Design philosophy of operating
systems (ll)

Hung-Wel Tseng

Recap: How applications can use privileged operations?
. . . user program : OS kernel

- Implemented in "trap” instructions

- Raise an exception in the processor U’éIO

- The processor saves the exception PC and jumps BEiiaseay '

X0Y $0x19,%al

Oxl1lbad(%eax) ,%dh
%al, (%eax)

to the corresponding exception handlerinthe OS EXESEAE Y Qi iocb ox520sedi)
add %al, (%rax) : §2§§défiélc
I(EBrr1€3| syscall%all(%rbx) ; f@x2l’3b84(%ebx),%eax
valved when neceaccary B 5 oxobb8e o)
- The OS kernel only get involved when necessary & —on2b1sa(ietn) eox

. Systemcalls =

.- Hardware interrupyts B
- Exceptions

- The OS kernel works on behave of the

requesting process — Not a process

- Somehow like a function call to a dynamic linking library

- As aresult — overhead of copying registers, allocating local user kernel/privileged
variables for kernel code and etc... mode mode

return-from-trap

Recap: THE

- Why should people care about this paper in 19687

- Turn-around time of short programs Process Abstraction

- Economic use of peripherals Virtual memory
- Automatic control of backing storage Mutex

- Fconomic use of the machine

- Designing a system is difficult in 1968

- Difficult to verify soundness)
- Difficult to prove correctness Layered Des'Qn

- Difficult to deal with the complexities

Recap: THE

privilege
boundary

privilege
boundary

privilege
boundary

layer 1: memory (segment/page) management

privilege
boundary

layer O: processor allocation & scheduling

The overhead of kernel switches/system calls

» On a 3.7/GHz intel Core i5-9600K Processor, please make a
guess of the overhead of switching from user-mode to kernel

Operations Latency (ns)
mode. v
L1 cache reference Tns
A. asingle digit of nanoseconds Branch misprediit 3ns
L2 cache reference 4 ns
B. tens of nanoseconds Mutex lock/unlock 17ns
Send 2K bytes over network 44 ns
e
Main memory reference 100 ns
D a Slngle dlglt Of mlcroseCOndS Read 1 MB sequentially from memory 3,000 ns
Compress 1K bytes with Zippy 2,000 ns
E . tenS Of mICrOSGCOndS Read 4K randomly from SSD* 16,000 ns
Read 1 MB sequentially from SSD* 49,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from disk 825,000 ns
Disk seek 2,000,000 ns

Send packet CA-Netherlands-CA 150,000,000 ns

Recap: Why layered/hierarchical design?

- How many the following is/are true regarding the proposed

hierarchical design

® The hierarc
@ The hierarc
x The hierarc
S The hierarc
A. O

B. 1

D. 3
E. 4

nica
nica
nica

Nica

design facilitates debugging
design makes verification of system components easier

design reduces the overhead of running a single process
— function calls/syscalls, memory copying, and etc...

design allows flexible resource allocation
— what a potential problem is this?

Recap: Why “Nucleus”
P: y
[} [] [] ’l
- Which of the following words best described the why of “The
Nucl f a Multi iIng System”

U C e U S O a U I p rOg ra m m I n g yS e m The multiprogramming system developed by Regnecen-
tralen for the RC 4000 computer is a general tool for the
program scheduling and resource allocation can be imple-
mented.

B‘ Pe rformance I'or the designer of advanced information systems, a
. nately; s 1s precisely what present operating systems do

D H |era rChy not atlow. Most of them are based exclusively on a single
scheduling, real-time scheduling, or conversational access.

E . RObUStne SS When the need arises, the user often finds it hopeless to
tions in its basie design about a specific mode of operation.

The alternative—to replace the original operating system

poseible, matter because the rest of the software is inti-

mately bound to the conventions reguired by the original

Thiz unfortunate situation indicutes that {the main

problem in the design of 2 muliiprog ramming system 1s not

rather to supply a system mueleus that can be extended

with new operating systems in an orderly manner, This is

1, Introduction
A F : b : I 't design of operating systems. I't allows the dynamice ereation
. eaSI I I y of u hierarchy of processes in which diverse slrategies of
vital requirement of anyv operating system is that it allow
C F reed O m him to change the mode of operation it controls; otherwise
- 'sf design can be seriously limited. Unfortu-
A
aVOId thls klnd Of pronoun mode of operation, such as batch processing, priority
modify an operating svstem that has made rigid assump-
with & new one—is in most computers a serious, if not im-
svstem.
to define functions that satisfy specifie operating needs, but
the primary objeetive of the RC 4000 svstem..

Outline

- Nucleus (cont.)
- The UNIX time-sharing operating system
- Mach: A New Kernel Foundation For UNIX Development

What is “system nucleus”

- Regarding “system nucleus”, how many of the following statements are
correct?

® The system nucleus is a process

@ The system nucleus allows multiple operating systems to execute concurrently
® The system nucleus provides primitives to load and swap programs

perating systems are user-level processes in the system nucleus architecture

System Nucleus ...

2. System Nucleus

Our basic attitude during the designing was to make no
assumptions sbout the particular strategy needed to
optimize a given type of installation, but to concentrate on
the fundamental aspects of the control of an environment
consisting of parallel, cooperating processes.

Our first task was to assign a precise meaning to the
process concept, i.e. to introduce an unambiguous ter-
minology defining what a process is and how it is imple-
mented on the actual computer.

The next step was to seleet primitives for the synchro-
nization and transfer of information among parallel
processes.

Our final deecisions concerned the rules for the dynamic

Process

The pi.lrpose of the system nucleus is to implement these
fundamental coneepts: simulation of processes; communi-
cation among processes; ereation, control, and removal of

processes,

rupt system. We do not regard the system nucleus as an
independent process, but rather as a software extension of
the hardware structure, which makes the computer more
attractive for multiprogramming. Its function 18 to imple-
ment our process concept and primitives that processes can
invoke to ereate and control other processes and communi-
cate with them.

1

What is “system nucleus”

- Regarding “system nucleus”, how many of the following statements are
correct?

ne system nucleus is a process

ne system nucleus allows multiple operating systems to execute concurrently
ne system nucleus provides primitives to load and swap programs

perating systems are user-level processes in the system nucleus architecture

12

Can multiple OSs running concurrently?

For a given installation we still need, as part of the sys-
tem, programs that control strategies of operator com-
munication, program scheduling, and resource allocation;
put 1t 1S essential tor the orderly growth ot the system tha
hese operating systems be implemented as other programs.

After initial loading, the internal store contains the sys-
tem nucleus and a basic operating system, S, which can
create parallel processes, A, B, C, ete., on request from

. 'I'he processes can 1n turn create other processes,
D, E, F, ete. Thus while S acts as a primitive operating

system for A, B, and C, these in turn act as operating sys-
tems for their children, D, E, and F. This is illustrated by

process

OS #1 OS#2 OS#3
S—The primitive OS

System Nucleus

13

How many layers?

In this multiprogramming system, all privileged func-
tions are implemented in the system nucleus, which has no
built-in strategy. Strategies can be introduced at the var-
ious higher levels, where each process has the power to
control the scheduling and resource allocation of its
children. The only rules enforced by the nucleus are the
following: a process can only allocate a subset of its own
resources (including storage and message buffers) to its
children; a process can only start, stop, and remove its own
children (including their descendants). After removal of a
process, its resources are returned to the parent process.

user OS #1 OS#2 OS#3
mode S—The primitive OS

privileged System Nucleus
mode

Process

14

What is “system nucleus”

- Regarding “system nucleus”, how many of the following statements are
correct?

'he system nucleus is a process
ne system nucleus allows multiple operating systems to execute concurrently
ne system nucleus provides primitives to load and swap programs

perating systems are user-level processes in the system nucleus architecture

OO0 W > @
rlwldv 2 00

m

15

Hierarchical design v.s. flat structure

- Hierarchical

- Ease of debugging/verification/testing

- Lack of flexibility — you can only interact with neighbor layers
- Overhead in each layer — not so great for performance

. Flat
- Flexibility/Freedom

16

What the OS kernel should do?

The UNIX Time-Sharing System

Dennis M. Ritchie and Ken Thompson
Bell Laboratories

DENNIS RITCHIE & N|

KEN TH MPSON

<
4
a8}
——
O
2
—
e,
=
0,
>
=

Sust | \
E

PROGRAMMING
_ LANGUAGE

BRIAN W KERNIGHAN
DENNIS M RITCHIE

FROMTICE WLL S0P RS SIS

AWARD

1983

Why they built "UNIX"

- How many of following statements is/are the motivations of building
UNIX?

Reducing the cost of building machines with powerful OSes

Reducing the burden of maintaining the OS code

Reducing the size of the OS code

Supporting networks and multiprocessors

MOOW>E0E 0

A WODN-—-O0

20

Why they built “UNIX"

- How many of following statements is/are the motivations of building

UNIX?
® Reducing the cost of building machines w
@ Reducing the burden of maintaining the O
® Reducing the size of the OS code
@ Supporting networks and multiprocessors

A. O

o
N

O !
N

> W

22

ith powerful OSes
S code

Perhaps the most important achievement of UNIX
i3 to demonstrate that a powerful operating system
for interzetive use need nol be expensive either in
equipment or in human effort: UNIx can run on hardware
costing as little as $40,000, and lcss than two man-
years were spent on the main system software. Yet

The stze of the new systeam 1s about one third greater
than the old. Since the new system is not only much
casicr to understand and to modify but also includes
many functional improvements, including multipro-
gramming and the ability to share reentrant code
among several user programs, we considerad this in-
crease in size quite acce ptable.

Why should we care about “UNIX"

11
I

A powerful operating system on “inexpensive” hardware (still

costs USD $40,000)

- An operating system promotes simplicity, elegance, and ease
''''''''' zZillow s Averse Sig Help
of use

They made it

X g $34,000 Ibds 2ba 1345 $20,000 2bds 2ba 1,080 soft

9360 N Blakstone Ave SPC 136, Fresno, CA93720 3138 W Dakota Ave SPC 195, Fresno, CA 93722
© Home for ale ® Home for sale

$35,000 20ds 1ba 20san $30,000 2bds 1ba 720 saft
%% 4549 E jensen Ave, Fresno, CA 93725 336 £ Alluvial Ave SPC 261, Fresno, CA 93720
® Home for ale ® Home for sale

What UNIX proposed

- Providing a file system
- File as the unifying abstraction in UNIX
- Remind what we mentioned before

24

The file abstraction

- How many of the following statements about UNIX is/are correct?
® The semantics of accessing a device and accessing a text file is the same
@ Forthe file name /alpha/beta/gamma, alpha, beta, gamma are all files.
® Altering the content of directory requires privileged operations

@ The programmer needs to treat random and sequential file accesses
differently

moOowerE
A WN-—-O

25

The file abstraction

- How many of the following statements about UNIX is/are correct?
® The semantics of accessing a device and accessing a text file is the same
@ Forthe file name /alpha/beta/gamma, alpha, beta, gamma are all files.
® Altering the content of directory requires privileged operations

@ The programmer needs to treat random and sequential file accesses
. oesn't
differently

0w >
N = O

mio
N jw

27

Protection

- Regarding the protection in the assigned UNIX paper, how many of the
followings is/are correct?
® The same file may have different permissions for different user-id
@ The owner of the file may not have the permission of writing a file

® If the user does not have a permission to access a device, set-user-id will
guarantee that the user will not be able to access that device

@ Inthe UNIX system described in this paper, if the file owner is "foo", then the user
"bar” will have the same permission as another user (e.g. "xyz").

0

moOOoOwe»E
A WD -

28

Protection

- Regarding the protection in the assigned UNIX paper, how many of the
followings is/are correct?
® The same file may have different permissions for different user-id
@ The owner of the file may not have the permission of writing a file
® If the user does not have a permission to access a device, set-user-id will

—guarantee-thattheuserwitrmotoeabieto-accesstivat device
_allow the user to have the same permcl;ssign as the creator of the
@ Inthe UNIX system described in this paper, if the file owner is "foo", then the user

"bar” will have the same permission as another user (e.g. “xyz").
The UNIX system at that time doesn’t have “group” — everyone other than the owner is “others”

. 0
.
. 2

[0 3]

E. 4

O T >

30

Right amplification

:.Ir

DODO B0-

2 |w olalac =1 = "

M gldl3c nlw w

Wl w olalac] o P91

N H CUEREN 2w

X H oal i 1R A2 v v
¥ H o3|l

ce.. BAEL

AWONDD3

==
5 OU

£ ¢

31

Demo: setuid

- chmod u+s allows "others"” to execute the program as the
creator

- There exists a file "others"” cannot read

- Another program can dump the content

- Without setuid, others still cannot read the content
- With setuid, others can read that!

32

UNIX's interface of managing
processes

The basic process API of UNIX

e fork
e walt
e eXec
e X1t

fork()

e pid t fork();:
- Tork used to create processes (UNIX)

- What does fork () do?
- Creates a hew address space (for child)
. Copies parent’s address space to child'’s
- Points kernel resources to the parent’s resources (e.g. open files)
- Inserts child process into ready queue

- fork () returns twice
. Returns the child’s PID to the parent
- Returns “0" to the child

35

What will happen?

- What happens if we execute the following code?

)) Assume
int main() { , .
int pid; the parent’'s PID is 2;
if ((pid = fork()) == @) { child's PID is 7.

printf ("My pid is %d\n", getpid());

¥
printf (”"Child pid is %d\n", pid);
return 0;

my pid values printed # of times "child pid" is printed child pid values printed

7 2 7,0

2 2 7,0
7,2 1 7

0 2 7,2

7 1 7
36

What will happen?

- What happens if we execute the following code?

)) Assume
int main() { , .
int pid; the parent’'s PID is 2;
if ((pid = fork()) == @) { child's PID is 7.

printf ("My pid is %d\n", getpid());

¥
printf (”"Child pid is %d\n", pid);
return 0;

my pid values printed # of times "child pid" is printed child pid values printed

7 2 7,0

2 2 7,0
7,2 1 7

0 2 7,2

7 1 7
37

What will happen?

- What happens if we execute the following code?

)) Assume
int main() { , .
int pid; the parent’'s PID is 2;
if ((pid = fork()) == @) { child's PID is 7.

printf ("My pid is %d\n", getpid());

¥
printf (”"Child pid is %d\n", pid);
return 0;

my pid values printed # of times "child pid" is printed child pid values printed

7 2 7,0

2 2 7,0
7,2 1 7

0 2 7,2

7 1 7
38

Assume

the parent's PID is 2; f oY k ()
child's PID is 7.

int pid: code

if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

39

Assume
the parent’'s PID is 2;
child's PID is 7.

int pid; code int pid; code
if ((pid = fork()) == 0) { if ((pid = fork()) == 0) {
printf(”My pid is %d\n”, getpid()); printf(”My pid is %d\n", getpid());

} ¥
printf(”Child pid is %d\n", pid): printf(”Child pid is %d\n", pid):

static data static data

Virtual memory Virtual memory

Assume
the parent’'s PID is 2;
child's PID is 7.

int pid: code

if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());
S

printf(“Child pid is %d\n", pid);

static data

Virtual memory

Output:
My pid is 7

int pid: code
if ((pid = fork()) == @) {
printf(”My pid is %d\n", getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

Assume
the parent’'s PID is 2;
child's PID is 7.

int pid: code
if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

Output:
My pid is 7
Child pid is O

int pid: code
if ((pid = fork()) == @) {
printf(”My pid is %d\n", getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

Assume
the parent’'s PID is 2;
child's PID is 7.

int pid: code
if ((pid = fork()) == @) {
printf(”My pid is %d\n”, getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

Output:
My pid is 7
Child pid is O

int pid:
if ((pid = fork()) == @) {
printf(”My pid is %d\n", getpid());

}
printf(“Child pid is %d\n", pid);

static data

Virtual memory

What will happen?

- What happens if we execute the following code?

int main() { Assume .
int pid; the parent’'s PID is 2;
if ((pid = fork()) == 0) { child’'s PID is 7.

printf ("My pid is %d\n", getpid());
}
printf (”"Child pid is %d\n", pid);

return 9;
my pid values printed # of times "child pid" is printed child pid values printed

7 2 7,0

1 2 2 7,0

1 O 2 7,2

1 7 1 7
44

}
A

Announcement

- Reading quizzes due next Tuesday

- Welcome new friends! — will drop a total of 6 reading quizzes for the quarter
- Attendance count as 4 reading quizzes

- We plan to have a total of 11 reading quizzes

- Office Hour links are inside Google Calendar events

. https://calendar.google.com/calendar/u/O/r?
cid=ucr.edu_b8ubdvkretn6kgbigunlc6bldg@group.calendar.google.com

- Different links from lecture ones
- We cannot share through any public channels so that we can better avoid Zoom bombing

- We will make both midterm and final exams online this quarter

- Avoid the uncertainty of COVID-19

- Avoid high-density in the classroom (only sits 60 and we have 59 for now) during
examines

115

https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

Computer

Engineering

