
Design philosophy of operating
systems (II)

Hung-Wei Tseng

• Implemented in “trap” instructions
• Raise an exception in the processor
• The processor saves the exception PC and jumps

to the corresponding exception handler in the OS
kernel

• The OS kernel only get involved when necessary
• System calls
• Hardware interrupts
• Exceptions

• The OS kernel works on behave of the
requesting process — not a process

• Somehow like a function call to a dynamic linking library
• As a result — overhead of copying registers, allocating local

variables for kernel code and etc…
2

Recap: How applications can use privileged operations?

add 0x1bad(%eax),%dh
add %al,(%eax)
decb 0x52(%edi)
in $0x8d,%al
mov %eax,0x101c
lea -0x2bb84(%ebx),%eax
mov %eax,-0x2bb8a(%ebx)
lgdtl -0x2bb8c(%ebx)
lea -0x2bf3d(%ebx),%eax
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx)
and %cl,(%rbx)
xor $0x19,%al
add %edx,(%rbx)
add %al,(%rax)
syscall
add %al,(%rbx)
……
……
……
……
……
……
……
……

trap

return-from-trap

• Why should people care about this paper in 1968?
• Turn-around time of short programs
• Economic use of peripherals
• Automatic control of backing storage
• Economic use of the machine
• Designing a system is difficult in 1968

• Difficult to verify soundness
• Difficult to prove correctness
• Difficult to deal with the complexities

3

Recap: THE

Layered Design

Process Abstraction
Virtual memory

Mutex

Recap: THE

4

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

THE

privilege
boundary

privilege
boundary

privilege
boundary

privilege
boundary

• On a 3.7GHz intel Core i5-9600K Processor, please make a
guess of the overhead of switching from user-mode to kernel
mode.

A. a single digit of nanoseconds
B. tens of nanoseconds
C. hundreds of nanoseconds
D. a single digit of microseconds
E. tens of microseconds

5

The overhead of kernel switches/system calls

Operations Latency (ns)
L1 cache reference 1 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100 ns
Read 1 MB sequentially from memory 3,000 ns
Compress 1K bytes with Zippy 2,000 ns
Read 4K randomly from SSD* 16,000 ns
Read 1 MB sequentially from SSD* 49,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from disk 825,000 ns
Disk seek 2,000,000 ns
Send packet CA-Netherlands-CA 150,000,000 ns

• How many the following is/are true regarding the proposed
hierarchical design
! The hierarchical design facilitates debugging
" The hierarchical design makes verification of system components easier
The hierarchical design reduces the overhead of running a single process
$ The hierarchical design allows flexible resource allocation
A. 0
B. 1
C. 2
D. 3
E. 4

6

Recap: Why layered/hierarchical design?

— function calls/syscalls, memory copying, and etc…

— what a potential problem is this?

• Which of the following words best described the why of “The
Nucleus of a Multiprogramming System”

A. Feasibility
B. Performance
C. Freedom
D. Hierarchy
E. Robustness

7

Recap: Why “Nucleus”

avoid this kind of pronoun

• Nucleus (cont.)
• The UNIX time-sharing operating system
• Mach: A New Kernel Foundation For UNIX Development

8

Outline

• Regarding “system nucleus”, how many of the following statements are
correct?
! The system nucleus is a process
" The system nucleus allows multiple operating systems to execute concurrently
The system nucleus provides primitives to load and swap programs
$ Operating systems are user-level processes in the system nucleus architecture
A. 0
B. 1
C. 2
D. 3
E. 4

9

What is “system nucleus”Poll close in

System Nucleus …

11

System Nucleus
S

process

• Regarding “system nucleus”, how many of the following statements are
correct?
! The system nucleus is a process
" The system nucleus allows multiple operating systems to execute concurrently
The system nucleus provides primitives to load and swap programs
$ Operating systems are user-level processes in the system nucleus architecture
A. 0
B. 1
C. 2
D. 3
E. 4

12

What is “system nucleus”

Can multiple OSs running concurrently?

13

System Nucleus
S—The primitive OS

process A—
OS #1

B—
OS #2

C—
OS #3

D—
App

E—
App

F—
App

How many layers?

14

System Nucleus
S—The primitive OS

A—
OS #1

B—
OS #2

C—
OS #3

D—
App

E—
App

F—
App

privileged
mode

user
mode

process

• Regarding “system nucleus”, how many of the following statements are
correct?
! The system nucleus is a process
" The system nucleus allows multiple operating systems to execute concurrently
The system nucleus provides primitives to load and swap programs
$ Operating systems are user-level processes in the system nucleus architecture
A. 0
B. 1
C. 2
D. 3
E. 4

15

What is “system nucleus”

• Hierarchical
• Ease of debugging/verification/testing
• Lack of flexibility — you can only interact with neighbor layers
• Overhead in each layer — not so great for performance

• Flat
• Flexibility/Freedom

16

Hierarchical design v.s. flat structure

What the OS kernel should do?

17

The UNIX Time-Sharing System
Dennis M. Ritchie and Ken Thompson

Bell Laboratories

18

19

• How many of following statements is/are the motivations of building
UNIX?
! Reducing the cost of building machines with powerful OSes
" Reducing the burden of maintaining the OS code
Reducing the size of the OS code
$ Supporting networks and multiprocessors
A. 0
B. 1
C. 2
D. 3
E. 4

20

Why they built “UNIX”Poll close in

• How many of following statements is/are the motivations of building
UNIX?
! Reducing the cost of building machines with powerful OSes
" Reducing the burden of maintaining the OS code
Reducing the size of the OS code
$ Supporting networks and multiprocessors
A. 0
B. 1
C. 2
D. 3
E. 4

22

Why they built “UNIX”

• A powerful operating system on “inexpensive” hardware (still
costs USD $40,000)

• An operating system promotes simplicity, elegance, and ease
of use

• They made it

23

Why should we care about “UNIX”

• Providing a file system
• File as the unifying abstraction in UNIX
• Remind what we mentioned before

24

What UNIX proposed

• How many of the following statements about UNIX is/are correct?
! The semantics of accessing a device and accessing a text file is the same
" For the file name /alpha/beta/gamma, alpha, beta, gamma are all files.
Altering the content of directory requires privileged operations
$ The programmer needs to treat random and sequential file accesses

differently
A. 0
B. 1
C. 2
D. 3
E. 4

25

The file abstractionPoll close in

• How many of the following statements about UNIX is/are correct?
! The semantics of accessing a device and accessing a text file is the same
" For the file name /alpha/beta/gamma, alpha, beta, gamma are all files.
Altering the content of directory requires privileged operations
$ The programmer needs to treat random and sequential file accesses

differently
A. 0
B. 1
C. 2
D. 3
E. 4

27

The file abstraction

doesn’t

• Regarding the protection in the assigned UNIX paper, how many of the
followings is/are correct?
! The same file may have different permissions for different user-id
" The owner of the file may not have the permission of writing a file
If the user does not have a permission to access a device, set-user-id will

guarantee that the user will not be able to access that device
$ In the UNIX system described in this paper, if the file owner is “foo”, then the user

“bar” will have the same permission as another user (e.g. “xyz”).
A. 0
B. 1
C. 2
D. 3
E. 4

28

ProtectionPoll close in

• Regarding the protection in the assigned UNIX paper, how many of the
followings is/are correct?
! The same file may have different permissions for different user-id
" The owner of the file may not have the permission of writing a file
If the user does not have a permission to access a device, set-user-id will

guarantee that the user will not be able to access that device
$ In the UNIX system described in this paper, if the file owner is “foo”, then the user

“bar” will have the same permission as another user (e.g. “xyz”).
A. 0
B. 1
C. 2
D. 3
E. 4

30

Protection

allow the user to have the same permission as the creator of the

The UNIX system at that time doesn’t have “group” — everyone other than the owner is “others”

Right amplification

31

• chmod u+s allows “others” to execute the program as the
creator

• There exists a file “others” cannot read
• Another program can dump the content
• Without setuid, others still cannot read the content
• With setuid, others can read that!

32

Demo: setuid

UNIX’s interface of managing
processes

33

• fork
• wait
• exec
• exit

34

The basic process API of UNIX

• pid_t fork();
• fork used to create processes (UNIX)
• What does fork() do?

• Creates a new address space (for child)
• Copies parent’s address space to child’s
• Points kernel resources to the parent’s resources (e.g. open files)
• Inserts child process into ready queue

• fork() returns twice
• Returns the child’s PID to the parent
• Returns “0” to the child

35

fork()

• What happens if we execute the following code?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

36

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

Poll close in

• What happens if we execute the following code?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

37

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

Poll close in

• What happens if we execute the following code?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

38

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

39

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

40

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

41

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Output:
My pid is 7

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

42

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Child pid is 0
Output:
My pid is 7

Assume
the parent’s PID is 2;
child’s PID is 7.

fork()

43

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Child pid is 0

Output:
My pid is 7

Child pid is 7

Assume
the parent’s PID is 2;
child’s PID is 7.

• What happens if we execute the following code?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

44

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

• Reading quizzes due next Tuesday
• Welcome new friends! — will drop a total of 6 reading quizzes for the quarter
• Attendance count as 4 reading quizzes
• We plan to have a total of 11 reading quizzes

• Office Hour links are inside Google Calendar events
• https://calendar.google.com/calendar/u/0/r?

cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
• Different links from lecture ones
• We cannot share through any public channels so that we can better avoid Zoom bombing

• We will make both midterm and final exams online this quarter
• Avoid the uncertainty of COVID-19
• Avoid high-density in the classroom (only sits 60 and we have 59 for now) during

examines

115

Announcement

https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

ͺͻͥ

Computer
Science &
Engineering

202

