
File systems over the network
Hung-Wei Tseng

Recap: How your application reaches storage device

2

HDD #1

Device Controller

User

Kernel

Hardware

Applications

SSD
Device Controller

FTL

File system

Device independent I/O interface (e.g. ioctl)Buffer

Device Driver Device Driver Device Driver
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses

read/write — block addresses

fread/fwrite — input.bin/output.bin

I/O libraries Buffer
fread/fwrite — input.bin/output.bin

data

data

Network?

• Unix File System
• Hierarchical directory structure
• File — metadata (inode) + data
• Everything is files

• BSD Fast File System — optimize for reads
• Cylinder group — Layout data carefully with device characteristics, replicated metadata
• Larger block size & fragments to fix the drawback
• A few other new features

• Sprite Log-structured File System — optimize for small random writes
• Computers cache a lot — reads are no more the dominating traffic
• Aggregates small writes into large sequential writes to the disk
• Invalidate older copies to support recovery

3

Recap: File systems on a computer

• Basically optimizations over FFS + Extent + Journaling (write-ahead logs)
• Extent — consecutive disk blocks
• A file in ext file systems — a list of extents
• Journal

• Write-ahead logs — performs writes as in LFS
• Apply the log to the target location when appropriate

• Block group
• Modern H.D.Ds do not have the concept of “cylinders”
• They label neighboring sectors with consecutive block addresses
• Does not work for SSDs given the internal log-structured management of block

addresses
4

Recap: Extent file systems — ext2, ext3, ext4

• Asymmetric read/write behavior/performance
• Wear-out faster than traditional magnetic disks
• Another layer of indirection is introduced

• Intensify log-on-log issues
• We need to revise the file system design

5

Recap: flash SSDs, NVM-based SSDs

The introduction of virtual file system interface

6

HDD #1

Device Controller

User-space

Kernel

Hardware

Applications, user-space libraries

SSD
Device Controller

FTL

File system #2 (e.g. f2fs)

Device independent I/O interface (e.g. ioctl)
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses data

Virtual File System

open, close, read, write, …

File system #1 (e.g. ext4)

Device Driver Device Driver

open, close, read, write, …

read/write — block addresses

• NFS
• Google file system

7

Outline

Network File System

8

The introduction of virtual file system interface

9

HDD #1

Device Controller

User-space

Kernel

Hardware

Applications, user-space libraries

SSD
Device Controller

FTL

File system #2 (e.g. f2fs)

Device independent I/O interface (e.g. ioctl)
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses data

Virtual File System

open, close, read, write, …

File system #1 (e.g. ext4)

Device Driver Device Driver

open, close, read, write, …

read/write — block addresses

File system #3 — NFS
open, close, read, write, …

NIC

Device Controller

Network Device Driver

Network Stack
open, close, read, write, …

open, close,
read, write, …

open, close,
read, write, …

NFS Client/Server

10

User-
space

Kernel

Hardware

Applications, user-
space libraries

Virtual File System

NFS

NIC
Device Controller

Network Stack

Network Device Driver

open, close,
read, write, …

NFS Server

Virtual File System

NIC
Device Controller

Network Stack

Network Device Driver

open, close,
read, write, …

Disk File System

HDD #1
Device Controller

I/O interface

Device Driver

read/write —
block addresses

• The client gives it’s file system a tuple to describe data
• Volume: Identify which server contains the file — represented by

the mount point in UNIX
• inode: Where in the server
• generation numer: version number of the file

• The local file system forwards the requests to the server
• The server response the client with file system attributes as

local disks

11

How does NFS handle a file?

• For a file /mnt/nfs/home/hungwei/foo.c , how many network
sends/receives in total does NFS need to perform to fetch the
actual file content in the worst case? (assume the file system is
mounted to /mnt/nfs)

A. 8
B. 9
C. 10
D. 11
E. 12

12

Number of network operations
https://www.pollev.com/hungweitseng close in

How open works with NFS

16

open(“/mnt/nfs/home/hungwei/foo.c”, O_RDONLY);
client server

lookup for home
return the inode of home

read for home
return the data of home

lookup for hungwei
return the inode of hungwei

read for hungwei
return the data of hungwei

lookup for foo.c
return the inode of foo.c

read for foo.c
return the data of foo.c

• For a file /mnt/nfs/home/hungwei/foo.c , how many network
sends/receives in total does NFS need to perform to fetch the
actual file content in the worst case? (assume the file system is
mounted to /mnt/nfs)

A. 8
B. 9
C. 10
D. 11
E. 12

17

Number of network operations

• NFS operations are expensive
• Lots of network round-trips
• NFS server is a user-space daemon

• With caching on the clients
• Only the first reference needs network communication
• Later requests can be satisfied in local memory

18

Caching

• How many of the following statements fit the reason why NFS uses a
stateless protocol, in which the protocol doesn’t track any client state?
! Simplify the system design for recovery after server crashes
" Simplify the client design for recovery after client crashes
Easier to guarantee file consistency
$ Improve the network latency
A. 0
B. 1
C. 2
D. 3
E. 4

19

Stateless NFS
https://www.pollev.com/hungweitseng close in

• How many of the following statements fit the reason why NFS uses a
stateless protocol, in which the protocol doesn’t track any client state?
! Simplify the system design for recovery after server crashes
" Simplify the client design for recovery after client crashes
Easier to guarantee file consistency
$ Improve the network latency
A. 0
B. 1
C. 2
D. 3
E. 4

23

Stateless NFS

If using stateful protocol, FDs on all clients are lost
If using stateful protocol, server doesn’t know client crashes and consider the file is open still

The server has no knowledge about who has the file
Nothing to do with NFS

• Given the same input, always give the same output regardless
how many times the operation is employed

• You only need to retry the same operation if it failed

24

Idempotent operations

Think about this

25

Network

Server
File Server

File System

Network Stack Disk

Client A
Application

File System

Cache

Network Stack

Client B
Application

File System

Cache

Network Stack

Client C
Application

File System

Cache

Network Stack

foo.txtfoo.txtfoo.txt

update foo.txt in cache

Client C won’t be
aware of the change

in Client A

• Flush-on-close: flush all write buffer contents when close the
file
• Later open operations will get the latest content

• Force-getattr:
• Open a file requires getattr from server to check timestamps
• attribute cache to remedy the performance

26

Solution

The Google File System
Sanjay Ghemawat, Howard Gobioff, and

Shun-Tak Leung
Google

27

• How many of the following fit the optimization goals for GFS?
! Optimize for storing small files
" Optimize for fast, modern storage devices
Optimize for random writes
$ Optimize for access latencies
A. 0
B. 1
C. 2
D. 3
E. 4

28

GFS
https://www.pollev.com/hungweitseng close in

• How many of the following fit the optimization goals for GFS?
! Optimize for storing small files
" Optimize for fast, modern storage devices
Optimize for random writes
$ Optimize for access latencies
A. 0
B. 1
C. 2
D. 3
E. 4

32

GFS

• Conventional file systems do not fit the demand of data centers
• Workloads in data centers are different from conventional

computers
• Storage based on inexpensive disks that fail frequently
• Many large files in contrast to small files for personal data
• Primarily reading streams of data
• Sequential writes appending to the end of existing files
• Must support multiple concurrent operations
• Bandwidth is more critical than latency

33

Why we care about GFS

• Google Search (Web Search for a Planet: The Google Cluster Architecture, IEEE
Micro, vol. 23, 2003)

• MapReduce (MapReduce: Simplified Data Processing on Large Clusters, OSDI
2004)

• Large-scale machine learning problems
• Extraction of user data for popular queries
• Extraction of properties of web pages for new experiments and products
• Large-scale graph computations

• BigTable (Bigtable: A Distributed Storage System for Structured Data, OSDI
2006)

• Google analytics
• Google earth
• Personalized search

34

Data-center workloads for GFS

MapReduce: Simplified Data
Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
Google

59

MapReduce

60

read
read

Output File #0

Output File #1

write

User application

Workers

Workers

fork
Master

fork

Map Reduce

assign
map

assign
reduceWorkers

Workers

Workers

fork

Split 0

Split 1

Split 2

Split 3

Split 4

Input

write

Intermediate
Result

Sharing among workers? — No
Overwrite input? — No

16-64MB

• Conventional file systems do not fit the demand of data centers
• Workloads in data centers are different from conventional

computers
• Storage based on inexpensive disks that fail frequently
• Many large files in contrast to small files for personal data
• Primarily reading streams of data
• Sequential writes appending to the end of existing files
• Must support multiple concurrent operations
• Bandwidth is more critical than latency

61

Why we care about GFS

— MapReduce is fault tolerant
— MapReduce aims at processing large amount of data once

— MapReduce reads chunks of large files

— Output file keep growing as workers keep writing
—MapReduce has thousands of workers simultaneously

—MapReduce only wants to finish tasks within “reasonable” amount of time

• Maintaining the same interface
• The same function calls
• The same hierarchical directory/files

• Files are decomposed into large chunks (e.g. 64MB) with
replicas

• Hierarchical namespace implemented with flat structure
• Master/chunkservers/clients

35

What GFS proposes?

• How many of the following datacenter characteristics can large chunks help
address?
! Storage based on inexpensive disks that fail frequently
" Many large files in contrast to small files for personal data
Primarily reading streams of data
$ Sequential writes appending to the end of existing files
& Must support multiple concurrent operations
' Bandwidth is more critical than latency
A. 1
B. 2
C. 3
D. 4
E. 5

36

Large Chunks
https://www.pollev.com/hungweitseng close in

• How many of the following datacenter characteristics can large chunks help
address?
! Storage based on inexpensive disks that fail frequently
" Many large files in contrast to small files for personal data
Primarily reading streams of data
$ Sequential writes appending to the end of existing files
& Must support multiple concurrent operations
' Bandwidth is more critical than latency
A. 1
B. 2
C. 3
D. 4
E. 5

40

Large Chunks

Latency Numbers Every Programmer Should Know

41

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps
network

10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from
memory

250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Read 512B from disk 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

• Second last Reading Quiz due next Tuesday
• Office hour

• MTu 11a-12p, W 2p-3p & F 11a-12p
• Use the office hour Zoom link, not the lecture one

• Project
• Due 3/3
• No late submission is allowed — to make time for grading and potential of

regrading
• Revision policy

• fix your bugs and schedule a meeting with the TA within a week after grading
• You have to answer several design questions
• you can get 70% of the remaining grades if you passed

68

Announcement

ͺͻͥ

Computer
Science &
Engineering

202

