Updatec
map #1 #1 #2 #2 chucl

disk

disk space (loQ)

LFS v.s. write failed

You can try again!

write

buffer Updated Data

chuck #1

Data chuck inode Datachuck inode Updatec
#1 #1 #2 #2 chucl

disk

disk space (log)

10

Segment cleaning/Garbage collection

- Reclaim invalidated segments in the log once the latest
updates are checkpointed

- Rearrange the data allocation to make continuous segments

- Must reserve enough space on the disk
- Otherwise, every writes will trigger garbage collection
- Sink the write performance

1

Lessons learned

- Performance is closely related to the underlying architecture

- Old UFS performs poorly as it ignores the nature of hard disk drives
- FFS allocates data to minimize the latencies of disk accesses

- As architectural/hardware changes the workload, so does the
design philosophy of the software

- FFS optimizes for reads

- LFS optimizes for writes — because we have larger memory now

12

Outline

- Modern file systems

- Flash-based SSDs and eNVy: A non-volatile, main memory
storage system

- Don't stack your log on my log

13

Modern file system desigh —
Extent File Systems

How do we allocate disk space?

- Contiguous: the file resides in continuous addresses
- Non-contiguous: the file

can be anywhere

° ° ,':'. ‘.'
external fragment as in Segmentation

15

Conventional Unix inode

- File types: directory, file

- File size
- Permission
mode
owners (2) . Attributes
timestamps (3) S - Types of pointers:
size block count - Direct: Access single data block
data - Single Indirect: Access n data blocks
— data . 1 .
. File size is limited by tdtQPUbI? |n.d|rect. Access n2 data blokcks
Fas e - X number of point ers' Triple indirect: Access n3 d.ata blocks
. » data - inode has 15 pointers: 12 direct, 1 each
" F— data = — single-, double-, and triple-indirect
i o ol [data S - If data block size is 512B and n = 256:
d . —+——»| data
ouble indirect > : .
triple indirect : max file size =
r I >
i el (124256+2562+2563)*512 = 8GB

» data
16

How do we allocate space?

- Contiguous: the file resides in continuous addresses
Non-contiguous: the file

can be anywhere

Extents: the file resides in «
3 txt several group of smaller
continuous address

.
.
-

atxt’

17

Using extents in inodes

- Contiguous blocks only need a pair <start, size> to represent
- Improve random seek performance
- Save inode sizes

- Encourage the file system to use contiguous space allocation

18

Extent file systems — ext2, ext3, ext4

- Basically optimizations over FFS + Extent + Journaling (write-
ahead logs)

19

Using extents in inodes

- Contiguous blocks only need a pair <start, size> to represent
- Improve random seek performance
- Save inode sizes

- Encourage the file system to use contiguous space allocation

20

How EXtFS use disk blocks

Disk blocks
0 File System Metadata (Superblock)
8 File Metadata Data ""';;. block group
16 Data 23
24 File System Metadata (Superblock) i
32 File Metadata Data .
40 Data e . track

48 File System Metadata (Superblock) sector

56| File Metadata Data
Data

21 cylinder

Write-ahead log

- Basically, an idea borrowed from LFS to facilitate writes and

crash recovery
- Write to log first, apply the change after the log transaction

commits
- Update the real data block after the log writes are done

- Invalidate the log entry if the data is presented in the target location
- Replay the log when crash occurs

22

Flash-based SSDs
and
eNVy: A non-volatile, main memory storage system

Michael Wu and Willy Zwaenepoel
Rice University

23

https://www.pollev.com/hungweitseng close in 1:00

The characteristics of flash memory

- Regarding the flash memory technology described in eNVy, how
many of the following is/are true
® The write speed of flash memory can be 100x slower than reading flash
The granularities of writing and erasing are different
Flash memory cannot be written again without being erased
The flash memory chip has limited number of erase cycles

MOOW>EEOE
AwWN-—=O

m o O W >»

24

The characteristics of flash memory

- Regarding the flash memory technology described in eNVy, how
many of the following is/are true
® The write speed of flash memory can be 100x slower than reading flash

- - : : Writ [
® The granularities of ertln%] and erasing are different s are SIow
You can o% program/write in the unit of a tpage e.g. 4K), but erases must be perform by blocks (e.g.128 pages)

Flash memory cannot be written again without being erased
In-place update needs to erase the block first

@ The flash memory chip has limited number of erase cycles

A O You cannot erase too often
* Low - .
Power like access times {(under 100ns). Tndividual bytes can
B. 1 ~ealure Jisk DREAM| SRAM Flash be programmed in 4 to 10us but cannot be arbitrarily
Read ACCoSS 83ms ©0ns | 85ns &5ns rewrillen until the entire device 1s erased, which Lakes
C 2 Write Access 3.3ms 60ns [B85ns 4 - 10 micosec. about 50ms. Newer Flash chips allow some flexibility
. CoslUMBy = S31.0C $3500| $120 $3C.00
Dl Relenlion DA 1A sind OA
D 3 Current/GDyte

ory. Furthermore, updates to Flash memory are much
slower than updates to conventional memory, and the

number of program-erase cycles is limited.
[]

28

Flash memory: eVNy and now

Modern SSDs

Technologies

Read granularity Pages (4K — 16K)

Supports byte accesses

Write/program granularity Pages (4K — 16K) Supports byte accesses

Write once? Yes Yes

In blocks (64 ~ 384 pages) 04 KB

Program-erase cycles 3,000 - 10,000 ~ 100,000

29

Basic flash operations
Program Read Programmed page

Page#: 0O 1 2 3 4 5 6/ 7 n-8n-7 n-6 n-5n-4 n-3n-2 n-1
Block #0

Block #1

Block #2

Block #n-2

Erase 20

Types of Flash Chips

2 voltage levels, 4 voltage levels, 3 voltage levels, 16 voltage levels,
1-bit 2-bit 3-bit 4-bit

Single-Level Cell Multi-Level Cell Triple-Level Cell Quad-Level Cell
(SLC) (MLC) (TLC) (QLC)

31

Programming in MLC

4 voltage levels,
2-bit 3.1400000000000001243449787580

= O0x40091EBB51EB851F
11 = 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

10
phase #1
phase #2 01
phase #3

3 Cycles/Phases to finish programming

O1

00

Multi-Level Cell
(MLC)

32

Programming in MLC

4 voltage levels,

2-bit 3.1400000000000001243449787580
= Ox40091EBB51EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

phase #1

phase #1

1 Phase to finish programming the first page!
33

Programming the 2nd page in MLC

Sna AVoltage levels, 3.1400000000000001243449787580
a992 pit = Ox40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111
= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

phase #1

phase #2 O’I
phase #1
phase #2 O’]

Multi-Level Cell
1stpage (MLC) 2 Phase to finish programming the second page!

34

Not a good practice Flas'!g performance

105 A1,500 3000
n
o Q
= - €
E 70 = 1,000 iz 2000
o o s
3 2 S
35 T T 500 1000 -
IiLf SLC I
O‘§§§§§§§§§§§ 3 3BEEBEEESD S O e e e w e £
b Y b @ o 3 =
[] ® 0
Reads: Program/write: Erase:
less than 150us less than 2ms less than 3.6ms

Similar relative performance for reads, writes and erases

Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H. Siegel, and Jack K. Wolf.

Characterizing flash memory: anomalies, observations, and applications. In MICRO 2009.
35

QLC = More Density Per NAND Cell

(:) Lower $ per GB ;

SLC MLC TLC QLC

1111

¥
1101
1100
011
1010
00

1000
0111
0110
0101
0100

(L

0011
0010
0000
1 Bit Per Cell 2 Bits Per Cell 3 Bits Per Cell 4 Bits Per Cell
First SSD NAND technaolagy 100% increase 50% increase 33% in 58
100K P/E Cycles 10K P/E Cycles 3K P/E Cycles 1K P/E Cycles

(at tachnclogy introduction)

Fewer writes per cell

Recap: How vour application reaches H.D.D.

User data - fread/fwrite — input.bin/output.bin

M Aeiy Buffer

File system
read/write — 0, 512, 4096, .. (block address)

Buffer Device independent I/O interface (e.g.ioctl)
read/write — block addresses

Device Driver Device Driver Device Driver

Device Controller [Device Controller Device Controller
Hardware

37

Kernel 4,15

What happens on a write if we use the same abstractions as H.D.D.

Can we write to page #0 directly? No.

We have to copy page #1, page #2 in block #0 to
somewhere (e.g. RAM buffer) and then erase the block

Write this the new 0 and the old 15 back to block #0
again!
Read: 6*30us + Writing: 2ms*3 + Erasing 3ms ~ 9 ms

Not much faster than the H.D.D.— also hurts the lifetime

3SD
Controller

Erase .’

Block #1

Block #2

Block #3

Block #4

The characteristics of flash memory

- Regarding the flash memory technology described in eNVy, how
many of the following is/are true

® The write speed of flash memory can be 100x slower than reading flash

- - : : Writ [
® The granularities of ertln%] and erasing are different s are SIow
You can only program/write in the unit of a {)age e.g. 4K), but erases must be perform by blocks (e.g.128 pages)

Flash memory cannot be written again without being erased
In-{olace update needs to erase the block first

@ The flash memory chip has limited number of erase cycles

A O You cannot erase too often
i- 12 Writes are problematic in flash
D. 3

39

All problems in computer science can be solved by another level of
iIndirection

—David Wheeler

40

How vour application reaches S.S.D.

User data - fread/fwrite — input.bin/output.bin

M Aeiy Buffer

File system
read/write — 0, 512, 4096, .. (block address)
Buffer Device independent I/O interface (e.g.ioctl)

Kernel 4.+, read/write — block addresses

Device Driver Device Driver Device Driver

FTL FTL: Flash translation layer

I W VW IWVW Wi I Wilwi Y WV IWWY WWiilel Wilwi WMoVivwve WVIIWLIVIIVI

41

Hardware

- How many of following optimizations would help improve the write
performance of flash SSDs?

® Write asynchronously

MOOWPXrEEE

A WODN-—-O0

Out-of-place update

Preallocate locations for writing data
Aggregate writes to the same bank/chip

https://www.pollev.com/hungweitseng close in 1:00

How should we deal with writes?

42

Flash writes

A
B
C
D
E

How should we deal with writes?

- How many of following optimizations would help improve the write
performance of flash SSDs?

® Write asynchronously — vou need RAM buffers

® Out-of-place update — avoid time consuming read-erase-write

@ Preallocate |OCG1ZQ qufr(\)ere\élvtgtl%g%tgiﬁgafree-Iist and garbage collection when free list is low

N Aggregate writes to the same bank/chip

— Probably not. You can write in parallel

A. O

B. 1

C. 2 Sounds familiar ...

D. 3| Log-structured file system!

E. 4

46

Flash Translation Layer (FTL)

- We are always lazy to modify our applications

- FTL maintains an abstraction of LBAs (logic block addresses) used
between hard disk drives and software applications

- FTL dynamically maps your logical block addresses to physical
addresses on the flash memory chip

- It needs your SSD to have a processor in it now

47

What happens on aread with FTL

LBA Flash Block Flash Page
0x3241 0 0
0x3242 0] 63
0x3243 1 3
0x3244 2 4
0x3245 3 §)
0x3246 2 /

(00)

What happens on a write with FTL

0x3242 0 63 valid page
0x3243 1 3

0x3244 2 4

0Ox3245 3 © free page
0x3246 2 7

Garbage Collectionin FTL

0x3244
0Ox3245
0Ox3246

N W N = O
N

Buffer

Eras

LBA Flash Block Flash Page . invall
Write Sy FlShBiock FlashPace
SSD WSy e valid page
Controller REPIE °

Id page

free page

|

|

Flash Translation Layer (FTL)

- We are always lazy to modify our applications

- FTL maintains an abstraction of LBAs (logic block addresses) used
between hard disk drives and software applications

- FTL dynamically maps your logical block addresses to physical
addresses on the flash memory chip

- FTL performs copy-on-write when there is an update

- FTL reclaims invalid data regions and data blocks to allow future
updates

- FTL executes wear-leveling to maximize the life time
- It needs your SSD to have a processor in it now

57

Why eNVy

- Flash memories have different characteristics than
conventional storage and memory technologies

- We want to minimize the modifications in our software

52

What eNVy proposed

- A file system inside flash that performs
- Transparent in-place update

- Page remapping

- Caching/Buffering

- Garbage collection

. Exactly like LFS

53

Utilization and performance

- Performance degrades as your store more data
- Modern SSDs provision storage space to address this issue

o 45000

W s
g O
o O
o O
o O

/A

N
o
o
o
o
M

—
o !
o O
o O
o O

Measured Throughput (TP
&
S

5000 S -
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flash Array Utilization

-<- 10,000 TPS + 20,000 TPS 4 30,000 TPS -©- 40,000 TPS

Figure 14: Throughput for Various Levels of Utilization
54

The impact of eNVy

- Your SSD structured exactly like this!

Stores the mapping table

. ASIC (e.g.NAND) 05 805

Controller + Registers

Perform FTL algorithms

55

https://www.pollev.com/hungweitseng close in 1:00

File system features revisited

- How many of the following file system optimizations that we learned so far
would still help improve performance if the underlying device becomes an
SSD?

® Cylinder group

_arger block size

-ragments

_0gs

MOOW>EO0

WO DN -0

56

File system features revisited

- How many of the following file system optimizations that we learned so far
would still help improve performance if the underlying device becomes an

SSD?
ho cylinder structure on flash. You probably want random accesses to exploit parallelism

® Cylinder group
_arger block sizeé maybe ... as long as the block size is larger than the page size

-ragments omember: flash can only write units of pages
LOgS

Let's discuss this with the next paper!

mMoOwW>»E e\

A WODN-—-O0O

60

Don't stack your log on my log

Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and
Swaminathan Sundararaman
SanDisk Corporation

61

62

Log

- An append only data structure that records all changes

- Advantages of logs
- Better performance — always sequential accesses
- Faster writes — you just need to append without sanitize existing data first
- Ease of recovery — you can find previous changes within the log

- Disadvantage of logs — you will need to explicit perform garbage collections
to reclaim spaces

Datachuck inode Updated Data inode
#2 #2 chuck #1 #1

disk invalidated

disk space (log) 63

Why should we care about this paper?

- Log is everywhere OEO’:ite AP ACHE, .
. . 5 ~ BigTable
- Application: database DATABASE .

files, offsets

- File system
- Flash-based SSDs

- They can interfere with each
other!

File system Write-ahead Log

logic block

I/0O interface

logic block|addresses

- An issue with software Flash translation layer (also log-structured)
engineering nowadays

physicalladdresses

64

- FTL mapping table
LB A) me———————————————————————————> 0 1 0
File system S F | JKCDEGHLMN O P 1 1
i 2 - -
logic block|addresses - 3
= 4
/O interface = 5 1 5
. 6 - _
10gIC DloCKIadAIESSeS | i eeieeeeeeeeeenrnnrnnrnnrnns I - -
8 2 0
9 2 1
10 2 2
SSD A|B - i |y]kfclpfelelH] |ifminfo] [| [] *© 2 2
Block #1 Block #2 Block #3 12 2 4
13 2 5
14 2 6
15 2 /
16 3 0
17 3 1
18 3 2
invalid 19 3 3
valid 20 . .
21
free 22

65

N
w

Now, SSD wants to reclaim a block................

- FTL mapping table
. 0 3 4

3 5

LBA: O

File system [§J: F 10 K c/DE e lH LM N o

logic block{addresses

/O interface

logic block{addresses

L L] Dludxlelolefefn] [uimin]ofals[F]
Block #2 Block #3

Block #1

00O NO O N -
W
o

> ©

SSD

—_
—_

N
N

-
(OV)

N L N
0 N O O

invalid

- N
o
I W N ONO O P OWON—2O 1

—_—
N
W W W WNDNDNNDNDNNDNDDN L

N
@)

valid

NN
N —

free
66

N
w

Garbage collection on the SSD done!..............

- FTL mapping table
. 0 3

3

: LBA: O
File system [P F | J KCDEGHLMNO

ol A

logic block{addresses

/O interface

logic block{addresses

SSD M 1 [J]k[clofeleln| [Lm[n|ofals|F]
Block #1 Block #2 Block #3

00O NO O N -
w
o

©

— =
- O

N
N

-
(OV)

N L N
0 N O O

invalid

- N
©
I W N2 ONO O WN— O

—_—
N
W W W WNDNDNNDNDNDNDDN I

N
@)

valid

NN
N —
o
o

free o7

N
w
[

[

What will happen if the FS wants to perform.GC?......

FTL mapping table

. LBA:) —m—mMm™— — ™ - 0 : -
File system | | J KCDEGHLMNGOAGBF g i i
: : : = 2 - -

logic block|addresses - 3 - -

: 4 _ _

/O interface = 5 . .

I 6 _ _

................. logic blockjaddresses | Ivviieesssssmmsmsesseesenssssnnnnnsd DR - -

9 2 1

10 2 2

SSD 3| F ykjclplefeln] |ulminfol | | |Al T D 2
Block #1 Block #2 Block #3 12 2 4

13 2 5

We could have avoided writing the e °

stale A, B, F if they are coordinated! 3 0

17 3 1

18 3 2

invalid 19 3 3

valid 20 3 Z

21 1 0

free 22 1 1

68 23

All problems in computer science can be solved by another level of
Indirection

—David Wheeler

...except for the problem of too many layers of indirection.

69

File system features revisited

- How many of the following file system optimizations that we learned so far
would still help improve performance if the underlying device becomes an

SSD?
ho cylinder structure on flash. You probably want random accesses to exploit parallelism

® Cylinder group

_arger block size maybe ... as long as the block size is larger than the page size

:ragments remember: flash can only write units of pages, it cannot be
programmed for any smaller granularities

.0gs What do you think?

mMoOW>»E e\

A WODN-—-O0O

/70

File systems for flash-based SSDs

- Still an open research question Apple M1 Macs appear to be
- Software designer should be aware of the chewmg through their SSDs
characteristics of underlying hardware components sy aan vexer 4nours ago
- Revising the layered design to expose more SSD The same SSDs that are soldered-in and almost impossible to rep
information to the file system or the other way e0 | © comments
BCE ound Snotifv is

Spotify has been quietly killing your SSD’s life

(Image credit: Apple)

KAML: Modernize the storage interfacé

ONQCQ?;:E Ay . A Google Cloud
DATABASE HBHSE BigTab

Processor

File systems

Set/Get/Delete/Append...

Flash translation layer

physical addresses

"
NYMeSSD

<+ Yanqin Jin, Hung-Wei Tseng, Steven Swanson and Yannis
Papakonstantinou. KAML: A Flexible, High-Performance Key-Value
SSD.In HPCA 2017.

/2

Announcement

- Reading quizzes due next Tuesday

- Office hour

- MTu 11a-12p, W 2p-3p & F 11a-12p

- Use the office hour Zoom link, not the lecture one
- Project

- Due 3/3

- No late submission is allowed — to make time for grading and
potential of regrading

/3

Computer

Engineering

