
Virtual Machines & Reflections
Hung-Wei Tseng

Virtual Machines

2

Recap: Taxonomy of virtualization

3

system virtualizationprocess virtualization

Operating
Systems (e.g.,

process)

same ISA

Java VM

different ISA
same ISA different ISA

Xen
VMWare Server

Virtual
Machine
Monitor

VMWare
Workstation,

VirtualBox

Hosted
Virtual

Machine
Monitor

Virtual PC,
Emulator,

Binary
Translator

software
based

Transmeta
Crusoe

hardware
based

We are focusing on
these today

We’ve learned
quite a lot of

these
Most of them are

gone…

Virtual machine architecture

4

Virtual Machine Monitor

Guest OS

Applications

The Machine

Hosted virtual machine

5

Virtualized
CPU

Hosted virtual machine monitor

OSOSOS

ApplicationsApplicationsApplications

Hosted operating system

Virtualized
memory

Virtualized
storage

Virtualized
network

Virtualized
…device emulation,

virtualization

device emulation,
virtualization

Virtual machine monitors on bare machines

6

Virtualized
CPU

Virtual machine monitor

OSOSOS

ApplicationsApplicationsApplications

Virtualized
memory

Virtualized
storage

Virtualized
network

Virtualized
…device emulation,

virtualization

Back to 1974…

7

Fidelity
Performance

Safety and isolation

• De-privileging
• Primary and shadow structures
• Tracing

8

Three main ideas to classical VMs

• The processor provides
normal instructions and privileged
instructions
• Normal instructions: ADD, SUB, MUL, and

etc …
• Privileged instructions: HLT, CLTS, LIDT,

LMSW, SIDT, ARPL, and etc…
• The processor provides different modes

• User processes can use normal
instructions

• Privileged instruction can only be used if
the processor is in proper mode

9

Recap: privileged instructions

Kernel

Ring 3
Ring 2
Ring 1
Ring 0

Device Drivers

Device Drivers

ApplicationsLeast privileged

Most privileged

reduced
privileged

mode

CPU Virtualization: Trap-and-emulate

10

Virtual Machine Monitor

Guest OS

Applications

The Machine

user
mode

privileged
mode

unprivileged
instruction
(e.g., add) syscall

handling
update
vCPU
states

call trap
handler

executing trap
handler in reduced

privileged modeprivileged
instruction return

handling
update
vCPU
states

return

• This is called virtually
indexed, physically
tagged cache

• TLB hit: the translation is
in the TLB, no penalty

• TLB miss: fetch the
translation from the page
table in main memory

11

Recap: address translation with TLB

Processor

$

main memory

1.
VA

PA2.
TLB

1.
VA

PA2.
=

miss

Operating system

ApplicationsVirtual Address

Physical Address

page table

Address translation in VM

12

Processor

$

main memory

1.
VA

PA2.
TLB

1.
VA

PA2.
=

miss

Guest Operating system

ApplicationsVirtual Address

Physical Address

page table

Virtual Machine Monitor

Machine Address

VMM page table

?

Address translation in VM

13

Processor

$

main memory

1.
VA

PA2.
TLB

1.
VA

PA2.
=

miss

Guest Operating system

ApplicationsVirtual Address

Physical Address

page table

Virtual Machine Monitor

Machine Address

VMM page table

shadow
page table

MAMA

• Trace accesses to important system data structures
• Memory tracing: You need to make the shadow page table

consistent with guest OS page table
• Protect these structures with write-protected
• If anyone tries to modify the protected PTE — trigger a segfault

handler
• The segfault handler will deal with these write-protected locations

and consistency issues for both tables

14

Tracing

• The classical x86 architectures cannot allow the VMM to use the classical trap-and-
emulation for virtualizing guest operating systems. How many of the following best
describes the reasons?
! The guest OS can be aware that it’s not running in a privileged mode
" A privileged instruction in the guest OS may not trigger a trap
x86 does not provide a mechanism to set write-protected pages and handlers for tracing
$ x86’s hardware-walk hierarchical page table structure prevents the use of shadow page

tables.
A. 0
B. 1
C. 2
D. 3
E. 4

15

Why this doesn’t work with x86
https://www.pollev.com/hungweitseng close in

• The classical x86 architectures cannot allow the VMM to use the classical trap-and-
emulation for virtualizing guest operating systems. How many of the following best
describes the reasons?
! The guest OS can be aware that it’s not running in a privileged mode
" A privileged instruction in the guest OS may not trigger a trap
x86 does not provide a mechanism to set write-protected pages and handlers for tracing
$ x86’s hardware-walk hierarchical page table structure prevents the use of shadow page

tables.
A. 0
B. 1
C. 2
D. 3
E. 4

19

Why this doesn’t work with x86

• Visibility of privileged state
• Guest OS can see it’s de-privileged
• x86 stores the current privileged level in %cs register

• Dual-mode instructions
• Lack of traps when privileged instructions run at user-level

• popf instruction can change IF and ZF flags
• deprivileged popf instruction can only change ZF, but not IF — popf

doesn’t trap

20

Obstacles of virtual machines on x86

A Comparison of Software and Hardware
Techniques for x86 Virtualization

Keith Adams and Ole Agesen
VMware

21

• Binary
• Dynamic
• On demand
• System level
• Subsetting
• Adaptive

22

Binary translator

• If the virtualized CPU is in user mode
• Instructions execute directly

• If the virtualized CPU is in kernel mode
• VMM examines every instruction that the guest OS is about to

execute in the near future by prefetching and reading instructions
from the current program counter

• Non-special instructions run natively
• Special instructions (those instruction may have missing flags set)

are “translated” into equivalent instructions with flags set

23

Binary translation on x86

reduced
privileged

mode

Trap-and-emulate with Binary Translation

24

Virtual Machine Monitor

Guest OS

Applications

The Machine

user
mode

privileged
mode

unprivileged
instruction
(e.g., add) syscall

handling
update
vCPU
states

call trap
handler

executing trap
handler in reduced

privileged modeprivileged
instruction return

handling
update
vCPU
states

return

privileged
instruction
(if special) return

translate &
update
vCPU
states

• VMCB (Virtual machine control block)
• Settings that determine what actions cause the guest to exit to host
• All CPU state for a guest is located in VMCB data-structure

• A new, less privileged execution mode, guest mode
• vmrun instruction to enter VMX mode
• Many instructions and events cause VMX exits
• Control fields in VMCB can change VMX exit behavior

25

Hardware virtualization in modern x86

guest
mode

Trap-and-emulate with hardware virtualization

26

Virtual Machine Monitor

Guest OS

Applications

The Machine

user
mode

privileged
mode

unprivileged
instruction
(e.g., add) syscall

handling
update
vCPU
states

vmrun,
call trap
handler

return

exit,
(e.g., page

fault…) vmrun

VMM
handles

the
structure

exit

• VMM fills in VMCB exception table for Guest OS
• Sets bit in VMCB not exit on syscall exception

• VMM executes vmrun
• Application invokes syscall
• CPU —> CPL #0, does not trap, vectors to VMCB exception

table

27

How hardware VM works

• How many of the following situations can x86 VMX/VT-X instruction
set extensions help improve the performance of VMM?
! Executing system calls
" Handling page faults
Modifying a page table entry
$ Calling a function
A. 0
B. 1
C. 2
D. 3
E. 4

28

When to use hardware support for VM
https://www.pollev.com/hungweitseng close in

• How many of the following situations can x86 VMX/VT-X instruction
set extensions help improve the performance of VMM?
! Executing system calls
" Handling page faults
Modifying a page table entry
$ Calling a function
A. 0
B. 1
C. 2
D. 3
E. 4

32

When to use hardware support for VM

Virtualization overhead

33

Nanobenchmarks

34

Macrobenchmarks

35

• How many of the following situations can x86 VMX/VT-X instruction
set extensions help improve the performance of VMM?
! Executing system calls
" Handling page faults
Modifying a page table entry
$ Calling a function
A. 0
B. 1
C. 2
D. 3
E. 4

36

When to use hardware support for VM

— guest OS runs in VM mode, no VMM intervention
— software VMM doesn’t need to use vmrun and exit

— hardware VMM doesn’t need BT

• Binary Translation VMM:
• Converts traps to callouts

• Callouts faster than trapping
• Faster emulation routine

• VMM does not need to reconstruct state
• Avoids callouts entirely

• Hardware VMM:
• Preserves code density
• No precise exception overhead
• Faster system calls

37

Side-by-side comparison

Xen and the Art of Virtualization
Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield
University of Cambridge Computer Laboratory

38

Why “Xen and the Art of Virtualization”?

39

• Server consolidation: improve the server utilization
• Server co-location
• Secure distributed computing
• We want to host many full OS instances efficiently

• The overhead of full virtualization/resource container is large
• Hard to achieve Quality of Service guarantee because a VM is

treated as a process in the host operating system

40

Why Xen?

• Xen uses “para-virtualization” against “full-virtualization”. Regarding para-
virtualization, please identify how many of the following statements is/are correct.
! Para-Virtualization requires guest OSes and applications to be modified
" Para-virtualization allows the guest OS to be correctly virtualized without binary

translations in VMM
Para-virtualization allows the guest OS to better support time-sensitive tasks
$ Para-virtualization allows a guest OS to manage physical to machine address

mapping directly
A. 0
B. 1
C. 2
D. 3
E. 4

41

What Xen proposed?
https://www.pollev.com/hungweitseng close in

• Xen uses “para-virtualization” against “full-virtualization”. Regarding para-
virtualization, please identify how many of the following statements is/are correct.
! Para-Virtualization requires guest OSes and applications to be modified
" Para-virtualization allows the guest OS to be correctly virtualized without binary

translations in VMM
Para-virtualization allows the guest OS to better support time-sensitive tasks
$ Para-virtualization allows a guest OS to manage physical to machine address

mapping directly
A. 0
B. 1
C. 2
D. 3
E. 4

45

What Xen proposed?

Xen hypervisor

46

Modified OSModified OSModified OS

ApplicationsApplicationsApplications

Xen

Para-
Virtualized

CPU

Para-
Virtualized

memory

Para-
Virtualized

storage

Para-
Virtualized

network

Para-
Virtualized

…
device emulation,

virtualization

user
mode

reduced
privileged

mode
(ring 1)

privileged
mode

• Solution to issues with x86 instruction set
• Don’t allow guest OS to issue sensitive instructions
• Replace those sensitive instructions that don’t trap to ones that will trap

• Guest OS makes “hypercalls” (like system calls) to interact with system
resources

• Allows hypervisor to provide protection between VMs
• Exceptions handled by registering handler table with Xen

• Fast handler for OS system calls invoked directly
• Page fault handler modified to read address from replica location

• Guest OS changes largely confined to arch-specific code
• Compile for ARCH=xen instead of ARCH=i686
• Original port of Linux required only 1.36% of OS to be modified

47

Paravirtualization

Trap-and-emulate

48

Virtual Machine Monitor

Modified Guest OS

Applications

unprivileged
instruction syscall

handling
update

vCPU states

user
mode

reduced
privileged

mode

privileged
mode

call trap
handler

executing trap handler in
reduced privileged mode

privileged
instruction

handling
update

vCPU states

return

return

privileged
instruction

handling &
update vCPU

states

return

As we modified the OS code, no binary translation is necessary

• Regarding Xen’s memory para-virtualization strategy, please identify
how many of the following statements is/are correct
! Switching guest OSes will trigger TLB flush
" Xen is involved in and validated every page table update
Xen must maintain a shadow table during page table updates
$ x86 processors can directly access the page table in a guest OS of Xen
A. 0
B. 1
C. 2
D. 3
E. 4

49

How para-virtualization work for memory allocation in Xen
https://www.pollev.com/hungweitseng close in

• Regarding Xen’s memory para-virtualization strategy, please identify
how many of the following statements is/are correct
! Switching guest OSes will trigger TLB flush
" Xen is involved in and validated every page table update
Xen must maintain a shadow table during page table updates
$ x86 processors can directly access the page table in a guest OS of Xen
A. 0
B. 1
C. 2
D. 3
E. 4

53

How para-virtualization work for memory allocation in Xen

use hypercalls to achieve this — code modification is necessary

avoid the usage of shadow page table, reducing the overhead

Because x86 TLBs are not tagged (you don’t have PIDs)

• Modifying the guest OS to be involved only for page table
updates

• Restricting the guest OS to have only read access
• Writing to page tables is protected and must use a hypercall —

Xen can verify and allocate pages

54

MMU Virtualization: Direct mode

Accessing a page — TLB miss

55

Guest OS

Xen

CPU MMU

Page Table

TLB

Application Memory Read

TLB
miss

Walk through the page table

Accessing a page — page fault

56

Guest OS

Xen

CPU MMU

Page Table

TLB

Application Memory Read

TLB
miss

Walk through
the page

table

Exception —
page fault

not
found

hypercall to
request
physical
pages

Guest OS can batch hypercall updates
to further reduce overhead

• Mechanism that forces guest OS to give up memory
• Balloon driver consumes physical memory allocated in the

guest OS
• The memory consumed by Balloon is given to Xen
• The guest OS uses hypercalls to see and change the state

57

Balloon driver

• Exposes I/O devices as asynchronous I/O rings to guest OS
• Exposes the device abstraction to minimize the change in

device drivers
• Xen pins a few physical memory as DMA buffers and exposes

to the guest OS to avoid copying overhead
• Use an up call to notify the guest OS as opposed to interrupts

58

I/O virtualization

• Virtual firewall for each physical network interface
• Virtual interface for each physical network interface in each

guest OS
• Circular Queue — Mechanism supporting I/O between Xen

and guest OSes
• Ring buffers for exchanging requests
• Producer-consumer problem

• Producers: guest OSes
• Consumer: Xen

59

Network virtualization

Performance

60

Overhead

61

• Do you buy this?

62

Effort of porting

• x86-64 removes ring 1, 2
• Both applications and guest OSes in ring 3
• Using guest mode in Intel VT-X/AMD VMX when necessary

• Higher performance NIC through segment offload
• Enhanced support for unmodified guest OSes using hardware

virtualization
• Secure isolation between VMs

63

Later evolution of Xen

Hints for computer system design
Butler W. Lampson

Computer Science Laboratory Xerox Palo Alto Research Center

64

Hints for computer system design

65

• How many of the following cloud storage system represents the idea
of “Separate normal and worst case”
! Facebook’s f4
" Google’s GFS
Microsoft’s Window Azure Storage
$ NetApp’s NFS
A. 0
B. 1
C. 2
D. 3
E. 4

66

Cloud storage and Lampson’s paper
https://www.pollev.com/hungweitseng close in

• How many of the following cloud storage system represents the idea
of “Separate normal and worst case”
! Facebook’s f4
" Google’s GFS
Microsoft’s Window Azure Storage
$ NetApp’s NFS
A. 0
B. 1
C. 2
D. 3
E. 4

70

Cloud storage and Lampson’s paper

• Separate normal and worst case
• Make normal case fast
• The worst case must make progress

• Saturation
• Thrashing

71

Completeness

• Do one thing at a time or do it well
• Don’t generalize
• Example

• Interlisp-D stores each virtual page on a dedicated disk page
• 900 lines of code for files, 500 lines of code for paging
• fast — page fault needs one disk access, constant computing cost

• Pilot system allows virtual pages to be mapped to file pages
• 11000 lines of code
• Slower — two disk accesses in handling a page fault, under utilize the disk

speed
• Get it right

72

Interface — Keep it simple, stupid

• Make it fast, rather than general or powerful
• CISC v.s. RISC

• Don’t hide power
• Are we doing all right with FTL?

• Use procedure arguments to provide flexibility in an interface
• Thinking about SQL v.s. function calls

• Leave it to the client
• Monitors’ scheduling
• Unix’s I/O streams

73

More on Interfaces

• Keep basic interfaces stable
• What happen if you changed something in the header file?

• Keep a place to stand if you do have to change interfaces
• Mach/Sprite are both compatible with existing UNIX even though they completely rewrote

the kernel
• Plan to throw one away
• Keep secrets of the implementation — make no assumption other system

components
• Don’t assume you will definitely have less than 16K objects!

• Use a good idea again
• Caching!
• Replicas

• Divide and conquer
74

Implementation

• Split resources in a fixed way if in doubt, rather than sharing them
• Processes
• VMM: Multiplexing resources Guest OSs aren’t even aware that they’re sharing

• Use static analysis — compilers
• Dynamic translation from a convenient (compact, easily modified or easily

displayed) representation to one that can be quickly interpreted is an
important variation on the old idea of compiling

• Java byte-code
• LLVM

• Cache answers to expensive computations, rather than doing them over
• Use hints to speed up normal execution

• The Ethernet: carrier sensing, exponential backoff
75

Speed

• When in doubt, use brute force
• Compute in background when possible

• Free list instead of swapping out on demand
• Cleanup in log structured file systems: segment cleaning could be scheduled at nighttime.

• Use batch processing if possible
• Soft timers: uses trigger states to batch process handling events to avoid trashing the cache more

often than necessary
• Write buffers

• Safety first
• Shed load to control demand, rather than allowing the system to become overloaded

• Thread pool
• MLQ scheduling
• Working set algorithm
• Xen v.s. VMWare

76

Speed

• End-to-end
• Network protocols

• Log updates
• Logs can be reliably written/read
• Logs can be cheaply forced out to disk, which can survive a crash

• Log structured file systems
• RAID5 in Elephant

• Make actions atomic or restartable
• NFS
• atomic instructions for locks

77

Fault-tolerance

Final Exam

78

• Part 1 — any 80 hours you pick (starting from 3/11 12am —
3/17 11:59:00pm)
• Two of the questions are considered as comprehensive exam

• Part 2 — time unlimited, starting from 8pm — 3/17
11:59:00pm

• Final is cumulative
• If you help others, you’re hurting yourself

• since grades are given according to your relative rank in the class.
• I will directly send all skeptical cases to misconduct office

79

Logistics

• Free answer questions (2)
• One about process, the other about virtual memory
• Count as comprehensive exam questions as well

• Multiple choices (10) — like your midterm
• Multiple answer (5)

80

Part 1

Sample Final Part 1

81

Latency Numbers Every Programmer Should Know
(2020 Version)

82

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 3 ns
L2 cache reference 4 ns 14x L1 cache
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 us
Read 1 MB sequentially from memory 3,000 ns 3 us
Read 4K randomly from SSD* 16,000 ns 16 us
Read 1 MB sequentially from SSD* 49,000 ns 49 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from disk 825,000 ns 825 us
Disk seek 2,000,000 ns 2,000 us 2 ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html

• The latency of ?
• A TLB miss?
• A page fault?
• A kernel switch?
• A context switch?

• Under what condition will:
• Saturation occur?
• Thrashing occur?

83

Overhead

• Which of the following factor of disk access can cylinder
groups help to improve when manage files?

A. Seek time
B. Rotational delay
C. Data transfer latency
D. A and B
E. A and C

84

Cylinder groups

• How many of the following problems will Log-structured file systems
solve?
! The performance of small random writes
" The efficiency of large file accesses
The space overhead of metadata in the file system
$ Reduce the main memory space used by the file system
A. 0
B. 1
C. 2
D. 3
E. 4

85

Why do we need LFS?

• Comparing polling and interrupt, how many of the following statements are true
! When interacting with high-speed device, using polling can achieve better

performance
" Interrupt can improve CPU utilization if the device only needs service from the

processor occasionally
Interrupt allows asynchronous I/O in programs
$ The overhead of handling an event after polling is higher than handling the same

event after receiving an interrupt
A. 0
B. 1
C. 2
D. 3
E. 4

86

Polling v.s. Interrupt

• How many of the following statements can large chunks help address?
! Storage based on inexpensive disks that fail frequently
" Many large files in contrast to small files for personal data
Primarily reading streams of data
$ Sequential writes appending to the end of existing files
& Must support multiple concurrent operations
' Bandwidth is more critical than latency
A. 1
B. 2
C. 3
D. 4
E. 5

87

Large Chunks

• How many of the following statements can flat file system structure help address
in GFS?
! Storage based on inexpensive disks that fail frequently
" Many large files in contrast to small files for personal data
Primarily reading streams of data
$ Sequential writes appending to the end of existing files
& Must support multiple concurrent operations
' Bandwidth is more critical than latency
A. 1
B. 2
C. 3
D. 4
E. 5

88

flat structure in GFS

• Regarding a stream in WAS, please identify how many of the following
statements is/are true
! A stream is a list of extents, in which an extent consists of consecutive blocks
" Each block in the stream contains a checksum to ensure the data integrity
An update to a stream can only be appended to the end of the stream
$ Two streams can share the same set of extents
A. 0
B. 1
C. 2
D. 3
E. 4

89

What is a stream?

• How many of the following fulfill the design agenda of the Google
search architecture described in this paper?
! Reduce the hardware cost by using commodity-class and unreliable PCs
" Use RAID to provide efficiency and reliability
Use replication for better request throughput and availability
$ Optimize for the peak performance
A. 0
B. 1
C. 2
D. 3
E. 4

90

Google search architecture

• How many of the following tasks in virtual memory management
always requires the assistance of operating system?
! Address translation
" Growth of process address space
Tracking free physical memory locations
$ Maintaining mapping tables
A. 0
B. 1
C. 2
D. 3
E. 4

91

The role of the OS in virtual memory management

• Although Mach’s design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

92

Why not microkernels?

• Regarding the protection in UNIX, how many of the followings is/are correct?
! The same file may have different permissions for different user-id
" The owner of the file may not have the permission of writing a file
If the user does not have a permission to access a device, set-user-id will

guarantee that the user will not be able to access that device
$ In the UNIX system described in this paper, if the file owner is “foo”, then the

user “bar” will have the same permission as another user (e.g. “xyz”).
A. 0
B. 1
C. 2
D. 3
E. 4

93

Protection

• Which paper(s) is(are) designing FS for read-
intensive data access?

• Which paper(s) is(are) designing FS for write-
intensive data access?

• Which paper(s) is(are) designing FS for
MapReduce?

• What is saturation? What paper talks about it?
• Can you relate papers with Butler Lampson’s

“Hints for Computer System Design”?
• Caching?
• Batch processing?
• Atomic operations?
• Logs?
• Separate normal and worst case

94

Multiple answers
Title

A The Structure of the 'THE'-Multiprogramming System
B The Nucleus of a Multiprogramming System
C The UNIX Time-Sharing System
D Mach: A New Kernel Foundation For UNIX Development
E An experimental time-sharing system
F The Linux Scheduler: a Decade of Wasted Cores
G Virtual Memory Management in VAX/VMS
H Machine-Independent Virtual Memory Management for Paged

Uniprocessor and Multiprocessor Architectures
I Converting a Swap-Based System to do Paging in an Architecture Lacking

Page-Reference Bits
J WSCLOCK-A Simple and Effective Algorithm for Virtual Memory

Management
K A Fast File System for Unix
L The Design and Implementation of a Log-Structured File System
M eNVy: a non-volatile, main memory storage system
N Don't stack your log on my log
O The Google File System
P MapReduce: Simplified Data Processing on Large Clusters
Q Windows Azure Storage: A Highly Available Cloud Storage Service with

Strong Consistency
R f4: Facebook’s Warm BLOB Storage System
S Web Search for a Planet: The Google Cluster Architecture
T A comparison of software and hardware techniques for x86 virtualization
U Wait-Free Synchronization
V RCU Usage In the Linux Kernel: Eighteen Years Later

• Brainstorming questions *6 problem sets— research questions,
design decisions. Not actually having a standard answer
• Keep it short but hit the point
• You may get negative feedback if you provide irrelevant information
• If you’re asked to make a design decision, make sure you cover the

following aspects
• Why your choice makes sense to the problem asked/needs to be

addressed
• Why other listed options are not competitive as your choice

95

Part 2

• iEVAL
• We highly value your opinions
• Submit your screenshot of confirmation, equivalent to a full-credit reading

quiz
• Revision

• All slots are taken
• If you cannot make a reservation, e-mail me and the TA
• You still have to submit your code on time by tomorrow

• Check your grades on eLearn as soon as possible
• We drop 6 of your lowest reading quizzes
• Participation will show up as 4 reading quizzes

96

Announcement

Thank you all for this great quarter!

97

