The Fundamentals of Operating
Systems

Hung-Wel Tseng

Recap: von Neumman Architecture

—----
X “‘

509cbd23;

00c20800

! —
By Ioadmg different programs Into memory,

your computer can perform different functions

44444444

’-~
d N

7 00003d24 90c30000

S 2case2b3 00000008

00005024 ©0c2feee
0000bd24 += 00000008
2ca42230 ég 00c2f800
130020e4 00000008
00003d24 00c30000
2ca4e2b3 00000008

O
e
Q
-
-
e
({p)
=

Recap: How processor executes a program

- The program counter (PC) tells where the upcoming instruction is in
the memory

- Processor fetches the instruction, decode the instruction, execute the
Instruction, present the instruction results according to clock signals

- The processor fetches the next instruction whenever it's safe to do so

instruction memory

120007a30: 0f00bb27 1dah gp,15(t12)
120007a34: 509cbd23 1lda gp,—25520(gp)
120007a38: 00005d24 1dah t1,0(gp)
120007a3c: 0000bd24 1ldah t4,0(gp)
120007a40: 2ca422a0 1d1 t0,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: 00003d24 1ldah t0,0(gp)
120007a4c: 2ca4e2b3 stl zero,—-23508(t1)
120007a50: 0004ff47 clr vo

120007ab54: 28a4e5b3 stl zero,—-23512(t4)
120007a58: 20a42la4 1dg t0,-23520(t0)
120007a5c: 0e0020es4 beq t0,120007a98
120007a60: 0204el47 mov t0, tl
120007a64: 0304Ff47 clr t2

120007a68: 0500e0c3 br 120007a80

clock

Processor

Recap: von Neumman Architecture

—----
X “‘

509cbd23;

00c20800

! —
By Ioadmg different programs Into memory,

your computer can perform different functions

44444444

’-~
d N

7 00003d24 90c30000

S 2case2b3 00000008

00005024 ©0c2feee
0000bd24 += 00000008
2ca42230 ég 00c2f800
130020e4 00000008
00003d24 00c30000
2ca4e2b3 00000008

O
e
Q
-
-
e
({p)
=

Without OS

Recap: What modern operating systems support?

- Virtualize hardware/architectural resources
- Easy for programs to interact with hardware resources
- Share hardware resource among programs
- Protect programs from each other (security)

Outline

- Operating systems: virtualizing computers
. Process: the most important abstraction in modern OSs
- Restricted operations: kernel and user modes

Operating systems: virtualizing
computers

The goal of an OS

The idea of an OS: virtualization

1

The idea: virtualization

- The operating system presents an illusion of a virtual machine
to each running program and maintains architectural states of a
von Neumann machine

- Processor
- Memory

- 1/O
- Each virtualized environment accesses architectural facilities
through some sort of application programming interface (API)

- Dynamically map those virtualized resources into physical
resources

12

Demo: Virtualization

double a;

int main(int argc, char xargv[])
{

int cpu, status, 1i;

int *address_from _malloc;

cpu_set_t my_set; // Define your cpu_set bit mask.
CPU_ZERO(&my_set); // Initialize it all to @, i.e. no CPUs selected.
CPU_SET(4, &my_set); // set the bit that represents core 7.

sched setaffinity(®, sizeof(cpu set t &ny set); // Set affinity of this process to the defined mask, 1.e. only 7.
status = syscall(SYS_getcpu, &cpu, NULL, NULL);

getcpu system call to retrieve the executing CPU ID

1T (argc <
{
fprintf(stderr, "Usage: %s process_nickname\n",argv[0]);
exit(1);
¥

srand((int)time(NULL)+(int)getpid());
a = rand(); create a random number

fprintf(stderr, "\nProcess %s is using CPU: %d. Value of a is %1f and address of a is %p\n",argv[1], c
sleep(1); print the value of a and

fprintf(stderr, "\nProcess %s 1s using CPU: %d. Value of a 1s %l1f and,address of a is %p\n", a, &a);
sleep(3); print the value of aand ad fter sleep

return 0;

Process is using CPU: 4. Value of a is|685161796.000000 pnd address Jof a is 0x6010b0
Process is using CPU: 4. Value of a is|217757257.000000 pnd address Jof a is 0x6010b0

Process is using CPU: 4. Walue of a i1s]2057721479.0000004 and addresdq of a is 0x6010b0

Process is using CPU: 4., Walue of a i1s]1457934803.000000f and addresdq of a is 0x6010b0
Different values
Process is using CPU: 4., Value of a is]685161796.000000 pnd address pof a is 0x6010b0

Process is using CPU: 4. [Value of a is|217757257.000000 pnd address pf a is 0x6010b0

Process is using CPU: 4. [Value of a is|2057721479.0000001 and addresq of a is 0Ox6010b0

1457934803 .000000f and addresdq of a is 0x6010b0O
The same memory

Process is using CPU: 4., Value of a i

Different values are

The same processor! address!

preserved

Demo: Virtualization

. Some Processes may use the same processor

- Each process has the same address for variable a, but different
values.

- You may see the content of a compiled program using objdump

15

Peer instruction

- Before the lecture — You need to complete the required reading

- During the lecture — I'll bring in activities to ENGAGE you in exploring
your understanding of the material

- Popup gquestions

- Individual thinking — use polls in Zoom to express your opinion

- Group discussion
- Breakout rooms based on your residential colleges!
- Use polls in Zoom to express your group'’s opinion

- Whole-classroom discussion — we would like to hear from you

Read Think

16

Why virtualization

- How many of the following statement is true about why operating systems virtualize
running programs??

® Virtualization can help improve the utilization and the throughput of the underlying
hardware

@ Virtualization may allow the system to execute more programs than the number of
physical processors installed in the machine

® Virtualization may allow a running program or running programs to use more than install
physical memory

@ Virtualization can improve the latency of executing each program
A. O

mo O w
A wN =

17

Now, open the png file sent through
the chat (you cannot access it after
we're in break-out rooms)

After entering the break-out room, elect someone
as your scriber — who will be responsible for
express the thoughts/answers in your group

today when your team is selected!

19

Once your group reach a consensus, go back to
the main lobby and vote!
Now — let’s try to wrap up everything within 3
minutes!

20

Why virtualization

- How many of the following statement is true about why operating systems virtualize
running programs??

® Virtualization can help improve the utilization and the throughput of the underlying
hardware

@ Virtualization may allow the system to execute more programs than the number of
physical processors installed in the machine

® Virtualization may allow a running program or running programs to use more than install
physical memory

@ Virtualization can improve the latency of executing each program
A. O

mo O w
A wN =

21

Why virtualization

- How many of the following statement is true about why operating systems virtualize
running programs”?

Virtualization can help improve the utilization and the throughput of the underlying
ardware

Virtualization may allow the system to execute more programs than the number of
physical processors installed in the machine

& Virtualization may allow a running program or running programs to use more than install

physical memory Make programs less machine-dependent
Virtualization can improve the latency of executing each program

OO0 W > @
DRlIWIN O

m

22

Latency v.s. Throughput

- A 4K movie clip using H.265 coding takes 70GB in storage

- If you want to transfer a total of 2 Peta-Byte video clips (roughly 29959 movies)
from UCSD

« 100 miles from UCR

- Assume that you have a 100Gbps ethernet

- Throughput: 100 Gbits per second
- 2 Peta-byte (16 Peta-bits) over 167772 seconds = 1.94 Days
- Latency: first /0GB (first movie) in 6 seconds

23

Or...

Toyota Prius 10Gb Ethernet
100 miles from UCSD N
/5 MPH on highway! /)
50 MPG - >
Max load: 374 kg = 2,770 hard T22
drives (2TB per drive) = 5.6 PB
Throughput 100 Gb/
band\g,’vigth/ 450GB/sec 12.50B/sec
latency 3.5 hours 2 Peta-byte over 167772 seconds = 1.94 Days

response time

You see hothing in the first 3.5 hours

You can start watching the first movie as soon as you get a
frame!

24

Process: the most important
abstraction in modern operating
systems

The idea of an OS: virtualization

Process

26

Processes

- The most important abstraction in modern operating
systems.

- A process abstracts the underlying computer.

+ A process is a running program — a dynamic entity of a
program.

- Program is a static file/combination of instructions

- Process = program + states

- The states evolves over time

- A process may be dynamically switched out/back during the
execution

27

Virtualization

- The operating system presents an illusion of a virtual machine to
each running program -—process

- Each virtual machine contains architectural states of a von Neumann
machine

- Processor
- Memory

- 1/0
- Each virtualized environment accesses architectural facilities

through some sort of application programming interface (API)

: : : : . =system calls
- Dynamically map those virtualized resources into physical y

eSOUrces — policies, mechanisms

28

What happens when creating a process

code

static data

| Dynamic allocated data: malloc ()
heap

Local variables,
stack arguments static data

Virtual memory program

R,
o

Linux contains a .bss section
(O

for uninitialized global variables \

. 9/

The illusion provided by processes

code code code code

static data static data static data static data

heap heap heap heap

stack stack stack stack
Virtual memory Virtual memory Virtual memory Virtual memory
Virtually, every process seems to - ,3?
have a processor/memory space, but e x
. [) o h Y
‘¥4 only afew of themare physically 2

using the installed DRAM.

What the OS must track for a process?

- Which of the following information does the OS need to track
for each process?

A. Stack pointer

B. Program counter
C. Process state

D. Registers

E. All of the above

31

N 7
What the OS must track for a proces

- Which of the following information does the OS need to track
for each process?

A. Stack pointer

B. Program counter
C. Process state

D. Registers

E. All of the above

32

What the OS must track for a process?

- Which of the following information does the OS need to track
for each process?

A. Stack pointer

B. Program counter
C. Process state

D. Registers

. All of the above

- You also need to keep other process information like an
unigue process id, process states, |/O status, and etc...

33

Process control block

» OS has a PCB for each process

.- Sometimes called Task Controlling Block, Task Struct, or
Switchframe

- The data structure in the operating system kernel containing
the information needed to manage a particular process.

- The PCB is the manifestation of a process in an operating
system

34

Example: struct task structinLinux

struct task_struct { Process state

Ivolatlle Tong state; /* —1 unrunnable, © runnable, >0 stopped /|
VO

T Stack,
atomic_t usage;
unsigned int flags; /* per process flags, defined below */
unsigned int ptrace;
int on_rq;
int prio, static_prio, normal_prio;
const struct sched class *sched class;
struct sched_entity se;

struct sched_rt_entity rt;

unsigned int policy;

int nr_cpus_allowed;

cpumask_t cpus_allowed; PrOCeSSID
p1da_t pid;

struct task_struct __rcu *xreal_parent;
struct task_struct __rcu *parent;

struct list_head children;

struct list_head sibling;

| ow-level architectural states

/* CPU-specific state of this task x/

struct thread_struct thread;

You may find this struct in /usr/src/linux-headers-x.x.x-xx/include/linux/sched.h

35

Memory pointersin struct mm_struct

struct mm_struct {

struct vm_area_struct *x mmap; /* list of VMAs x/

unsigned long start_code, end_code, start_data, end_data;

unsigned long start brk start stack;
F;
start of heap

end of heap current stack
pointer

36

Processor statesin struct thread struct

struct thread_struct {
struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
unsigned long spo;
unsigned long sp;
#ifdef CONFIG_X86_32
unsigned long sysenter_cs;
#else
unsigned short es;

Some x86 Register values

unsigned short fsindex;

unsigned short gsindex;

#ifdef CONFIG_X86_32

” Program counter

#ifdef CONFIG_X86_64

unsigned long

#endif
unsigned long gs;
struct perf_event xptrace_bps[HBP_NUM];
unsigned long debugregé6;
unsigned long ptrace_dr7;
unsigned long cr2;
unsigned long trap_nr;
unsigned long error_code;
#ifdef CONFIG_VM86
struct vm86 *vm86;
#endif
unsigned long *xio_bitmap_ptr;
unsigned long iopl;
unsigned io_bitmap_max;
struct fpu fpu;
Y

37

Virtualization

However, we don’t want everything to pass
through this API!

API AP API AP AP API AP AP

Too slow!!!

Do you really need to track all
Intermediate states?

38

Solution — hardware support

Restricted operations: kernel and
user modes

Restricted operations

- Most operations can directly execute on the processor without OS's
Intervention

- The OS only takes care of protected resources, change running processes
or anything that the user program cannot handle properly

- Divide operations into two modes

- User mode
- Restricted operations
- User processes
- Kernel mode
- Can perform privileged operations
- The operating system kernel

- Requires architectural/hardware supports

41

Architectural support: privileged instructions

- The processor provides Ring 2
normal instructions and privileged
Instructions

- Normal instructions: ADD, SUB, MUL, and
etc ...

- Privileged instructions: HLT, CLTS, LIDT,
LMSW, SIDT, ARPL, and etc...

- The processor provides different modes Device Drivers

- User processes can use hormal
Instructions

- Privileged instruction can only be used if Least privileged
the processor is in proper mode
49 I Most privileged

Kernel

How applications can use privileged operations?

user program OS kernel
- Through the API: System calls
trap

- Implemented in “trap” INStructions e

and %cl, (%rbx)
X0r $0x19,%al

- Raise an exception in the processor EiRRcme s

add %al, (%rax)

ve redicter v-
%al, (%eax)

> N0 M
$0x8d,%al
%eax,0x101c
—-0x2bb84 (%ebx) ,%eax
%eax,—0x2bb8a (%ebx)

syscall

- The processor saves the exception e
PC and jumps to the corresponding
exception handler in the OS kernel

—-0x2bb8c (%ebx)
—-0x2bf3d(%ebx) ,%eax
$0x10

2

return-from-trap

user kernel/privileged
mode mode

43

Interrupts, system calls, exceptions

- All of them will trap to kernel mode
- Interrupts: raised by hardware
- Keystroke, network packets
. System calls: raised by applications
- Display images, play sounds
- Exceptions: raised by processor itself
- Divided by zero, unknown memory addresses

44

Whatis “kernel”

- Which of the following is true about kernel?
A. It executes as a process
B. Itis always executing, in support of other processes

C. It should execute as little as possible.
D. A&B
E. B&C

45

A/
1 — IR&tinct

What is "kernel”

- Which of the following is true about kernel?
A. It executes as a process
B. Itis always executing, in support of other processes

C. It should execute as little as possible.
D. A&B
E. B&C

46

What is "kernel”

- Which of the following is true about kernel?
A. It executes as a prOCeSS — executing kernel function will then require context switch, but

context switch also needs to access kernel....

B. Itis always executing, in support of other processes

— what if we only have one processor core? You cannot

C. It should execute as little as possible. | executeanyotherprogram..

D. A & B - The OS kernel only get involved when necessary

E. B&C - System calls

- Hardware interrupts
- Exceptions
- The OS kernel works on behave of the requesting process — not a process
- Somehow like a function call to a dynamic linking library
- Preserve the current architectural states and update the PCB

- As aresult — overhead of copying registers, allocating local variables for
kernel code and etc...

a7

Announcement

- Two reading quizzes next week
- We will discuss 4 papers next week

- We split them into two since that's probably the first time you read
papers

61

Computer

Engineering

