Design philosophy of operating
systems (1V)

Hung-Wel Tseng

Recap: Each process has a separate virtual memory space

code code code code

static data static data static data static data

heap heap

heap

heap

They are isolated from one
another. Each of them is not Virtually, every process seems to have a
supposed to know what Processor processor, but only a few of them are

happens to another one physically executing.

Recap: The basic process API of UNIX

e fork
e walt
e eXec
e X1t

Recap: How to implement redirection in shell

Say, we want to do ./a > b.txt Homework for you:
fork Think about the case when
The forked code opens b.txt your fork isequivalentto fork+exec()

The forked code dup the file descriptor to stdin/stdout
The forked code closes b.txt
exec("./a", NULL)

int pid, fd;
char cmd[2048], prompt = "myshell$"
while(gets(cmd) != NULL) {
if ((pid = fork()) ==0) {
fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
dup2(fd,);
close(fd);
execv(”./a",NULL);
¥
else
printf(“%s ", prompt);
}

int pid, fd;
char cmd[2048], prompt = “myshell$"
while(gets(cmd) != NULL) {

+ ((pid = fork()) == 0) {

fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);

dup2(fd,);
close(fd);
execv(”./a",NULL);
}
else
orintf("%s ", prompt);
5

The shell can respond to next input

static data

Why “Mach"?

- The hardware is changing

be built and future development of UNIX-like systems for new architectures

* MU|tIprOCeSSOrS can continue. The computing environment for which Mach is targeted spans a

wide class of systems, providing basic support for large, general purpose mul-

* Networked ComDUtlng tiprocessors, smaller multiprocessor networks and individual workstations (see
- The software

- The demand of extending an OS easily
- Repetitive but confusing mechanisms for similar stuffs

As the complexity of distributed environments and multiprocessor archi-
tectures increases, it becomes increasingly important to return to the original
UNIX model of consistent interfaces to system facilities. Moreover, there is a
clear need to allow the underlying system to be transparently extended to allow
user-state processes to provide services which in the past could only be fully
integrated into UNIX by adding code to the operating system kernel.

Make UNIX great again! N

5

Outline

- Mach: A New Kernel Foundation For UNIX Development (cont.)
- Taxonomy of Kernels
- Synchronization

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta, Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian,
Michael Young
Computer Science Department, Carnegie Mellon University

Tasks/processes

Task #1 Task #2 Task #3 Task #4
CPU
e CPU 5C e CPU oo
Memory

/O

/O

/O

Each process has its own unique virtual memory address
space, its own states of execution, i't's”own set of I/Os

static data

static data static data static data

heap

heap

heap

heap

a = 0x01234567 a = OxDEADBEEF

a = Ox87654321

a = Ox95273310

Intel Sandy Bridge

. 21 S | uu-- |
Core|Core Core !

-{

3’

Q!?

!

l

ShareL3 $

Core|Core|Core|Core

Concept of chip multiprocessors

Processor

Core Core Core Core
Registers Registers Registers Registers

L1-$ L1-$ L1-$ L1-$
LY LY LY LY
L2-$ L2-$ L2-$ L2-$

SR SR SR SR

Main memory is eventually shared among processor
cores

10

Tasks/processes

Task #1 Task #2 Task #3 Task #4
CPU
e CPU 5C e CPU oo
Memory

/O

/O

/O

Each process has its own unique virtual memory address
space, its own states of execution, i't's”own set of I/Os

static data

static data static data static data

heap

heap

heap

heap

a = 0x01234567 a = OxDEADBEEF

a = Ox87654321

a = Ox95273310

1

Threads

Task #1 Task #2

Thread #1 Thread #2 Thread #3 Thread #1 Thread #2 Thread #3

pc@ m—pc‘ - hal o el B

Each process has its own unique virtual memory address
space, its own states of execution,its.own set.of 1/Os
Each thread has its own PC, states of execution, but shares
memory address spaces, |/Os without threads withinthe -
same process

a = 0x01234567 S DR

12

Tasks/Processes and threads

- How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?

® The context switch and creation overhead of processes is higher

ou have to chang e tables, warm up TLBs, warm up caches, create a new memory space ...

® The overhead of exchanglngeollog%a among different computing tasks for the
same applications is higher in process model

cannot directly share data without leveraging other mechanisms

® The demand of memory usage isﬁ?’é’ er when using processes

. . — each process heeds its own address space even if mast data are potentially identical
@ The security and isolation guaran’?ees are better achieved using processes

A O — separate address, it's not easy to access data from another process

O O0Ow
w N =

[T
I

13

Case study: Chrome v.s. Firefox

o @)

Wi\
.each of these is a process

806 ¥ 4 M Home of theMozill . * | @ Moalla Frefex Sur. .~ | +

Welcome to Chrome w o) (8- s Dhie s s |=

You're using a fast new browser. Mouse over the markers below for three quick tips.

each of these is a thread

e 7 K

Sti“ reed help’) Learn More

Memory usage?

~Stability?
Security?
Latency?

14

What's in the kernel?

- How many of the following Mach features/functions are
Implemented in the kernel?
® 1/O device drivers
@ File system
® Shell
@ Virtual memory management
A. O

moOow
AwN =

15

A/
1 — IR&tinct

What's in the kernel?

- How many of the following Mach features/functions are
Implemented in the kernel?
® 1/O device drivers
@ File system
® Shell
@ Virtual memory management
A. O

moOow
AwN =

16

What's in the kernel?

- How many of the following Mach features/fun

Implemented in the kernel?
® 1/O device drivers
@ File system
® Shell
@ Virtual memory management
A. O

o
N

Of !
N

> W

Policies

Mechanisms

17

User processes

1]
i Mach Network
! a I i
b .OS : : UNIX Compatibility
:l:mctlonal.ty: o s 1 lunctionality: ,
1 Sccure netwerk IEFC "' UNIX File Svstem

i —
o Distributed filesystem ¥ %y x procass Management
1 Authentication - otc

1

1

]
i Authcrization 1o ;
.]
' Neoetwork resource - . :
1 manazement T 1 - -
: Notwork (] "]
1 Ne WoTK pazing 5 & :
- etc. X & i
H | | |]

Mach-1 Kernel Layer

“unctionality:

Virtual memory management
[nterprocess communication
Low-level device drivers
Multiprocessor scheduling
Redirectdor of UNIX traps

Policy? Mechanisms?

- How many of the following terms belongs to “policies”?
Least-recently used (LRU)

First-in, first-out

Paging

Preemptive scheduling

Capability

MOUOW>»>@e®E O

A~ WODN-—-O0

18

A/
1 — IR&tinct

Policy? Mechanisms?

- How many of the following terms belongs to “policies”?
Least-recently used (LRU)

First-in, first-out

Paging

Preemptive scheduling

Capability

MOUOW>»>@e®E O

A~ WODN-—-O0

19

Policy? Mechanisms?

- How many of the following terms belongs to “policies”?
@ Least-recently used (LRU) — Policy

@ First-in, first-out — Policy

® Paging — Mechanism
@ Preemptive scheduling — Mechanism
® Capability — Mechanism
A. O

B. 1

D. 3

E. 4

20

Whys v.s. whats

- How many pairs of the "why" and the “what"” in Mach are correct?

Support for multiprocessors Threads
Networked computing Messages/Ports
OS Extensibility Microkernel/Object-oriented design
Repetitive but confusing mechanisms Messages/Ports
A. O
B. 1
C. 2

Ul
w

[m
I

21

Poll close in 1:30

Types of kernels

- What type of kernels does the UNIX described in Dennis M. Ritchie's
paper belong to?
A. Microkernel — the kernel only provides a minimal set of services/

mechanisms including memory management, multitasking and inter-
process communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

22

Poll close in 1:30

Types of kernels

- What type of kernels does the UNIX described in Dennis M. Ritchie's
paper belong to?

A. Microkernel — the kernel only provides a minimal set of services/
mechanisms including memory management, multitasking and inter-
process communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

23

Types of kernels

- What type of kernels does the UNIX described in Dennis M. Ritchie's
paper belong to?

A. Microkernel — the kernel only provides a minimal set of services/
mechanisms including memory management, multitasking and inter-
process communication Mach, Nucleus

. Monolithic — the kernel implements every function that cannot be in a

user-space library: device drivers, scheduler, memory handling, file
systems, network stacks Old UNIX

C. Modular — the kernel provides a basic set of functions like

microkernels, but allows load/unload kernel modules if necessar 25D
ree
D. Layered kernel — the kernel follows strlct ayere<§I 8e3|gn that?ower—

order module cannot interact with higher-order modules THE

24

Types of Kernels

Monolithic Micro Modular “Gacabie”

kernel
modules

-
..

Server programs File Server §

Device Application .-*"
Drivers IPC

Application | Server |Device

Virtual File Systems, System IPC programs | Drivers

operating calls, IPC, File systems,
system scheduler, virtual memory,
device drivers, dispatcher. kernel Basic IPC, Virtual Memory,
mode Scheduling

Hardware

Basic IPC, Virtual Memory,
Scheduling

Hardware

Hardware

Only mechanisms are in the kernel

Linux,

Original :
UNIX Nucleus, Mach Windows,

MacOS

25

Why not microkernels?

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

D. Microkernels are not as competitive as monolithic kernels in
terms of application performance

E. Microkernels are less flexible than monolithic kernels

26

, Ny
Why not microkernels?

1 — IRS&tinct

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

D. Microkernels are not as competitive as monolithic kernels in
terms of application performance

E. Microkernels are less flexible than monolithic kernels

27

Why not microkernels?

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

E. Microkernels are less flexible than monolithic kernels

28

The impact of Mach

- Threads
- Extensible operating system kernel design

. Strongly influenced modern operating systems
- Windows NT/2000/XP/7/8/10
- MacQOS

29

Documentation Archive

g & developer.apple.com

Kernel Programming Cuide

¥ Tabhke of Contenis

About This Document
Keep Out

Kernel Architecturas
Overview

The Early Boot Frocess
Security Considerations
Performance Considerations
Kernel Programming Style
Mach Overview

Memory and Virtual Memory

Mach Scheduling and Thread

Interfaces

Bootstrap Contexts

1,0 Kit Overview

BSD Overview

File Systems Overview
Network Architecture
Boundary Crossings
Synchronization Primitives
Miscellancous Kernel
Services

Kernel Extension Overview

Building and Debugging
Kernels

Bibliography
Revision History
Glossary

Mach Overview

The fundamental services and primitives of the OS X kernel are based on Mach 3.0. Apple has mod fied and extercded Mach to better meet OS X functional and p

Mzch 3 0 was anginally conreived as a simple, extensihle, communications microkernel tis capable of running a< a stand-a one <ernel, with athar traditianal o
networking stacks rurring as user-mode servers.

Hawever, in OS5 X, Mach is 'inked with other kernel components into a single kernel address space. This is primarily for performance; it is much faster ta make a
messayges o1 do remole procedure calls (RPC) belween sepdrate tasks. This modular structure results in @ more robust and extensible system than a monolithic |
microkerrel.

Thus in OS X, Mach is not primarily a communication hub between clients and servers. Instead, its value consists of its abstractions, its extensibility, and its flax
* gbjact-based AP's with communication channels (for example, ports) as object references

« higny parallel execution, including preemptvely scheduled threads and support for SMP

« a flaxible scheduling framework, with sunoort for real-time usage

= a comglete set of JPC primitives, including messaging, RPC, synchronization, and notificaticn

» support for large virtual address spaces, shared memory regions, and memory objects backec by persistent store

« provan extensibility and portability, for examp e across instruction set architactures and in distributed environments

- security and resource management as a fundamental principle of design; all rescurces are virtualized

Mach Kernel Abstractions

Mach provides a small set of abstracticns that have been designed tc be both simp'e and powarful. Thase ara the main kernal abstractions:

e Tasks. The units of resource ownership, each task consists of a virtual address space. a port rigint narnespdce, and one or more threads. (Similar W0 a process.
o Threads. The units ¢f CPU execution within a task.

e Address space. In canjunction with memory managers, Mach implements the notion of a sparse virrua' address space and shared memory.

e Memory objects. The internal units of memory management. Memory chjects include named entries and regions; they are representations of potentizlly parsi
e FPorts. Secure, simplex commurication channels, accessible on'y via send and receive capabilities (known as port rights).

« JPC. Message queues, remote procedure calls, notifications, semaphores, and lock sets.

« Time. Clocks, timers, anc waiting. 30

Thread programming &
synchronization

The virtual memory of multithreaded applications

Everything here is shared/
visible among all threads
within the same process!

stack #1 T

Bounded-Buffer Problem

- Also referred to as "producer-consumer” problem
- Producer places items in shared buffer
- Consumer removes items from shared buffer

e =] [| [=]e]fw

i

producer consumer

33

We nheed to control accesses to the buffer!

int buffer[BUFF_SIZE]; // shared global

int main(int argc, char xargv[]) { P —— ———————
pthread_t p;
printf("parent: begin\n");
// 1init here
Pthread create(&p, NULL, child, NULL);
int i1n = 0O;
while(TRUE) {
int item = ..;

void *child(void *arg) {
int out = 0O;
printf("child\n");
while(TRUE) {

int item = buffer[out];

bufferlinl] = item; out = (out + 1) % BUFF_SIZE;

in = (in + 1) % BUFF_SIZE;

, // do something w/ item

}

printf("parent: end\n"); return NULL:

return 0; 1

T — e —

34

Solving the “Critical Section Problem”

Mutual exclusion — at most one process/thread in its critical
section

. Progress — a thread outside of its critical section cannot
block another thread from entering its critical section

. Fairness — a thread cannot be postponed indefinitely from
entering its critical section

. Accommodate nondeterminism — the solution should work
regardless the speed of executing threads and the number of
Processors

35

Use locks

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;
int main(int argc, char sxargvl[]) { | — ————
pthread_t p;
printf("parent: begin\n");
// init here
Pthread create(&p, NULL, child, NULL);

void *child(void xarg) {
int out = 0;

int in = 0; : :
: ' rintf("ch1ld\n");

while(TRUE) + while (TRUE) {
int 1item = ..; Pthread _mutex_lock(&lock):
Pthread mutex_lock(&lock): int item = bufferlout]:
bufferlin] = 1tem; out = (out + 1) % BUFF_SIZE;

in = (in + 1) % BUFF_SIZE;

Pthread_mutex_unlock(&lock):
Pthread mutex_unlock(&lock):

// do something w/ item

; }
printf("Parent: end\n"); return NULL:
} return 9; 1

36

How to implement lock/unlock

Naive implementation

, vold *child(void *xarg) {
int buffer[BUFF_SIZE]; // shared global int out = 0°

volatile unsigned int lock = 0; printf("chiid\n");

TR — T —— while(TRUE) {

Pthread_mutex_lock(&lock):
int item = bufferlout];

: " . : ny . out = (out + 1) % BUFF_SIZE:
?flgﬁgi EZignt° beginin®); Pthread_mutex_unlock(&lock):

Pthread create(&p, NULL, child, NULL): \ // do something w/ item
int 1n = 9; .
while(TRUE) { return NULL;
int item = ..;
Pthread_mutex_lock(&lock);

int main(int argc, char xargv[]) {
pthread_t p;

}

void Pthread_mutex_lock(volatile unsigned int *lock) {

puffer@in] = 1tem; while (xlock == 1) // TEST (lock)
in = (in + 1) % BUFF_SIZE: . // spin
Pthread_mutex_unlock(&lock): ' xlock = 1° // SET (lock)
Iy } |
printf("parent: end\n");
, return 9; volid Pthread_mutex_unlock(volatile unsigned int *xlock)
{
S —— — xlock = 0;
¥

T — W

Naive implementation

- How many of the following can the naive implementation guarantee for the
producer-consumer problem?
® At most one process/thread in its critical section

@ A thread outside of its critical section cannot block another thread from entering
its critical section

® A thread cannot be postponed indefinitely from entering its critical section

@ The solution should work regardless the speed of executing threads and the
number of processors

}

A. O

B. 1 volid Pthread_mutex_lock(volatile unsigned int *lock) {
while (*lock == 1) // TEST (lock)

C. 2 v // spiln
xlock = 1; // SET (lock)

D. 3

E. 4

vold Pthread_mutex_unlock(volatile unsigned int *xlock) {
xlock = 0;
¥

Naive implementation

- How many of the following can the naive implementation guarantee for the
producer-consumer problem?

® At most one process/thread in its critical section

@ A thread outside of its critical section cannot block another thread from entering
its critical section

® A thread cannot be postponed indefinitely from entering its critical section

@ The solution should work regardless the speed of executing threads and the
number of processors

void Pthread_mutex_lock(volatile unsigned int *xlock) {
while (%lock == 1) // TEST (lock)
v // spiln
xlock = 1; // SET (lock)
¥

Mmoo ®»
P W N—O

vold Pthread_mutex_unlock(volatile unsigned int *xlock) {
xlock = 0;
¥

Naive implementation

, . vold *child(void *xarg) {
int buffer[BUFF_SIZE]; // shared global int out = 0°

volatile unsigned 1int lock = 0; orintf("child\n"):

T — T — while(TRUE) {

Pthread_mutex_lock(&lock):
int item = bufferlout];

: " . : 0y . out = (out + 1) % BUFF_SIZE;:
9512§§i EZignt° beginin®); Pthread_mutex_unlock(&lock):

Pthread_create(&p, NULL, child, NULL); // do something w/ item

int 1n = 9; b .

while(TRUE) { return NULL;
int item = ..;
Pthread_mutex_lock(&lock);
bufferlinl = 1tem:-

int main(int argc, char xargv[]) {
pthread_t p;

}

void Pthread_mutex_lock(volatile unsigned int *lock) {
while (*xlock == 1) // TEST (lock)

in = what if context switch // spin
printf("parent: end\n");
, return 9; volid Pthread_mutex_unlock(volatile unsigned int *xlock)
{
I — — xlock = 0;
¥

T ——————— ...

Naive implementation

- How many of the following can the naive implementation guarantee for the
producer-consumer problem?
x At most one process/thread in its critical section

@ A thread outside of its critical section cannot block another thread from entering
its critical section

® A thread cannot be postponed indefinitely from entering its critical section

@ The solution should work regardless the speed of executing threads and the
number of processors

}

A. O

B. 1 volid Pthread_mutex_lock(volatile unsigned int *lock) {
while (*lock == 1) // TEST (lock)

C. 2 v // spiln
xlock = 1; // SET (lock)

D. 3

E. 4

vold Pthread_mutex_unlock(volatile unsigned int *xlock) {
xlock = 0;
¥

Naive implementation

void *xchild(void *xarg) {

int out = 0;

printf("child\n");

while(TRUE) {
Pthread_mutex_lock(&lock);

int item = bufferl[out];

: " . : ' 2 out = (out + 1) % BUFF_SIZE;
?flz;c]ji Egignt. begin\n" crashes/halts here* pthread_mutex_unlock (&lock)
Pthread create(&p, NULL, child, NULL): , // do something w/ 1tem
int 1n = 0; .
while (TRUE) { return NULL;

int item = ..;

Pthread_mutex_lock(&lock);

bufferlinl = 1item:

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

int main(int argc, char s*xarcg o
othread t p: what if the thread

}

void Pthread_mutex_lock(volatile unsigned int *lock) {
while (*xlock == 1) // TEST (lock)

in = what if context switch // spin
printf("parent: end\n");
, return 9; volid Pthread_mutex_unlock(volatile unsigned int *xlock)
{
I — ————— xlock = 0;

}

T — W

Naive implementation

- How many of the following can the naive implementation guarantee for the
producer-consumer problem?
x At most one process/thread in its critical section

@ A thread outside of its critical section cannot block another thread from entering
its critical section

x A thread cannot be postponed indefinitely from entering its critical section

@ The solution should work regardless the speed of executing threads and the
number of processors

void Pthread_mutex_lock(volatile unsigned int *xlock) {
while (%lock == 1) // TEST (lock)
v // spiln
xlock = 1; // SET (lock)
¥

Mmoo ®»
P W N—O

vold Pthread_mutex_unlock(volatile unsigned int *xlock) {
xlock = 0;
¥

Naive implementation

void *xchild(void *xarg) {

int out = 0O;

printf("child\n");

while(TRUE) {
Pthread_mutex_lock(&lock);

int item = bufferl[out];

: " . : ' 2 out = (out + 1) % BUFF_SIZE;
?flz;c]ji Egignt. begin\n" crashes/halts here* pthread_mutex_unlock (&lock)
Pthread create(&p, NULL, child, NULL): , // do something w/ 1tem
int 1n = 0; .
while (TRUE) { return NULL;

int item = ..;

Pthread_mutex_lock(&lock);

bufferlinl = 1item:

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

int main(int argc, char s*xarcg o
othread t p: what if the thread

}

void Pthread_mutex 1ock(volat11e un31gned int *xlock) {

: . . while (xlock = - TEST
in = what If context switch // spin aII threads can see
\ Pth: happens here? } xlock = 1; lock as O at this point
printf("parent: end\n");
, return 9; volid Pthread_mutex_unlock(volatile unsigned int *xlock)
{
O — — xlock = 0;

}

T — W

Naive implementation

- How many of the following can the naive implementation guarantee for the
producer-consumer problem?

x At most one process/thread in its critical section

@ A thread outside of its critical section cannot block another thread from entering
its critical section

x A thread cannot be postponed indefinitely from entering its critical section

2 The solution should work regardless the speed of executing threads and the
number of processors

A. O

B. 1 void Pthread_mutex_lock(volatile unsigned int *lock) {
while (*lock == 1) // TEST (lock)

C. 2 ; // spin
xlock = 1; // SET (lock)

D. 3 }

E 4 void Pthread_mutex_unlock(volatile unsigned int *xlock) {

xlock = 0;
¥

Naive implementation

void *xchild(void *xarg) {

int out = 0O;

printf("child\n");

while(TRUE) {
Pthread_mutex_lock(&lock);

int item = bufferl[out];

: " . : " 2 out = (out + 1) % BUFF_SIZE;
9;12:]1;E Ez;gnt. begin\n" crashes/halts here* pthread_mutex_unlock (&lock)
Pthread create(&p, NULL, child, NULL): , // do something w/ 1tem
int 1n = 0; .
while (TRUE) { return NULL;

int item = ..;

Pthread_mutex_lock(&lock);

bufferlinl = 1item:

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

int main(int argc, char s*xarcg o
othread t p: what if the thread

}

void Pthread_mutex 1ock(volat11e un31gned int *xlock) {
while (%lock = ~ TEST

in = what if context switch // spin aII threads can see
) P happens here? , *lock = 1; lock as O at this point
printf("parent: end\n"); * coherence cache misses? page fault?
, return @ void Pthread_mutex_unlock(volatile unsigned int *xlock)
{
B — — xlock = 0;

}

Naive implementation

- How many of the following can the naive implementation guarantee for the
producer-consumer problem?

x At most one process/thread in its critical section

x A thread outside of its critical section cannot block another thread from entering
its critical section

x A thread cannot be postponed indefinitely from entering its critical section

2 The solution should work regardless the speed of executing threads and the
number of processors

| A. 0O |
B. 1 void Pthread_mutex_lock(volatile unsigned int *lock) {
while (*lock == 1) // TEST (lock)
C. 2 ; // spin
xlock = 1; // SET (lock)
D. 3 }
E 4 void Pthread_mutex_unlock(volatile unsigned int *xlock) {

xlock = 0;
¥

Announcement

- Reading quizzes due next Tuesday

- Welcome new friends! — will drop a total of 6 reading quizzes for the quarter
- Attendance count as 4 reading quizzes

- We plan to have a total of 11 reading quizzes

- Office Hour links are inside Google Calendar events

. https://calendar.google.com/calendar/u/O/r?
cid=ucr.edu_b8ubdvkretn6kgbigunlc6bldg@group.calendar.google.com

- Different links from lecture ones
- We cannot share through any public channels so that we can better avoid Zoom bombing

- We will make both midterm and final exams online this quarter

- Avoid the uncertainty of COVID-19

- Avoid high-density in the classroom (only sits 60 and we have 59 for now) during
examines

87

https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

Computer

Engineering

