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Recap: GFS architecture
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• Storage based on inexpensive disks that fail frequently — 
master/chunkserver/client 

• Many large files in contrast to small files for personal data — 
large chunk size 

• Primarily reading streams of data — large chunk size 
• Sequential writes appending to the end of existing files — large 
chunk size 

• Must support multiple concurrent operations — flat structure 
• Bandwidth is more critical than latency — large chunk size
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Recap: How does GFS achieve its goals?
— MapReduce is fault tolerant

— MapReduce aims at processing large amount of data once

— MapReduce reads chunks of large files

— Output file keep growing as workers keep writing

—MapReduce has thousands of workers simultaneously

—MapReduce only wants to finish tasks within “reasonable” amount of time



• Must tolerate many different data abstractions: blobs, tables 
and queues 

• Learning from feedbacks in existing cloud storage 
• Strong consistency 
• Global and scalable namespace/storage 
• Disaster recovery 
• Multi-tenancy and cost of storage

4

Recap: Why Windows Azure Storage



• Windows Azure Storage: A Highly Available Cloud Storage 
Service with Strong Consistency 

• f4: Facebook’s Warm BLOB Storage System 
• Google Search
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Outline



Windows Azure Storage
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GFS v.s. stamp in WAS
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• Regarding a stream in WAS, please identify how many of the following 
statements is/are true 
! A stream is a list of extents, in which an extent consists of consecutive blocks 
" Each block in the stream contains a checksum to ensure the data integrity 
# An update to a stream can only be appended to the end of the stream 
$ Two streams can share the same set of extents 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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What is a stream?

Similar to an extent-base file system. Shares the same benefits with EXT-based systems

As a result, we need to read a whole block every time…. But not a big issue because …
Improved bandwidth, data localityAppend only, copy-on-write … (Doesn’t this sound familiar?)

LogFS
Minimize the time when creating a new file De-duplication to save disk space



GFS v.s. stamp in WAS
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• In WAS, the stream is append only. The stamp will “seal” extents and extents will 
become immutable once sealed. How many of the following can sealing 
contribute to? 
! Must tolerate many different data abstractions: blobs, tables and queues 
" Strong consistency 
# Global and scalable namespace/storage 
$ Disaster recovery 
% Multi-tenancy and cost of storage 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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Why “append-only” and “sealing”?
https://www.pollev.com/hungweitseng close in 
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Why “append-only” and “sealing”?



• Consider the case where 1 of 3 nodes handling a write fails and 
the current extent is sealed at latest commit boundary (end of 
extent) — that data will be on failed node 

• new extent created 
• SM chooses three new replicas to store extents 
• client retries via new primary among the three new replicas 
• failed node, upon restart, will coord w/ SM to synchronize its 
extent to the commit length decided upon
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Write failure



GFS v.s. stamp in WAS
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• Managing high-level data abstractions 
• Providing scalable object namespaces 
• Providing transaction ordering and strong consistency for 
objects 

• Storing object data on top of the stream layer 
• Cache object data to reduce disk I/O 
• Inter-stamp data replications
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Partition layer
— tolerate many different data abstractions: blobs, tables and queues

— Global and scalable namespace/storage

— Strong consistency

— Strong consistency

— tolerate many different data abstractions: blobs, tables and queues
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• A set of stateless servers taking incoming requests 
• Think about the benefits of stateless in NFS 

• Keep partition maps to forward the request to the right server 
• A stamp can contain 10—20 racks with 18 disk-heavy storage 
node per rack 

• Stream large objects directly from the stream layer and cache 
frequently accessed data for efficiency
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Front-end layer



Are they doing well?
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Good scalability

Good scalability



GFS v.s. WAS
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GFS (OSDI 2003) WAS (SOSP 2011)
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System architecture master
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stream manager
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Data updates append only updates

Consistency models relaxed consistency strong consistency

Data formats files multiple types of objects

Replications intra-cluster replication geo-replication

Usage of nodes chunk server can perform both separate computation and storage



f4: Facebook's Warm BLOB Storage 
System

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, 
         Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar, 

        Viswanath Sivakumar, Linpeng Tang, and Sanjeev Kumar.
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• Within a data center with high-speed network, the round-trip 
latency of network accesses is not really a big deal 

• However, the amount of metadata, especially directory 
metadata, is huge — cannot be cached 

• As a result, each file access still requires ~ 10 inode/data 
requests from disks/network nodes — kill performance
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The original NFS-based FB storage



Haystack
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• Each storage unit provides 10TB of usable space, using RAID-6 — 20% 
redundancy for parity bits 
• Each storage split into 100 physical volumes (100GB) 
• Physical volumes on different machines grouped into logical volumes 
• A photo saved to a logical volume is written to all corresponding physical volumes — 
3 replicas 

• Each volume is actually just 
a large file 
• Needle represents a photo 
• Each needle is identified 
through the offset 

• Sealed (the same as WAS)
one the file reaches 100GB
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Haystack



GFS v.s. WAS
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GFS (OSDI 2003) Facebook Haystack (OSDI 
2010) WAS (SOSP 2011)
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Data formats files photo/needle multiple types of objects
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Usage of nodes chunk server can perform both separate computation and 
storage



• Regarding the optimization goals of f4, please identify how many the 
following statements is/are correct. 
! f4 is optimized for the throughput of accessing data 
" f4 is optimized for the latency of accessing data 
# f4 is designed to reduce the degree of data replications in the system 
$ f4 is designed to tolerate various kind of failure in the system 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why FB wants f4 in addition to Haystack
https://www.pollev.com/hungweitseng close in 
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Why FB wants f4 in addition to Haystack



• Regarding the type of data that f4 aims at, please identify how many the 
following statements is/are correct. 
! f4 is optimized for most frequently requested data in Facebook services 
" f4 is optimized for frequently created, deleted data 
# f4 is optimized for reducing the access latency of long-term storage 
$ f4 is optimized for read-only data 
% f4 is optimized for data that are not accessed very frequently 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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What kind of data is f4 optimized for?
https://www.pollev.com/hungweitseng close in 
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What kind of data is f4 optimized for?



“Temperature” of data
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log scale — not encouraged to graph like this if you’re writing a 
technical document or scientific paper



“Temperature” of data
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Hot Warm Cold

Access Frequency Most frequent Less frequent Rare

Pattern Created often, delete often
Not so frequently read

Not so frequently deleted 
Maybe read-only

Long-term storage, usually 
takes hours to retrieve

Size 65PB in 2014 and growing rapidly



Facebook storage architecture
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• Reed-Solomon erasure coding 
• Strips: 10GB data + 4GB parity — 1.4x space efficiency 
• One volume contains 10 strips 

• XOR Geo-replication 
• Use XOR to reduce overhead further (e.g., Azure makes full copies) 
• Block A in DC1 + block B in DC2 -> parity block P in DC3 
• Any two blocks can be used to generate the third 
• 1.5x space efficiency 

• 1.4*1.5 = 2.1x space efficiency in total
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Storage efficiency

Block A 1.4x

Block B 1.4x

Block C 1.4xXOR
data center 1 data center 2

data center 3



• 1%-2% HDD fail in a year 
• replicate data across multiple disks 
• Use erasure coding for storage efficiency 

• n blocks -> n + k blocks, can tolerate k simultaneous failures 
• higher cost for recovering data when there is a failure 

• Host failures (periodically) 
• replicate coded blocks on different hosts 

• Rack failures (multiple times/year) 
• replicate coded blocks on different racks 

• Datacenter failures (rare, but catastrophic) 
• replicate blocks across data centers 
• use XOR to reduce overhead further (e.g., Azure makes full copies) 

• block A in DC1 + block B in DC2 -> parity block P in DC3 
• any two blocks can be used to generate the third 

• Index files 
• use normal triple replication (tiny, little benefit in coding them)
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Fault tolerance



• Drive fails 
• Reconstruct blocks on another drive 
• Heavy disk, Network, CPU operation 
• one in background 

• During failure, may need to reconstruct data online 
• rebuilder node reads BLOB from data + parity, reconstructs 
• only reads + reconstructs the BLOB (40KB), not the entire block 
(1GB)
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What happens if fault occurs?



Performance of f4
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• Each cell contains 14 racks of 15 hosts, each host contains 30 
4TB H.D.Ds. 

• A unit of acquisition, deployment 
• Storage for a set of volumes 
• Similar to the idea of stamps
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Cells



• Project due this Thursday 
• Please submit your current progress 
• You will have another week of “revision period” 

• Allows you to revise your project with 30% of penalty on the unsatisfactory parts/test cases after the first-
round of grading (firm deadline 3/11) 

• Say you got only 60% in the first-round, and you fixed everything before 3/11 — you can still get 60%
+70%*40% = 88% 

• “Very last” reading quiz due next Tuesday 
• iEVAL — count as an extra, full-credit reading quiz 
• Final — contains two parts (each account for 50%) 

• Part 1: unlimited time between 3/11-3/17, open-ended questions 
• Part 2: 80 minute multiple choices/answers questions + two problem sets of comprehensive 
exam questions 

• Will release some practice for time-limited part next week — please don’t discuss with other 
people than TA and me
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Announcement
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