
Design philosophy of operating
systems (III)

Hung-Wei Tseng

2

Recap: impact of UNIX
• Clean abstraction — everything as a file
• File system — will discuss in detail after midterm
• Portable OS

• Written in high-level C programming language
• The unshakable position of C programming language

• We are still using it!

Recap: Each process has a separate virtual memory space

3

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Processor
Virtually, every process seems to have a
processor, but only a few of them are

physically executing.

They are isolated from one
another. Each of them is not
supposed to know what
happens to another one

4

Recap: impact of UNIX
• Clean abstraction — everything as a file
• File system — will discuss in detail after midterm
• Portable OS

• Written in high-level C programming language
• The unshakable position of C programming language

• We are still using it!

Recap: Review the first demo

5

• UNIX
• Protection is associated with each file — described in the metadata
of a file

• Each file contains three (only two in the original paper) types of
users

• Each type of users can have read, write, execute permissions
• setuid to promote right amplifications

6

Recap: Protection mechanisms

• fork
• wait
• exec
• exit

7

The basic process API of UNIX

• What happens if we execute the following code?
int main() {
 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

8

What will happen?

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

Assume
the parent’s PID is 2;
child’s PID is 7.

UNIX’s interface of managing
processes

9

• What happens if we add an exit?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 exit(0);
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

10

If we add an exit …
Assume
the parent’s PID is 2;
child’s PID is 7.

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

fork() and exit()

11

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

fork() and exit()

12

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

fork() and exit()

13

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Output:
My pid is 7

fork() and exit()

14

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7 0

Output:
My pid is 7

fork() and exit()

15

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7

Output:
My pid is 7

fork() and exit()

16

Virtual memory

int pid;

if ((pid = fork()) == 0) {
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ? stack

heap

code

7

Output:
My pid is 7
Child pid is 7

• What happens if we add an exit?
int main() {

 int pid;
 if ((pid = fork()) == 0) {
 printf (”My pid is %d\n", getpid());
 exit(0);
 }
 printf (”Child pid is %d\n", pid);
 return 0;
}

17

If we add an exit …
Assume

the parent’s PID is 2;
child’s PID is 7.

of times “my pid” is printed my pid values printed # of times “child pid” is printed child pid values printed

A 1 7 2 7, 0
B 1 2 2 7, 0
C 2 7, 2 1 7
D 1 0 2 7, 2
E 1 7 1 7

• Consider the following code
fork();
printf(“moo\n”);
fork();
printf(“oink\n”);
fork();
printf(“baa\n”);
How many animal noises will be printed?
A. 3
B. 6
C. 8
D. 14
E. 24

18

More forksPoll close in

• Consider the following code
fork();
printf(“moo\n”);
fork();
printf(“oink\n”);
fork();
printf(“baa\n”);
How many animal noises will be printed?
A. 3
B. 6
C. 8
D. 14
E. 24

19

More forksPoll close in

• Consider the following code
fork();
printf(“moo\n”);
fork();
printf(“oink\n”);
fork();
printf(“baa\n”);
How many animal noises will be printed?
A. 3
B. 6
C. 8
D. 14
E. 24

20

More forks

2x
4x
8x

• int execvp(char *prog, char *argv[])
• fork does not start a new program, just duplicates the current
program

• What execvp does:
• Stops the current process
• Overwrites process’ address space for the new program
• Initializes hardware context and args for the new program
• Inserts the process into the ready queue

• execvp does not create a new process

21

Starting a new program with execvp()

• Windows only has exec
• Flexibility
• Allows redirection & pipe

• The shell forks a new process whenever user invoke a program
• After fork, the shell can setup any appropriate environment
variable to before exec

• The shell can easily redirect the output in shell: a.out > file

22

Why separate fork() and exec()

exec()

23

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: ?

stack

heap

code

exec()

24

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 7

stack

heap

code

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 0

stack

heap

code

exec()

25

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 7

stack

heap

code

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 0

stack

heap

code

Output:
Child pid is 7

exec()

26

Virtual memory

int pid;
if ((pid = fork()) == 0) {
 execvp(“a.out”,NULL);
 printf(“My pid is %d\n”, getpid());
 exit();
}
 printf(“Child pid is %d\n”, pid);

static data

pid: 5

stack

heap

code

Virtual memory

int main() {
 printf(“New program!”);
 return 0;
}

static data

stack

heap

code

Output:
Child pid is 7
New program!

• How many of the following UNIX features/functions are implemented
in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

27

What’s in the kernel?Poll close in

• How many of the following UNIX features/functions are implemented
in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

28

What’s in the kernel?Poll close in

Let’s write our own shells

29

• Say, we want to do ./a > b.txt
• fork
• The forked code opens b.txt
• The forked code dup the file descriptor
• The forked code assigns b.txt to stdin/stdout
• The forked code closes b.txt
• exec(“./a”, NULL)

30

How to implement redirection in shell

• Say, we want to do ./a > b.txt
• fork
• The forked code opens b.txt
• The forked code dup the file descriptor to stdin/stdout
• The forked code closes b.txt
• exec(“./a”, NULL)

31

How to implement redirection in shell

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

The shell can respond to next input

Homework for you:
Think about the case when
your fork is equivalent to fork+exec()

• pid_t wait(int *stat)
• pid_t waitpid(pid_t pid, int *stat, int
opts)

• wait / waitpid suspends process until a child process ends
• wait resumes when any child ends
• waitpid resumes with child with pid ends
• exit status info 1 is stored in *stat
• Returns pid of child that ended, or -1 on error

• Unix requires a corresponding wait for every fork

32

wait()

• How many of the following UNIX features/functions are implemented
in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

33

What’s in the kernel?

user-level

kernel

shell

Kernel

privilege
boundary

• A user program provides an interactive UI
• Interprets user command into OS functions
• Basic semantics:

command argument_1 argument_2 …
• Advanced semantics

• Redirection
• >
• <

• Pipe
• I

• Multitasking
• &

34

Shell

• Clean abstraction
• File system — will discuss in detail after midterm
• Portable OS

• Written in high-level C programming language
• The unshakable position of C programming language

• We are still using it!

35

The impact of UNIX

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta , Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian ,
Michael Young

Computer Science Department, Carnegie Mellon University

36

• How many of the following statements is/are true regarding the motivations
of developing Mach in 1986?
! Modern UNIX systems do not provide consistent interfaces for system facilities
" System level services can only be provided through fully integration of the UNIX

kernel
The process abstraction cannot use multiprocessors efficiently
$ Network communication is not protected
A. 0
B. 1
C. 2
D. 3
E. 4

37

Why is “Mach” proposed?Poll close in

• How many of the following statements is/are true regarding the motivations
of developing Mach in 1986?
! Modern UNIX systems do not provide consistent interfaces for system facilities
" System level services can only be provided through fully integration of the UNIX

kernel
The process abstraction cannot use multiprocessors efficiently
$ Network communication is not protected
A. 0
B. 1
C. 2
D. 3
E. 4

38

Why is “Mach” proposed?Poll close in

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

39

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

• On a 3.2GHz intel Core i5-6500 Processor
• Process fork+exit: 53.5437 microseconds
• More than 16K cycles

40

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• How many of the following statements is/are true regarding the motivations
of developing Mach in 1986?
! Modern UNIX systems do not provide consistent interfaces for system facilities
" System level services can only be provided through fully integration of the UNIX

kernel
The process abstraction cannot use multiprocessors efficiently
$ Network communication is not protected
A. 0
B. 1
C. 2
D. 3
E. 4

41

Why is “Mach” proposed?

• The hardware is changing
• Multiprocessors
• Networked computing

• The software
• The demand of extending an OS easily
• Repetitive but confusing mechanisms for similar stuffs

42

Why “Mach”?

Make UNIX great again!

• How many pairs of the “why” and the “what” in Mach are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

43

Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Poll close in

• How many pairs of the “why” and the “what” in Mach are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

44

Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Poll close in

• The hardware is changing
• Multiprocessors
• Networked computing

• The software
• The demand of extending an OS easily
• Repetitive but confusing mechanisms for similar stuffs

45

Why “Mach”?

• UNIX provides a variety of mechanisms
• Pipes
• Pty’s
• Signals
• Sockets

• No protection
• No consistency
• Location dependent

46

Interprocess communication

• Port is an abstraction of:
• Message queues
• Capability

• What do ports/messages promote?
• Location independence — everything is communicating with ports/
messages, no matter where it is

47

Ports/Messages

Ports/Messages

48

Program A
message = “something”;
send(port Z, message);

Port Z send

Port B recv
Object C read, write
Object D read

Capability of A

Port Z

Program B

recv(port Z, message);

0
1
2
3
4

Message queues

MQ0 read, write

Capability of Z

Port Z recv
Port B send

Object C read, write
Object D read

Capability of B

• An access control list associated with an object
• Contains the following:

• A reference to an object
• A list of access rights

• Whenever an operation is attempted:
• The requester supplies a capability of referencing the requesting
object — like presenting the boarding pass

• The OS kernel examines the access rights
• Type-independant rights
• Type-dependent rights

49

What is capability? — Hydra

• How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
! The context switch and creation overhead of processes is higher
" The overhead of exchanging data among different computing tasks for the

same applications is higher in process model
The demand of memory usage is higher when using processes
$ The security and isolation guarantees are better achieved using processes
A. 0
B. 1
C. 2
D. 3
E. 4

50

Tasks/Processes and threadsPoll close in

• How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
! The context switch and creation overhead of processes is higher
" The overhead of exchanging data among different computing tasks for the

same applications is higher in process model
The demand of memory usage is higher when using processes
$ The security and isolation guarantees are better achieved using processes
A. 0
B. 1
C. 2
D. 3
E. 4

51

Tasks/Processes and threadsPoll close in

Intel Sandy Bridge

52

Core Core Core Core

Core Core Core Core

Share L3 $

Concept of chip multiprocessors

53

Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Main memory
Main memory is eventually shared among processor

cores

Tasks/processes

54

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #1

PC

a = 0x01234567

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #2

PC

a = 0xDEADBEEF

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #3

PC

a = 0x87654321

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #4

PC

a = 0x95273310

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Threads

55

Virtual memoryheap

code

static data

code

stack

Task #1

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memoryheap

code

static data

code

stack

Task #2

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Each thread has its own PC, states of execution, but shares
memory address spaces, I/Os without threads within the

same process

• How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
! The context switch and creation overhead of processes is higher
" The overhead of exchanging data among different computing tasks for the

same applications is higher in process model
The demand of memory usage is higher when using processes
$ The security and isolation guarantees are better achieved using processes
A. 0
B. 1
C. 2
D. 3
E. 4

56

Tasks/Processes and threads

— you have to change page tables, warm up TLBs, warm up caches, create a new memory space …

— you cannot directly share data without leveraging other mechanisms
— each process needs its own address space even if most data are potentially identical

— separate address, it’s not easy to access data from another process

• Reading quizzes due next Tuesday
• Welcome new friends! — will drop a total of 6 reading quizzes for the quarter
• Attendance count as 4 reading quizzes
• We plan to have a total of 11 reading quizzes

• Office Hour links are inside Google Calendar events
• https://calendar.google.com/calendar/u/0/r?
cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

• Different links from lecture ones
• We cannot share through any public channels so that we can better avoid Zoom bombing

• We will make both midterm and final exams online this quarter
• Avoid the uncertainty of COVID-19
• Avoid high-density in the classroom (only sits 60 and we have 59 for now) during
examines

75

Announcement

https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

ͺͻͥ

Computer
Science &
Engineering

202

