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Recap: impact of UNIX
• Clean abstraction — everything as a file 
• File system — will discuss in detail after midterm 
• Portable OS 

• Written in high-level C programming language 
• The unshakable position of C programming language 

• We are still using it!



Recap: Each process has a separate virtual memory space
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Processor
Virtually, every process seems to have a 
processor, but only a few of them are 

physically executing.

They are isolated from one 
another. Each of them is not 
supposed to know what 
happens to another one
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Recap: impact of UNIX
• Clean abstraction — everything as a file 
• File system — will discuss in detail after midterm 
• Portable OS 

• Written in high-level C programming language 
• The unshakable position of C programming language 

• We are still using it!



Recap: Review the first demo
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• UNIX 
• Protection is associated with each file — described in the metadata 
of a file 

• Each file contains three (only two in the original paper) types of 
users 

• Each type of users can have read, write, execute permissions 
• setuid to promote right amplifications
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Recap: Protection mechanisms



• fork 
• wait 
• exec 
• exit
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The basic process API of UNIX



• What happens if we execute the following code?
int main() { 
     int pid; 
         if ((pid = fork()) == 0) { 
             printf (”My pid is %d\n", getpid()); 
         } 
         printf (”Child pid is %d\n", pid); 
          return 0; 
}
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What will happen?

# of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume 
the parent’s PID is 2; 
child’s PID is 7. 



UNIX’s interface of managing 
processes
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• What happens if we add an exit?
int main() { 

     int pid; 
         if ((pid = fork()) == 0) { 
             printf (”My pid is %d\n", getpid()); 
             exit(0); 
         } 
         printf (”Child pid is %d\n", pid); 
          return 0; 
}
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If we add an exit …
Assume 
the parent’s PID is 2; 
child’s PID is 7. 

# of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7



fork() and exit()
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Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code



fork() and exit()
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Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

7 0



fork() and exit()
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Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

7 0

Output: 
My pid is 7



fork() and exit()
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Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

7 0

Output: 
My pid is 7



fork() and exit()
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Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

7

Output: 
My pid is 7



fork() and exit()
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Virtual memory

int pid;  

if ((pid = fork()) == 0) {  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ? stack

heap

code

7

Output: 
My pid is 7
Child pid is 7



• What happens if we add an exit?
int main() { 

     int pid; 
         if ((pid = fork()) == 0) { 
             printf (”My pid is %d\n", getpid()); 
             exit(0); 
         } 
         printf (”Child pid is %d\n", pid); 
          return 0; 
}
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If we add an exit …
Assume 

the parent’s PID is 2; 
child’s PID is 7. 

# of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7



• Consider the following code
fork(); 
printf(“moo\n”); 
fork(); 
printf(“oink\n”); 
fork(); 
printf(“baa\n”); 
How many animal noises will be printed? 
A. 3 
B. 6 
C. 8 
D. 14 
E. 24
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More forksPoll close in



• Consider the following code
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printf(“moo\n”); 
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More forksPoll close in



• Consider the following code
fork(); 
printf(“moo\n”); 
fork(); 
printf(“oink\n”); 
fork(); 
printf(“baa\n”); 
How many animal noises will be printed? 
A. 3 
B. 6 
C. 8 
D. 14 
E. 24
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More forks

2x
4x
8x



• int execvp(char *prog, char *argv[]) 
• fork does not start a new program, just duplicates the current 
program 

• What execvp does: 
• Stops the current process  
• Overwrites process’ address space for the new program 
• Initializes hardware context and args for the new program  
• Inserts the process into the ready queue  

• execvp does not create a new process
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Starting a new program with execvp()



• Windows only has exec 
• Flexibility 
• Allows redirection & pipe 

• The shell forks a new process whenever user invoke a program 
• After fork, the shell can setup any appropriate environment 
variable to before exec 

• The shell can easily redirect the output in shell: a.out > file
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Why separate fork() and exec()



exec()
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Virtual memory

int pid;  
if ((pid = fork()) == 0) {
  execvp(“a.out”,NULL);  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: ?

stack

heap

code



exec()
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Virtual memory

int pid;  
if ((pid = fork()) == 0) {
  execvp(“a.out”,NULL);  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: 7

stack

heap

code

Virtual memory

int pid;  
if ((pid = fork()) == 0) {
  execvp(“a.out”,NULL);  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: 0

stack

heap

code



exec()
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Virtual memory

int pid;  
if ((pid = fork()) == 0) {
  execvp(“a.out”,NULL);  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: 7

stack

heap

code

Virtual memory

int pid;  
if ((pid = fork()) == 0) {
  execvp(“a.out”,NULL);  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: 0

stack

heap

code

Output: 
Child pid is 7



exec()

26

Virtual memory

int pid;  
if ((pid = fork()) == 0) {
  execvp(“a.out”,NULL);  
  printf(“My pid is %d\n”, getpid()); 
  exit();  
} 
  printf(“Child pid is %d\n”, pid);  

static data

pid: 5

stack

heap

code

Virtual memory

int main() { 
  printf(“New program!”); 
  return 0; 
} 

static data

stack

heap

code

Output: 
Child pid is 7
New program!



• How many of the following UNIX features/functions are implemented 
in the kernel? 
! I/O device drivers 
" File system 
# Shell 
$ Virtual memory management 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

27

What’s in the kernel?Poll close in



• How many of the following UNIX features/functions are implemented 
in the kernel? 
! I/O device drivers 
" File system 
# Shell 
$ Virtual memory management 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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What’s in the kernel?Poll close in



Let’s write our own shells
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• Say, we want to do ./a > b.txt 
• fork 
• The forked code opens b.txt 
• The forked code dup the file descriptor 
• The forked code assigns b.txt to stdin/stdout 
• The forked code closes b.txt 
• exec(“./a”, NULL)

30

How to implement redirection in shell



• Say, we want to do ./a > b.txt 
• fork 
• The forked code opens b.txt 
• The forked code dup the file descriptor to stdin/stdout 
• The forked code closes b.txt 
• exec(“./a”, NULL)
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How to implement redirection in shell

Virtual memory

int pid, fd; 
char cmd[2048], prompt = “myshell$” 
while(gets(cmd) != NULL) { 
  if ((pid = fork()) == 0) {
    fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR | 
S_IWUSR);
    dup2(fd, stdout);
    close(fd);
    execv(“./a”,NULL);  
  } 
  else 
    printf(“%s ”,prompt); 
}

static data

stack

heap

code

Virtual memory

int pid, fd; 
char cmd[2048], prompt = “myshell$” 
while(gets(cmd) != NULL) { 
  if ((pid = fork()) == 0) {
    fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR | 
S_IWUSR);
    dup2(fd, stdout);
    close(fd);
    execv(“./a”,NULL);  
  } 
  else 
    printf(“%s ”,prompt); 
}

static data

stack

heap

code

The shell can respond to next input

Homework for you:
Think about the case when 
your fork is equivalent to fork+exec()



• pid_t wait(int *stat) 
• pid_t waitpid(pid_t pid, int *stat, int 
opts) 

• wait / waitpid suspends process until a child process ends 
• wait resumes when any child ends 
• waitpid resumes with child with pid ends 
• exit status info 1 is stored in *stat 
• Returns pid of child that ended, or -1 on error 

• Unix requires a corresponding wait for every fork
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wait()



• How many of the following UNIX features/functions are implemented 
in the kernel? 
! I/O device drivers 
" File system 
# Shell 
$ Virtual memory management 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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What’s in the kernel?

user-level

kernel

shell

Kernel

privilege 
boundary



• A user program provides an interactive UI 
• Interprets user command into OS functions 
• Basic semantics: 

command argument_1 argument_2 … 
• Advanced semantics 

• Redirection 
• > 
• < 

• Pipe 
• I 

• Multitasking 
• &

34

Shell



• Clean abstraction 
• File system — will discuss in detail after midterm 
• Portable OS 

• Written in high-level C programming language 
• The unshakable position of C programming language 

• We are still using it!
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The impact of UNIX



Mach: A New Kernel Foundation For UNIX 
Development

Mike Accetta , Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian , 
Michael Young 

Computer Science Department, Carnegie Mellon University
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• How many of the following statements is/are true regarding the motivations 
of developing Mach in 1986? 
! Modern UNIX systems do not provide consistent interfaces for system facilities 
" System level services can only be provided through fully integration of the UNIX 

kernel 
# The process abstraction cannot use multiprocessors efficiently 
$ Network communication is not protected 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is “Mach” proposed?Poll close in



• How many of the following statements is/are true regarding the motivations 
of developing Mach in 1986? 
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Why is “Mach” proposed?Poll close in



• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/
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The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/


• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/ 

• On a 3.2GHz intel Core i5-6500 Processor 
• Process fork+exit: 53.5437 microseconds 
• More than 16K cycles
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The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/


• How many of the following statements is/are true regarding the motivations 
of developing Mach in 1986? 
! Modern UNIX systems do not provide consistent interfaces for system facilities 
" System level services can only be provided through fully integration of the UNIX 

kernel 
# The process abstraction cannot use multiprocessors efficiently 
$ Network communication is not protected 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is “Mach” proposed?



• The hardware is changing 
• Multiprocessors 
• Networked computing 

• The software 
• The demand of extending an OS easily 
• Repetitive but confusing mechanisms for similar stuffs
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Why “Mach”?

Make UNIX great again!



• How many pairs of the “why” and the “what” in Mach are correct?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Poll close in
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Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
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• The hardware is changing 
• Multiprocessors 
• Networked computing 

• The software 
• The demand of extending an OS easily 
• Repetitive but confusing mechanisms for similar stuffs
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Why “Mach”?



• UNIX provides a variety of mechanisms 
• Pipes 
• Pty’s 
• Signals 
• Sockets 

• No protection 
• No consistency 
• Location dependent
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Interprocess communication



• Port is an abstraction of: 
• Message queues 
• Capability 

• What do ports/messages promote? 
• Location independence — everything is communicating with ports/
messages, no matter where it is

47

Ports/Messages



Ports/Messages
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Program A
message = “something”; 
send(port Z, message);

Port Z send

Port B recv
Object C read, write
Object D read

Capability of A

Port Z

Program B

recv(port Z, message);

0
1
2
3
4

Message queues

MQ0 read, write

Capability of Z

Port Z recv
Port B send

Object C read, write
Object D read

Capability of B



• An access control list associated with an object 
• Contains the following: 

• A reference to an object 
• A list of access rights 

• Whenever an operation is attempted: 
• The requester supplies a capability of referencing the requesting 
object — like presenting the boarding pass 

• The OS kernel examines the access rights 
• Type-independant rights 
• Type-dependent rights
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What is capability? — Hydra



• How many of the following regarding the comparison of parallelizing 
computation tasks using processes and threads is/are correct? 
! The context switch and creation overhead of processes is higher 
" The overhead of exchanging data among different computing tasks for the 

same applications is higher in process model 
# The demand of memory usage is higher when using processes 
$ The security and isolation guarantees are better achieved using processes 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Tasks/Processes and threadsPoll close in



• How many of the following regarding the comparison of parallelizing 
computation tasks using processes and threads is/are correct? 
! The context switch and creation overhead of processes is higher 
" The overhead of exchanging data among different computing tasks for the 

same applications is higher in process model 
# The demand of memory usage is higher when using processes 
$ The security and isolation guarantees are better achieved using processes 
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D. 3 
E. 4

51

Tasks/Processes and threadsPoll close in



Intel Sandy Bridge
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Core Core Core Core

Core Core Core Core

Share L3 $



Concept of chip multiprocessors
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Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Main memory
Main memory is eventually shared among processor 

cores



Tasks/processes
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Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #1

PC

a = 0x01234567

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #2

PC

a = 0xDEADBEEF

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #3

PC

a = 0x87654321

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #4

PC

a = 0x95273310

Each process has its own unique virtual memory address 
space, its own states of execution, its own set of I/Os



Threads
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Virtual memoryheap

code

static data

code

stack

Task #1

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memoryheap

code

static data

code

stack

Task #2

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Each process has its own unique virtual memory address 
space, its own states of execution, its own set of I/Os 

Each thread has its own PC, states of execution, but shares 
memory address spaces, I/Os without threads within the 

same process



• How many of the following regarding the comparison of parallelizing 
computation tasks using processes and threads is/are correct? 
! The context switch and creation overhead of processes is higher 
" The overhead of exchanging data among different computing tasks for the 

same applications is higher in process model 
# The demand of memory usage is higher when using processes 
$ The security and isolation guarantees are better achieved using processes 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Tasks/Processes and threads

— you have to change page tables, warm up TLBs, warm up caches, create a new memory space …

— you cannot directly share data without leveraging other mechanisms
— each process needs its own address space even if most data are potentially identical

— separate address, it’s not easy to access data from another process



• Reading quizzes due next Tuesday 
• Welcome new friends! — will drop a total of 6 reading quizzes for the quarter 
• Attendance count as 4 reading quizzes 
• We plan to have a total of 11 reading quizzes 

• Office Hour links are inside Google Calendar events 
• https://calendar.google.com/calendar/u/0/r?
cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com 

• Different links from lecture ones 
• We cannot share through any public channels so that we can better avoid Zoom bombing 

• We will make both midterm and final exams online this quarter 
• Avoid the uncertainty of COVID-19 
• Avoid high-density in the classroom (only sits 60 and we have 59 for now) during 
examines
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Announcement

https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
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