
Design philosophy of operating
systems (IV)

Hung-Wei Tseng

Recap: Each process has a separate virtual memory space

2

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Processor
Virtually, every process seems to have a

processor, but only a few of them are
physically executing.

They are isolated from one
another. Each of them is not

supposed to know what
happens to another one

• fork
• wait
• exec
• exit

3

Recap: The basic process API of UNIX

• Say, we want to do ./a > b.txt
• fork
• The forked code opens b.txt
• The forked code dup the file descriptor to stdin/stdout
• The forked code closes b.txt
• exec(“./a”, NULL)

4

Recap: How to implement redirection in shell

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

The shell can respond to next input

Homework for you:
Think about the case when
your fork is equivalent to fork+exec()

• The hardware is changing
• Multiprocessors
• Networked computing

• The software
• The demand of extending an OS easily
• Repetitive but confusing mechanisms for similar stuffs

5

Why “Mach”?

Make UNIX great again!

• Mach: A New Kernel Foundation For UNIX Development (cont.)
• Taxonomy of Kernels
• Synchronization

6

Outline

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta , Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian ,
Michael Young

Computer Science Department, Carnegie Mellon University

7

Tasks/processes

8

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #1

PC

a = 0x01234567

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #2

PC

a = 0xDEADBEEF

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #3

PC

a = 0x87654321

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #4

PC

a = 0x95273310

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Intel Sandy Bridge

9

Core Core Core Core

Core Core Core Core

Share L3 $

Concept of chip multiprocessors

10

Processor

Last-level $ (LLC)

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Main memory
Main memory is eventually shared among processor

cores

Tasks/processes

11

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #1

PC

a = 0x01234567

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #2

PC

a = 0xDEADBEEF

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #3

PC

a = 0x87654321

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #4

PC

a = 0x95273310

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Threads

12

Virtual memoryheap

code

static data

code

stack

Task #1

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memoryheap

code

static data

code

stack

Task #2

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Each thread has its own PC, states of execution, but shares
memory address spaces, I/Os without threads within the

same process

• How many of the following regarding the comparison of parallelizing
computation tasks using processes and threads is/are correct?
! The context switch and creation overhead of processes is higher
" The overhead of exchanging data among different computing tasks for the

same applications is higher in process model
The demand of memory usage is higher when using processes
$ The security and isolation guarantees are better achieved using processes
A. 0
B. 1
C. 2
D. 3
E. 4

13

Tasks/Processes and threads

— you have to change page tables, warm up TLBs, warm up caches, create a new memory space …

— you cannot directly share data without leveraging other mechanisms
— each process needs its own address space even if most data are potentially identical

— separate address, it’s not easy to access data from another process

Case study: Chrome v.s. Firefox

14

each of these is a process

each of these is a thread

Memory usage?
Stability?
Security?
Latency?

• How many of the following Mach features/functions are
implemented in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

15

What’s in the kernel?Poll close in

• How many of the following Mach features/functions are
implemented in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

16

What’s in the kernel?Poll close in

• How many of the following Mach features/functions are
implemented in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

17

What’s in the kernel?

Mechanisms

Policies

• How many of the following terms belongs to “policies”?
! Least-recently used (LRU)
" First-in, first-out
Paging
$ Preemptive scheduling
% Capability
A. 0
B. 1
C. 2
D. 3
E. 4

18

Policy? Mechanisms?Poll close in

• How many of the following terms belongs to “policies”?
! Least-recently used (LRU)
" First-in, first-out
Paging
$ Preemptive scheduling
% Capability
A. 0
B. 1
C. 2
D. 3
E. 4

19

Policy? Mechanisms?Poll close in

• How many of the following terms belongs to “policies”?
! Least-recently used (LRU)
" First-in, first-out
Paging
$ Preemptive scheduling
% Capability
A. 0
B. 1
C. 2
D. 3
E. 4

20

Policy? Mechanisms?
— Policy
— Policy
— Mechanism
— Mechanism
— Mechanism

• How many pairs of the “why” and the “what” in Mach are correct?

A. 0
B. 1
C. 2
D. 3
E. 4

21

Whys v.s. whats
Why What

(1) Support for multiprocessors Threads
(2) Networked computing Messages/Ports
(3) OS Extensibility Kernel debugger
(4) Repetitive but confusing mechanisms Messages/Ports

Microkernel/Object-oriented design

• What type of kernels does the UNIX described in Dennis M. Ritchie’s
paper belong to?

A. Microkernel — the kernel only provides a minimal set of services/
mechanisms including memory management, multitasking and inter-
process communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

22

Types of kernelsPoll close in

• What type of kernels does the UNIX described in Dennis M. Ritchie’s
paper belong to?

A. Microkernel — the kernel only provides a minimal set of services/
mechanisms including memory management, multitasking and inter-
process communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

23

Types of kernelsPoll close in

• What type of kernels does the UNIX described in Dennis M. Ritchie’s
paper belong to?

A. Microkernel — the kernel only provides a minimal set of services/
mechanisms including memory management, multitasking and inter-
process communication

B. Monolithic — the kernel implements every function that cannot be in a
user-space library: device drivers, scheduler, memory handling, file
systems, network stacks

C. Modular — the kernel provides a basic set of functions like
microkernels, but allows load/unload kernel modules if necessary

D. Layered kernel — the kernel follows strict layered design that lower-
order module cannot interact with higher-order modules

24

Types of kernels

Mach, Nucleus

Old UNIX

Linux, Windows, MacOS, FreeBSD
THE

25

Types of Kernels

Virtual File Systems, System
calls, IPC, File systems,

scheduler, virtual memory,
device drivers, dispatcher. Basic IPC, Virtual Memory,

Scheduling

Application
IPC

Server
programs

Device
Drivers

File
Server

Applications

Application
IPC

Server programs

Device
Drivers

File Server

kernel
mode

kernel
mode

operating
system

dynamically
loadable

kernel
modules

Monolithic Micro Modular

Nucleus, MachOriginal
UNIX

Linux,
Windows,

MacOS

user
mode

Only mechanisms are in the kernel

HardwareHardware Hardware

Applications Applications

Basic IPC, Virtual Memory,
Scheduling

user
mode

26

Why not microkernels?
• Although Mach’s design strongly influenced modern operating

systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

Poll close in

27

Why not microkernels?
• Although Mach’s design strongly influenced modern operating

systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

Poll close in

• Although Mach’s design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

28

Why not microkernels?

Context switches!

• Threads
• Extensible operating system kernel design
• Strongly influenced modern operating systems

• Windows NT/2000/XP/7/8/10
• MacOS

29

The impact of Mach

30

Thread programming &
synchronization

31

The virtual memory of multithreaded applications

32

Virtual memory

heap

code

static data

stack #1

stack #2

stack #3

Everything here is shared/
visible among all threads
within the same process!

• Also referred to as “producer-consumer” problem
• Producer places items in shared buffer
• Consumer removes items from shared buffer

33

Bounded-Buffer Problem

producer consumer

5 22 18 38 2 15buffer

34

We need to control accesses to the buffer!
int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;

 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;

 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {

 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;

 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global

1. Mutual exclusion — at most one process/thread in its critical
section

2. Progress — a thread outside of its critical section cannot
block another thread from entering its critical section

3. Fairness — a thread cannot be postponed indefinitely from
entering its critical section

4. Accommodate nondeterminism — the solution should work
regardless the speed of executing threads and the number of
processors

35

Solving the “Critical Section Problem”

36

Use locks
int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

How to implement lock/unlock

37

38

Naive implementation

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock)
{
 *lock = 0;
}

• How many of the following can the naive implementation guarantee for the
producer-consumer problem?
! At most one process/thread in its critical section
" A thread outside of its critical section cannot block another thread from entering

its critical section
A thread cannot be postponed indefinitely from entering its critical section
$ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

39

Naive implementationPoll close in

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

• How many of the following can the naive implementation guarantee for the
producer-consumer problem?
! At most one process/thread in its critical section
" A thread outside of its critical section cannot block another thread from entering

its critical section
A thread cannot be postponed indefinitely from entering its critical section
$ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

40

Naive implementationPoll close in

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

41

Naive implementation

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock)
{
 *lock = 0;
}

what if context switch
happens here?

• How many of the following can the naive implementation guarantee for the
producer-consumer problem?
! At most one process/thread in its critical section
" A thread outside of its critical section cannot block another thread from entering

its critical section
A thread cannot be postponed indefinitely from entering its critical section
$ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

42

Naive implementation

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

43

Naive implementation

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock)
{
 *lock = 0;
}

what if context switch
happens here?

what if the thread
crashes/halts here?

• How many of the following can the naive implementation guarantee for the
producer-consumer problem?
! At most one process/thread in its critical section
" A thread outside of its critical section cannot block another thread from entering

its critical section
A thread cannot be postponed indefinitely from entering its critical section
$ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

44

Naive implementation

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

45

Naive implementation

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock)
{
 *lock = 0;
}

what if context switch
happens here?

what if the thread
crashes/halts here?

all threads can see
lock as 0 at this point

• How many of the following can the naive implementation guarantee for the
producer-consumer problem?
! At most one process/thread in its critical section
" A thread outside of its critical section cannot block another thread from entering

its critical section
A thread cannot be postponed indefinitely from entering its critical section
$ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

46

Naive implementation

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

47

Naive implementation

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock)
{
 *lock = 0;
}

what if context switch
happens here?

what if the thread
crashes/halts here?

all threads can see
lock as 0 at this point

coherence cache misses? page fault?

• How many of the following can the naive implementation guarantee for the
producer-consumer problem?
! At most one process/thread in its critical section
" A thread outside of its critical section cannot block another thread from entering

its critical section
A thread cannot be postponed indefinitely from entering its critical section
$ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

48

Naive implementation

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

• Reading quizzes due next Tuesday
• Welcome new friends! — will drop a total of 6 reading quizzes for the quarter
• Attendance count as 4 reading quizzes
• We plan to have a total of 11 reading quizzes

• Office Hour links are inside Google Calendar events
• https://calendar.google.com/calendar/u/0/r?

cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
• Different links from lecture ones
• We cannot share through any public channels so that we can better avoid Zoom bombing

• We will make both midterm and final exams online this quarter
• Avoid the uncertainty of COVID-19
• Avoid high-density in the classroom (only sits 60 and we have 59 for now) during

examines

87

Announcement

https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

ͺͻͥ

Computer
Science &
Engineering

202

