
Microsoft Windows Azure Storage,
Facebook’s Data Storage and Google

Search Architecture
Hung-Wei Tseng

Recap: GFS architecture

2

Application

GFS Client
filename, size

Master

filename, chunk index

file namespace
/foo/bar, 2ef0

chunk location
chunk handle, chunk

locations

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

instructions to chunk servers
status from chunk servers

chunk handle, offset
data

data

decoupled data and control paths —
only control path goes through master

load balancing, replicas among chunkservers

• Storage based on inexpensive disks that fail frequently —
master/chunkserver/client

• Many large files in contrast to small files for personal data —
large chunk size

• Primarily reading streams of data — large chunk size
• Sequential writes appending to the end of existing files — large
chunk size

• Must support multiple concurrent operations — flat structure
• Bandwidth is more critical than latency — large chunk size

3

Recap: How does GFS achieve its goals?
— MapReduce is fault tolerant

— MapReduce aims at processing large amount of data once

— MapReduce reads chunks of large files

— Output file keep growing as workers keep writing

—MapReduce has thousands of workers simultaneously

—MapReduce only wants to finish tasks within “reasonable” amount of time

• Must tolerate many different data abstractions: blobs, tables
and queues

• Learning from feedbacks in existing cloud storage
• Strong consistency
• Global and scalable namespace/storage
• Disaster recovery
• Multi-tenancy and cost of storage

4

Recap: Why Windows Azure Storage

• Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency

• f4: Facebook’s Warm BLOB Storage System
• Google Search

5

Outline

Windows Azure Storage

6

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

create extentwrite

primary secondary secondary

allocate extent replica set

rep
lica

tio
n

rep
lica

tio
n

ack

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

inter-stamp
replication

Client Location
Service

DNS (Domain Name
Service)

Application

data

GFS v.s. stamp in WAS

7

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent
node

replication

replication

filename, chunk index

chunk handle, primary
and secondary replicas

chunk handle, byte
range

data from file

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

• Regarding a stream in WAS, please identify how many of the following
statements is/are true
! A stream is a list of extents, in which an extent consists of consecutive blocks
" Each block in the stream contains a checksum to ensure the data integrity
An update to a stream can only be appended to the end of the stream
$ Two streams can share the same set of extents
A. 0
B. 1
C. 2
D. 3
E. 4

8

What is a stream?

Similar to an extent-base file system. Shares the same benefits with EXT-based systems

As a result, we need to read a whole block every time…. But not a big issue because …
Improved bandwidth, data localityAppend only, copy-on-write … (Doesn’t this sound familiar?)

LogFS
Minimize the time when creating a new file De-duplication to save disk space

GFS v.s. stamp in WAS

9

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent
node

replication

replication

filename, chunk index

chunk handle, primary
and secondary replicas

chunk handle, byte
range

data from file

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

create extentwrite

primary secondary secondary

allocate extent replica set

rep
lica

tio
n

rep
lica

tio
n

ack

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

inter-stamp
replication

• In WAS, the stream is append only. The stamp will “seal” extents and extents will
become immutable once sealed. How many of the following can sealing
contribute to?
! Must tolerate many different data abstractions: blobs, tables and queues
" Strong consistency
Global and scalable namespace/storage
$ Disaster recovery
% Multi-tenancy and cost of storage
A. 1
B. 2
C. 3
D. 4
E. 5

10

Why “append-only” and “sealing”?
https://www.pollev.com/hungweitseng close in

• In WAS, the stream is append only. The stamp will “seal” extents and extents will
become immutable once sealed. How many of the following can sealing
contribute to?
! Must tolerate many different data abstractions: blobs, tables and queues
" Strong consistency
Global and scalable namespace/storage
$ Disaster recovery
% Multi-tenancy and cost of storage
A. 1
B. 2
C. 3
D. 4
E. 5

14

Why “append-only” and “sealing”?

• Consider the case where 1 of 3 nodes handling a write fails and
the current extent is sealed at latest commit boundary (end of
extent) — that data will be on failed node

• new extent created
• SM chooses three new replicas to store extents
• client retries via new primary among the three new replicas
• failed node, upon restart, will coord w/ SM to synchronize its
extent to the commit length decided upon

15

Write failure

GFS v.s. stamp in WAS

16

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent
node

replication

replication

filename, chunk index

chunk handle, primary
and secondary replicas

chunk handle, byte
range

data from file

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

create extentwrite

primary secondary secondary

allocate extent replica set

rep
lica

tio
n

rep
lica

tio
n

ack

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

inter-stamp
replication

• Managing high-level data abstractions
• Providing scalable object namespaces
• Providing transaction ordering and strong consistency for
objects

• Storing object data on top of the stream layer
• Cache object data to reduce disk I/O
• Inter-stamp data replications

17

Partition layer
— tolerate many different data abstractions: blobs, tables and queues

— Global and scalable namespace/storage

— Strong consistency

— Strong consistency

— tolerate many different data abstractions: blobs, tables and queues

18

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent
node

replication

replication

filename, chunk index

chunk handle, primary
and secondary replicas

chunk handle, byte
range

data from file

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

create extentwrite

primary secondary secondary

allocate extent replica set

rep
lica

tio
n

rep
lica

tio
n

ack

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

Extent
node

inter-stamp
replication

GFS v.s. stamp in WAS

• A set of stateless servers taking incoming requests
• Think about the benefits of stateless in NFS

• Keep partition maps to forward the request to the right server
• A stamp can contain 10—20 racks with 18 disk-heavy storage
node per rack

• Stream large objects directly from the stream layer and cache
frequently accessed data for efficiency

19

Front-end layer

Are they doing well?

20

Good scalability

Good scalability

GFS v.s. WAS

21

GFS (OSDI 2003) WAS (SOSP 2011)

File organizations
file

chunk
block

stream
extent
record

System architecture master
chunkserver

stream manager
extent nodes

Data updates append only updates

Consistency models relaxed consistency strong consistency

Data formats files multiple types of objects

Replications intra-cluster replication geo-replication

Usage of nodes chunk server can perform both separate computation and storage

f4: Facebook's Warm BLOB Storage
System

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill,
 Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar,

 Viswanath Sivakumar, Linpeng Tang, and Sanjeev Kumar.

22

• Within a data center with high-speed network, the round-trip
latency of network accesses is not really a big deal

• However, the amount of metadata, especially directory
metadata, is huge — cannot be cached

• As a result, each file access still requires ~ 10 inode/data
requests from disks/network nodes — kill performance

23

The original NFS-based FB storage

Haystack

24

user requests (browsers, mobile devices)

web server

Haystack directory

Content
Delivery
Network

Haystack store

Finding a needle in Haystack: Facebook’s photo storage. Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel. OSDI 2010

Haystack cache

(1)

(2) (3)

(4)

(5)

(6)

(7) (8)

(9)

(10)

• Each storage unit provides 10TB of usable space, using RAID-6 — 20%
redundancy for parity bits
• Each storage split into 100 physical volumes (100GB)
• Physical volumes on different machines grouped into logical volumes
• A photo saved to a logical volume is written to all corresponding physical volumes —
3 replicas

• Each volume is actually just
a large file
• Needle represents a photo
• Each needle is identified
through the offset

• Sealed (the same as WAS)
one the file reaches 100GB

25

Haystack

GFS v.s. WAS

26

GFS (OSDI 2003) Facebook Haystack (OSDI
2010) WAS (SOSP 2011)

File organizations
file

chunk
block

volume
needle

stream
extent
record

System architecture master
chunkserver

directory
haystack store

stream manager
extent nodes

Data updates append only updates

Consistency models relaxed consistency strong consistency

Data formats files photo/needle multiple types of objects

Replications intra-cluster replication RIAD-6 &
geo-replication geo-replication

Usage of nodes chunk server can perform both separate computation and
storage

• Regarding the optimization goals of f4, please identify how many the
following statements is/are correct.
! f4 is optimized for the throughput of accessing data
" f4 is optimized for the latency of accessing data
f4 is designed to reduce the degree of data replications in the system
$ f4 is designed to tolerate various kind of failure in the system
A. 0
B. 1
C. 2
D. 3
E. 4

27

Why FB wants f4 in addition to Haystack
https://www.pollev.com/hungweitseng close in

• Regarding the optimization goals of f4, please identify how many the
following statements is/are correct.
! f4 is optimized for the throughput of accessing data
" f4 is optimized for the latency of accessing data
f4 is designed to reduce the degree of data replications in the system
$ f4 is designed to tolerate various kind of failure in the system
A. 0
B. 1
C. 2
D. 3
E. 4

31

Why FB wants f4 in addition to Haystack

• Regarding the type of data that f4 aims at, please identify how many the
following statements is/are correct.
! f4 is optimized for most frequently requested data in Facebook services
" f4 is optimized for frequently created, deleted data
f4 is optimized for reducing the access latency of long-term storage
$ f4 is optimized for read-only data
% f4 is optimized for data that are not accessed very frequently
A. 1
B. 2
C. 3
D. 4
E. 5

32

What kind of data is f4 optimized for?
https://www.pollev.com/hungweitseng close in

• Regarding the type of data that f4 aims at, please identify how many the
following statements is/are correct.
! f4 is optimized for most frequently requested data in Facebook services
" f4 is optimized for frequently created, deleted data
f4 is optimized for reducing the access latency of long-term storage
$ f4 is optimized for read-only data
% f4 is optimized for data that are not accessed very frequently
A. 1
B. 2
C. 3
D. 4
E. 5

36

What kind of data is f4 optimized for?

“Temperature” of data

37

log scale — not encouraged to graph like this if you’re writing a
technical document or scientific paper

“Temperature” of data

38

Hot Warm Cold

Access Frequency Most frequent Less frequent Rare

Pattern Created often, delete often
Not so frequently read

Not so frequently deleted
Maybe read-only

Long-term storage, usually
takes hours to retrieve

Size 65PB in 2014 and growing rapidly

Facebook storage architecture

39

user requests (browsers, mobile devices)

web tier

Graph Store — Tao

Blob Storage System

Content
Distribution

Network
Read(1)Create(1)

Create(2)

Create(3) Read(2)

Read(3)

Read(4)

Haystack Hot Storage

f4 Warm Storage

Cold Data

• Reed-Solomon erasure coding
• Strips: 10GB data + 4GB parity — 1.4x space efficiency
• One volume contains 10 strips

• XOR Geo-replication
• Use XOR to reduce overhead further (e.g., Azure makes full copies)
• Block A in DC1 + block B in DC2 -> parity block P in DC3
• Any two blocks can be used to generate the third
• 1.5x space efficiency

• 1.4*1.5 = 2.1x space efficiency in total

40

Storage efficiency

Block A 1.4x

Block B 1.4x

Block C 1.4xXOR
data center 1 data center 2

data center 3

• 1%-2% HDD fail in a year
• replicate data across multiple disks
• Use erasure coding for storage efficiency

• n blocks -> n + k blocks, can tolerate k simultaneous failures
• higher cost for recovering data when there is a failure

• Host failures (periodically)
• replicate coded blocks on different hosts

• Rack failures (multiple times/year)
• replicate coded blocks on different racks

• Datacenter failures (rare, but catastrophic)
• replicate blocks across data centers
• use XOR to reduce overhead further (e.g., Azure makes full copies)

• block A in DC1 + block B in DC2 -> parity block P in DC3
• any two blocks can be used to generate the third

• Index files
• use normal triple replication (tiny, little benefit in coding them)

41

Fault tolerance

• Drive fails
• Reconstruct blocks on another drive
• Heavy disk, Network, CPU operation
• one in background

• During failure, may need to reconstruct data online
• rebuilder node reads BLOB from data + parity, reconstructs
• only reads + reconstructs the BLOB (40KB), not the entire block
(1GB)

42

What happens if fault occurs?

Performance of f4

43

• Each cell contains 14 racks of 15 hosts, each host contains 30
4TB H.D.Ds.

• A unit of acquisition, deployment
• Storage for a set of volumes
• Similar to the idea of stamps

44

Cells

• Project due this Thursday
• Please submit your current progress
• You will have another week of “revision period”

• Allows you to revise your project with 30% of penalty on the unsatisfactory parts/test cases after the first-
round of grading (firm deadline 3/11)

• Say you got only 60% in the first-round, and you fixed everything before 3/11 — you can still get 60%
+70%*40% = 88%

• “Very last” reading quiz due next Tuesday
• iEVAL — count as an extra, full-credit reading quiz
• Final — contains two parts (each account for 50%)

• Part 1: unlimited time between 3/11-3/17, open-ended questions
• Part 2: 80 minute multiple choices/answers questions + two problem sets of comprehensive
exam questions

• Will release some practice for time-limited part next week — please don’t discuss with other
people than TA and me

63

Announcement

ͺͻͥ

Computer
Science &
Engineering

202

