Cloud storage (ll) — Google
(cont.), Microsoft Azure

Hung-Wei Tseng

Recap: GFS: Why?

- Conventional file systems do not fit the demand of data centers

- Workloads in data centers are different from conventional
computers
- Storage based on inexpensive disks that fail frequently
- Many large files in contrast to small files for personal data
- Primarily reading streams of data
- Sequential writes appending to the end of existing files
- Must support multiple concurrent operations
- Bandwidth is more critical than latency

Recap: Data-center workloads for GFS

- Google Search (Web Search for a Planet: The Google Cluster Architecture, IEEE
Micro, vol. 23, 2003)

- MapReduce (MapReduce: Simplified Data Processing on Large Clusters, OSDI
2004)

- Large-scale machine learning problems
- Extraction of user data for popular queries

- extraction of properties of web pages for new experiments and products
- large-scale graph computations

- BigTable (Bigtable: A Distributed Storage System for Structured Data, OSDI
20006)

- Google analytics
- Google earth
- Personalized search

Recap: What GFS proposes?

- Maintaining the same interface

- The same function calls

- The same hierarchical directory/files

- Large chunks — Files are decomposed into large chunks (e.g.
64MB) with replicas

- Flat structure — Hierarchical namespace implemented with flat
structure

. Architecture — Master/chunkservers/clients

Recap: Large Chunks

- How many of the following datacenter characteristics can large chunks help
address?
® Storage based on inexpensive disks that fail frequently
\é Many large files in contrast to small files for personal data
@ Primarily reading streams of data
\é Sequential writes appending to the end of existing files
® Must support multiple concurrent operations
@ Bandwidth is more critical than latency

A.
B. 2
C. 3

5

m

Outline

. Google File System (cont.)

- Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency

- f4: Facebook's Warm BLOB Storage System

Flat file system structure

- Directories are illusions
- Namespace maintained like a hash table

Unlike many traditional file systems, GFS does not have
a per-directory data structure that lists all the files in that
directory. Nor does it support alases for the same file or
directory (i.e, hard or symbolic links in Unix terms). GFS

ogically represents 1ts namespace as a lookup table mapping
full pathnames to metadata. With prefix compression, this

https://www.pollev.com/hungweitseng close in 1:00

Flat file system structure

- How many of the following statements can flat file system structure help address?
® Storage based on inexpensive disks that fail frequently
@ Many large files in contrast to small files for personal data

® Primarily reading streams of data

@ Sequential writes appending to the end of existing files

® Must support multiple concurrent operations
® Bandwidth is more critical than latency
A. 1

mooOw
OO~ WNDN

Why flat?

m o O W >»

e el 13 Pall Fupevwherp

Flat file system structure

- How many of the following statements can flat file system structure help address?
® Storage based on inexpensive disks that fail frequently

@ Many large files in contrast to small files for personal data

® Primarily reading streams of data

@ Sequential writes appending to the end of existing files

¢ Must support multiple concurrent operations

%ne-grame,d locking to reduce the chance of conflicts — you don’t have to lock the whole path when acces
Bandwidth is more critical than latenc

Actually improve both.
vime

mooOw
OO~ WNDN

12

How open works with NFS

client server
open(”/mnt/nfsrhome/hungwei/foo.c", O_RDONLY) ;

lookup fonfhomée/hungwei/foo.c

return the list,0f locations of /home/hungwei/foo.c

read from one data lecation'ofifhiome/hungwei/foo.c

return datawofyhoméefhungweiffoo.c

lookup for hungwei

You only need
these in GFS

return the inode of hungwei
read for hungwei
return the data of hungwei
lookup for foo.c

return the inode of foo.c

read for foo.c

return the data of foo.c
13

https://www.pollev.com/hungweitseng close in 1:00

GFS architecture

- Regarding the GFS architecture, how many of the following statements are
correct?

® The GFS cluster in the paper only has one active server to store and manipulate
metadata

@ The chunkserver in GFS may contain data that can also be found on another
chunkserver

® The chunkserver is dedicated for data storage and may not be used for other purpose

@ The client can cache file data to improve performance
GFS Architecture

m o O W »

14

GFS architecture

- Regarding the GFS architecture, how many of the following statements are
correct?
® The GFS cluster in the paper only has one active server to store and manipulate

metadata — single failure point. They have shadow masters

@ The chunkserver in GFS may contain data that can also be found on another
chunkserver — 3 replicas by default

xT ne chunkserver is dedicated for data storage and may not be used for other purpose

rove the machine utilization — saving money!
x ne client can cache file data to improve perforn‘i‘anc 9 y:
0

— simplify the design machine running a user-level server process. It is easy to run
both a chunkserver and a client on the same machine, as long
as machine resources permit and the lower reliability caused
by running possibly flaky application code is acceptable.

w °
—

O] !
N

Neither the client nor the chunkserver caches file data.

m o
AW

18

GFS Architecture

decoupled data and control paths —
only control path goes through master

file namespace
[foo/bar, 2efO

Application

filename, size “

GFS Client

filename, chunk index
P chunk location

chunk handle, chunk Master
chunk handle, offset locations

ingtrucfions to chunk server
tatus from chunk servers

Chunk Server

Chunk Server

Linux FS

Having a single master vastly simplifies our design and
enables the master to make sophisticated chunk placement

Linux FS

we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches

Ioad balanCing, replicas among chunkservers this information for a limited time and interacts with the

chunkservers directly for many subsequent operations.
19 L — S

Distributed architecture

- Single master

- maintains file system metadata including namespace, mapping, access control
and chunk locations.

- controls system wide activities including garbage collection and chunk migration.
- Chunkserver

. stores data chunks

- chunks are replicated to improve reliability (3 replicas)
- Client

- APIs to interact with applications
- interacts with masters for control operations

- Interacts with chunkservers for accessing data
- Can run on chunkservers

20

Reading data in GFS

Application

filename, size
filename, chunk index

GFS Client

chunk handle, chunk
locations

handle, byte Chunk server

data from file

21

Writing data in GFS

Application

filename, data response
filename, chunk index

GFS Client

chunk handle, primary
and secondary replicas

data Chunk server

primary defines the
&)1y =105l ¢ order of updates in

chunk servers

response write command

primary
Chunk server

22

GFS: Relaxed Consistency model

- Distributed, simple, efficient
- Filename/metadata updates/creates are atomic
- Consistency modes

Write — write to a specific offset ERREIES W"ftifeto SIPCEICIE

Serial success Defined
Defined with interspersed with

Inconsistent
Concurrent success Consistent but undefined

Inconsistent

- Consistent: all replicas have the same value
- Defined: replica reflects the mutation, consistent

- Applications need to deal with inconsistent cases themselves

23

Real world, industry experience

- Linux problems (section /)
- Linux driver issues — disks do not report their capabilities honestly

- The cost of fsync — proportion to file size rather than updated
chunk size

- Single reader-writer lock for mmap

- Due to the open-source nature of Linux, they can fix it and
contribute to the rest of the community

« GFS iS not Open'SOurced system behavior. When appropriate, we improve the kernel

and share the changes with the open source community.

24

Single master design

- GFS claims this will not be a bottleneck
- In-memory data structure for fast access

- Only involved in metadata operations — decoupled data/
control paths

. Client cache
- What if the master server fails?

25

The evolution of GFS

- Mentioned in "Spanner: Google's Globally-Distributed
Database” OSDI 2012 — “tablet’s state is stored in set of B-
tree-like files and a write-ahead log, all on a distributed file
system called Colossus (the successor to the Google File

SyStem) N [I U EU E Case Study

GFS: Evolution on Fast-forward

° S I n g I e m a Ste r A discussion between Kirk McKusick and Sean Quinlan about the origin and evolution

of the Google File System.
proportionate increas2 in the amount of metzdata the master had to maintain. Also, operzations such

as scanning the metadata to look for recoveries all scaled linearly with the volume of data. So the
amopunt of wark required of the master grew substantially. The amount of storage needed to retain all
_that information grew as well,
In additinn, this pmved to be a hottleneck for the clients, even thangh the clients issue few

metacata operations themselves—for example, & client talks to the master whenever it does an

open. When you have thousands ot clients all talking to the master at the same time, given that the MCKUSIKCK /ind historically you've had onc cell per data center, right!

master is capable of doing only a few thousand operations a second, the average client isn’t able to QUINLAN That was initially the goal, but it didn’t work vut like that to a large extent—partly

command all that many operations per second. Also bear in mind that there are applications such b‘:_‘a““ of the limitations of the single-master design and partly because isolation ':fo'“'cd to be
. . dificult. As a consequence, people generally ended up with more than one cell per cata center.

as MapReduce, where you might suddenly have a thousand tasks, each wanting to open a number ’ '

of files. Obviously, it would take a long time to handlz all those requests, and the master would be

under a fair amonnt af diracc

We also ended up doing what we call a “multi.cell” apprnach, which hasically made it possihle to

put multiple GES masters on top of a pool of chunkservers. That way, the chunkscrvers could be

cunfigured to have, say, eight GFS inasters assigried to then:, and tiat would give you at least one

pool of underlying storage—with multiple master heacs on it, if you will. Then the application was
26 responsidle for partitioning data across those cCifferent cells.

The evolution of GFS

- Support for smaller chunk size — gmaill

QUINLAN The distributed master certainly allows you to grow file counts, in line with the number
of machines you're willing to throw at it. That certainly helps.

One of the appeals of the distributed multimaster model is that if you scale everything up by two
orders of magnitude, then getting down to a 1-MB average file size is going to be a lot different from
having a 64-MB average [ile size. Il you end up going below 1 MB, then you're also going (o run
into other issues that vou really need to be careful about. For example, if you end up having to read
10,000 10-KB files, you're going to be doing a lot more seeking than if you're just reading 100 1-MB
files.

My gut feeling is that if you design for an average 1-MB file size, then that should provide for a
miuch larger class of things than does a design that assumes a 64-MB average file size. Ideally, you
would like to imagine a system that goes all the way down to much smaller file sizes, but 1 MB seems
a reasonable compromise in our environment.

MCKUSICK What have you been doing to design GES to work with 1-MB files?

QUINLAN We haven’t been doning anything with the existing GFS design. Our distributed master
system that will provide for 1-MB files is essentially a whole new design. That way, we can aim for
somelhing on Lthe order ol 100 million [iles per masler. You can also have hundreds ol maslers.

27

Lots of other interesting topics

- snapshots

- namespace locking

- replica placement

- Create, re-replication, re-balancing

- garbage collection

- stable replica detection

- data integrity

- diagnostic tools: logs are your friends

28

Do they achieve their goals?

- Storage based on inexpensive disks that fail frequently —
replication, distributed storage

- Many large files in contrast to small files for personal data —
large chunk size

- Primarily reading streams of data — large chunk size

- Sequential writes appending to the end of existing files — large
chunk size

- Must support multiple concurrent operations — flat structure
- Bandwidth is more critical than latency — large chunk size

29

What's missing in GFS?

- GFS only supports consistency models
- Scalability — single master

- Only efficient in dealing with large data
- No geo-redundancy

30

Che New Jork Eimes
Human Error Investigated
in Calzforma Blackout s

fLos Anaeles Times

Did Beyonce cause the Super Bowl blackout?

Spr
@NEWS VIDEO LIVE SHOWS CORONAVIRUS 2 j@)

'‘Abn

00000

period ol dar

6 lead ol

Nicoll . .

hit S klcl-:uff. the li|
" |

The majorty of kghts went out in the Mercedes-Be

| Supercome du _| hu‘i uper Bowl causing a e e .

Ad-minuts ,1 hackup lighril

play was slup
minutes, and

television broadeast was interrupted,

iego County Vaccine Rollout Ne -
& licrosoft 365

Fallout from Texas energy crisis that left
millions in the dark continues

Lawmakers are seeking to hold those in charge accountable.

e and a

ok an = the hel

Minules aller N-.u 0 laars, (Gouy In

By MEREDITH §

Bevonce shi

Only a few

Pandemic: California’s ‘Horrible’ Month

The nation’s most-populated state is facing multiple crises,

including 23 major wildfires raging while the daily death toll from
the coronavirus is above 100.

L —

Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav,
Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,
Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Hag, Muhammad lkram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas Rigas
Microsoft

32

Data center workloads for WAS
| [%Requests | %Capacity | %ingress | %kgress _

XBox
GameSaves

XBox
Telemetry

33

70.31 48.28 66.17
29.68 49.61 33.07
0.01 211 0.76
60.45 16.73 29.11
39.55 83.14 70.79
0 0.13 0.1
99.99 99.84 99.88
0.01 0.16 0.12
0 0 0
19.57 50.25 11.26
80.43 49.25 88.29

0 0.5 0.45
999 98.22 96.21
0.1 1.78 3.79
0 0 0

Why Windows Azure Storage

- A cloud service platform for social network search, video streaming,
XBOX gaming, records management, and etc. in M$.
- Must tolerate many different data abstractions: blobs, tables and queues

- Data types:

- Blob(Binary Large OBjects) storage: pictures, excel files, HTML files, virtual
hard disks (VHDs), big data such as logs, database backups -- pretty much
anything.

Large - Table: database tables

Queue: store and retrieve messages. Queue messages can be up to 64 KB in

Small size, and a queue can contain millions of messages. Queues are generally
used to store lists of messages to be processed asynchronously.

Large

34

Why Windows Azure Storage (cont.)

- Learning from feedbacks in existing cloud storage
- Strong consistency

- Global and scalable namespace/storage

- Disaster recovery

- Multi-tenancy and cost of storage

35

All problems in computer science can be solved by another level of
iIndirection

—David Wheeler

36

What WAS proposes?

Virtual IP

- Stamp is the basic granularity of storage

. provisioning, fault domain, geo-replication.
'« A stamp can contain 10—20 racks with 18

disk-heavy storage node per rack.
- You may consider each stamp is similar to a
"GFS"

Storage stamp

Partition layer

37

What WAS proposes?

- Manages account namespace across ., Location
all storage stamps . Service

« Manages all storage stamps e

- Distributed across multiple geographic
locations

38

GFS v.s. stamp in WAS

Stream layer

Stream Manager

Extent Extent Extent Extent
node node node node

Extent Extent Extent Extent
node node node node

39

https://www.pollev.com/hungweitseng close in 1:00

What is a stream?

- Regarding a stream in WAS, please identify how many of the following
statements is/are true
@ A stream is a list of extents, in which an extent consists of consecutive blocks
@ Each block in the stream contains a checksum to ensure the data integrity
® An update to a stream can only be appended to the end of the stream

@® Two streams can share the same set of extents
A. O

mo oW
A owbdpn-

A
B
C
D
E

40

What is a stream?

- Regarding a stream in WAS, please identify how many of the following
statements is/are true

@ A stream is a list of extents, in which an extent consists of consecutive blocks

Similar to an extent-base file system. Sharés the same benefits with EXT-based systems

@ Each block in the stream contains a checksum to ensure the data integrity
@ Ai\a result, we need to read a whole block every time.... But no’gxebﬁii issuerlloecause

N update to a stream can on ane' ape)en |§ (s)oEndefa?nmgrgf Jﬁmgosvter baalmwidth,data locality

ppend only, copy-on-write ... (Doesn’'t t

@ Two streams can share the same set of extents LogFS
A IV{Timize the time when creating a new file De-duplication to save disk space
B 1 Stream //foo
C- 2 Pointer to Extent E1 Point=2r to Extent E2 Pointer tc Extent E3 Pointer to Extent E4
D. 3
-~ v g

: B11 | B1a B1x Bai | B3z || B3

Extent E1 - Sealed xtent E2 - Sealed Extent E3 - Sealed Extent E4 - Unsealed

oz

GFS v.s. stamp in WAS

Stream layer

Stream Manager
aljocate gxtentgeplicaset

Extent¢—Extent€¢—Extent Extent

node ?node ?node node

primary-SsecondarySsecondary
@® @®

Extent = Extent = Extent Extent
node node node node

45

Announcement

- Project due this Thursday
- Please submit your current progress

- You will have another week of “revision period”

- Allows you to revise your project with 30% of penalty on the unsatisfactory parts/test cases
after the first-round of grading (firm deadline 3/11)

- Say you got only 60% in the first-round, and you fixed everything before 3/11 — you can
still get 60%+70%*40% = 88%

- "Very last"” reading quiz due next Tuesday
- IEVAL — count as an extra, full-credit reading quiz

- Final — contains two parts (each account for 50%)

- Part 1: 80 minute multiple choices/answers questions + two problem sets of
comprehensive exam gquestions

- Part 2: unlimited time between 3/11-3/1/, open-ended questions

82

Computer

Engineering

