Synchronization

Hung-Wel Tseng

The virtual memory of multithreaded applications

Everything here is shared/
visible among all threads
within the same process!

stack #1 T

Recap: Bounded-Buffer Problem

- Also referred to as "producer-consumer” problem
- Producer places items in shared buffer
- Consumer removes items from shared buffer

e =] [| [=]e]fw

i

producer consumer

Recap: We need to control accesses to the buffer!

int buffer[BUFF_SIZE]; // shared global

int main(int argc, char xargv[]) { P —— ———————
pthread_t p;
printf("parent: begin\n");
// 1init here
Pthread create(&p, NULL, child, NULL);
int i1n = 0O;
while(TRUE) {
int item = ..;

void *child(void *arg) {
int out = 0O;
printf("child\n");
while(TRUE) {

int item = buffer[out];

bufferlinl] = item; out = (out + 1) % BUFF_SIZE;

in = (in + 1) % BUFF_SIZE;

, // do something w/ item

}

printf("parent: end\n"); return NULL:

return 0; 1

T — e —

T — —————————

Recap: Solving the “Critical Section Problem"”

1.

2.

Mutual exclusion — at most one process/thread in its critical
section

Progress — a thread outside of its critical section cannot
block another thread from entering its critical section

Fairness — a thread cannot be postponed indefinitely from
entering its critical section

. Accommodate nondeterminism — the solution should work

regardless the speed of executing threads and the number of
Processors

Recap: Naive implementation

- How many of the following can the naive implementation guarantee for the
producer-consumer problem?

x At most one process/thread in its critical section

x A thread outside of its critical section cannot block another thread from entering
its critical section

x A thread cannot be postponed indefinitely from entering its critical section

2 The solution should work regardless the speed of executing threads and the
number of processors

| A. 0O |
B. 1 void Pthread_mutex_lock(volatile unsigned int *lock) {
while (*lock == 1) // TEST (lock)
C. 2 ; // spin
xlock = 1; // SET (lock)
D. 3 }
E 4 void Pthread_mutex_unlock(volatile unsigned int *xlock) {

xlock = 0;
¥

Naive implementation

void *xchild(void *xarg) {

int out = 0O;

printf("child\n");

while(TRUE) {
Pthread_mutex_lock(&lock);

int item = bufferl[out];

: " . : " 2 out = (out + 1) % BUFF_SIZE;
9;12:]1;E Ez;gnt. begin\n" crashes/halts here* pthread_mutex_unlock (&lock)
Pthread create(&p, NULL, child, NULL): , // do something w/ 1tem
int 1n = 0; .
while (TRUE) { return NULL;

int item = ..;

Pthread_mutex_lock(&lock);

bufferlinl = 1item:

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

int main(int argc, char s*xarcg o
othread t p: what if the thread

}

void Pthread_mutex 1ock(volat11e un31gned int *xlock) {
while (%lock = ~ TEST

in = what if context switch // spin aII threads can see
) P happens here? , *lock = 1; lock as O at this point
printf("parent: end\n"); * coherence cache misses? page fault?
, return @ void Pthread_mutex_unlock(volatile unsigned int *xlock)
{
B — — xlock = 0;

}

Poll close in 1:30
How to achieve preemptive multitasking

- Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

Poll close in 1:30
How to achieve preemptive multitasking

- Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

How preemptive multitasking works

. Setup a timer (a hardware feature by the processor)event
before the process start running

- After a certain period of time, the timer generates interrupt
to force the running process transfer the control to OS
kernel

- The OS kernel code decides if the system wants to
continue the current process

- |[f not — context switch
- If yes, return to the process

10

How to achieve preemptive multitasking

- Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

1

Three ways to invoke OS handlers

. System calls / trap instructions — raised by applications
- Display images, play sounds

- Exceptions — raised by processor itself
- Divided by zero, unknown memory addresses

OS kernel

- Interrupts — raised by hardware g
- Keystroke, network packets

Disable interrupts?

- How many of the following can the disable interrupts guarantee for the
producer-consumer problem?
® At most one process/thread in its critical section

@ A thread outside of its critical section cannot block another thread from entering
its critical section

® A thread cannot be postponed indefinitely from entering its critical section

@ The solution should work regardless the speed of executing threads and the
number of processors

Mmoo ®»
P W N—O

13

Disable interrupts?

- How many of the following can the disable interrupts guarantee for the
producer-consumer problem?
® At most one process/thread in its critical section

@ A thread outside of its critical section cannot block another thread from entering
its critical section

® A thread cannot be postponed indefinitely from entering its critical section

@ The solution should work regardless the speed of executing threads and the
number of processors

Mmoo ®»
P W N—O

14

Disable interrupts?

- How many of the following can the disable interrupts guarantee for the
producer-consumer problem?

x At most one process/thrﬁg.:\dl tss SHtlga section ssor sti
@ A thread outside of its Crltlca section c:anno[3 bﬁ)cﬁ anot ert reaol rom entering

Its critical section

owm

® A thread cannot be postEoned |ndef| y from enterlng Its critical section

x The solution should wor

A.

regar e st espee ecutlng threads and the

number of processors
— you can only disable the interrupt on the current processor

m oW
A WINI—m O

15

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

We must use atomic instructions

vold *child(void *xarg) {
int out = 0;
printf("child\n");

T — T — while(TRUE) {

int main(int argc, char xargv[]) {
pthread_t p;
printf("parent: begin\n");
// 1nit here

Pthread_mutex_lock(&lock):
int item = buffer[out];

out = (out + 1) % BUFF_SIZE;
Pthread_mutex_unlock(&lock):

Pthread_create(&p, NULL, child, NULL); // do something w/ item

int in = 0;
while(TRUE) {

s
return NULL;

}

int item = ..;
Pthread_mutex_lock(&lock);

buffarlini c volid Pthread_mutex_lock(volatile unsigned int *xlock) {
ufferliinl = 1tem:

while (xlock == 1) // TEST (lock)

in = what if context switch // spin
Pthi — 1.
happens here? *lock = 1; // SET (lock))
oo , o } —the lock must be updated atomically
printf("parent: end\n");
) return 9; void Pthread_mutex_unlock(volatile unsigned int *lock)
{
I — — xlock = 0;
}

T ————— e —

We must use atomic instructions

int buffer[BUFF_SIZE]; // shared global

volatile unsigned int lock = 0;

vold *child(void *xarg) {
int out = 0;
printf("child\n");

TR — T —— while(TRUE) {

int main(int argc, char xargv[]) {
pthread_t p;
printf("parent: begin\n");
// 1nit here
Pthread create(&p, NULL, chilc
int 1n = O;
while(TRUE) {
int item = ..;
Pthread_mutex_lock(&lock);
bufferl[in] = item;
in = (in + 1) % BUFF_SIZE;
Pthread_mutex_unlock(&lock,
¥
printf("parent: end\n");
return 0;

Pthread_mutex_lock(&lock):
int item = buffer[out];
out = (out + 1) % BUFF_SIZE;
Nidlasacad ik aw Tl acl, fOT Al
static inline uint xchg(volatile unsigned int *addr,
unsigned int newval) {
uint result;
asm volatile("lock; xchgl %0, %1" : "+m" (s*addr),
"=a" (result) : "1™ ewvalk: "cc")
return result; 5 exchange the content in %0 and %1
Iy a prefix to xchgl that locks the whole cache line

void Pthread_mutex_lock(volatile unsigned int *xlock) {
// what code should go here?

}

vold Pthread_mutex_unlock(volatile unsigned int *xlock) {
// what code should go here?

}

We must use atomic instructions

, . vold *child(void *xarg) {
int buffer[BUFF_SIZE]; // shared global int out = 0°

volatile unsigned 1int lock = 0; orintf("child\n"):

R — T — while(TRUE) {

Pthread_mutex_lock(&lock):
int item = bufferlout];
out = (out + 1) % BUFF_SIZE;

n-I-IA-I-AAAI een e A ws Il“1 AAII’O1AAII\.

int main(int argc, char xargv[]) {
pthread_t p;
printf("parent: begin\n");

ééhigzg Eiggte(&p NULL chil<StatiC inline uilnt xchg(volatile unsigned int *xaddr,

int in = 0 unsigned int newval) {

' uint result;
WhliﬁéT§¥E% i . asm volatile("lock; xchgl %0, %1" : "+m" (xaddr),
Pthread_mutex_lock(&lock); 2 (result) : "1" (newval) : "cc");

buffer[in] = 1tem; return result;

in = (in + 1) % BUFF SIZE: ’

, Pthread_mutex_unlock(&lock, ., Pthread_mutex_lock(volatile unsigned int xlock) {

orintf("parent: end\n"): while (xchg(lock, 1) == 1);

return 9;

}

void Pthread_mutex_unlock(volatile unsigned int *lock)
xchg(lock, ©);

}

Semaphores

Semaphores

- A synchronization variable

- Has an integer value — current value dictates if thread/process
can proceed

- Access granted if val > O, blocked if val ==
- Maintain a list of waiting processes

20

Semaphore Operations

e sem walit(S)
- iIf S> 0, thread/process proceeds and decrement S

- if S == 0, thread goes into “waiting” state and placed in a special
queue

e sem_post(S)
- if no one waiting for entry (i.e. waiting queue is empty), increment S
- otherwise, allow one thread in queue to proceed

21

Semaphore Op Implementations

sem_init(sem_t *s, int initvalue) {
s—>value = initvalue;

}

— T sem_wait(sem_t *s) {
while (s—>value <= 0)
put_self_to_sleep(); // put self to sleep
s—->value——;

sem_post(sem_t xs) {
s—>value++;
wake_one_waiting_thread(); // 1f there 1s one

22

Atomicity in Semaphore Ops

- Semaphore operations must operate atomically

- Requires lower-level synchronization methods requires (test-and-
set, etc.)

- Most implementations still require on busy waiting in spinlocks
- What did we gain by using semaphores?

- Easier for programmers

- Busy waiting time is limited

23

Adding Synchronization?

What variables to use for this problem?

int buffer[BUFF_SIZE]; // shared global
int main(int argc, char xargv[]) { sem_t filled, empty;

pthread_t p; P — T —

priptf("parent: begin\n"); void *child(void *arg) {
// init here int out = O:

Pthrgad:cr?ate(&p, NULL, child, NULL); orintf("child\n");
int in = @,. . while(TRUE) {
Sem_init(&filled, 0): Sem_wait(&Y):

Sem_init(&empty, BUFF_SIZE):

: 1nt 1tem = bufferlout];
while(TRUE) { int 1 u [out]

out = (out + 1) % BUFF_SIZE;

éQ; &:EQ(Zwyf // do something w/ 1item
= . . Sem_post(&Z);
buffer[in] = item; y _post(&Z)

in = (in + 1) % BUFF_SIZE;

return NULL;
Sem_post (&X);

¥
printf("parent: end\n"); -“——-
return 9;

- empty empty filled filled
L — “ empty filled filled empty

filled empty empty filled

£&"T

Adding Synchronization?

What variables to use for this problem?

int buffer[BUFF_SIZE]; // shared global
int main(int argc, char xargv[]) { sem_t filled, empty;

pthread_t p; P — T —

priptf("parent: begin\n"); void *child(void *arg) {
// init here int out = O:

Pthrgad:cr?ate(&p, NULL, child, NULL); orintf("child\n");
int in = @,. . while(TRUE) {
Sem_init(&filled, 0): Sem_wait(&Y):

Sem_init(&empty, BUFF_SIZE):

: 1nt 1tem = bufferlout];
while(TRUE) { int 1 u [out]

out = (out + 1) % BUFF_SIZE;

éQ; &:EQ(Zwyf // do something w/ 1item
= . . Sem_post(&Z);
buffer[in] = item; y _post(&Z)

in = (in + 1) % BUFF_SIZE;

return NULL;
Sem_post (&X);

¥
printf("parent: end\n"); -“——-
return 9;

- empty empty filled filled
L — “ empty filled filled empty

filled empty empty filled

e \J

Adding Synchronization?

What variables to use for this problem?

int buffer[BUFF_SIZE]; // shared global
int main(int argc, char xargv[]) { sem_t filled, empty;
pthread_t p; .
printf("parent: begin\n");
// init here

e ——————

void *xchild(void xarg) {
int out = 9;

Pthrgad:cr?ate(&p, NULL, child, NULL): orintf("child\n");
int in = @,. . while(TRUE) {
Sem_init(&filled, 0): Sem_wait(&Y):

Sem_init(&empty, BUFF_SIZE):

: int item = bufferlout];
while(TRUE) { * ' - Lout |

out = (out + 1) % BUFF_SIZE;

éE; $§§$(ZW¥Z // do something w/ item
= . . Sem_post(&Z);
buffer[in] = item; y _post(&Z)

in = (in + 1) % BUFF_SIZE;

return NULL;
Sem_post (&X);

¥
printf("parent: end\n"); -____
return 9;

Are semaphores good enough?

- How many of the following statements are correct regarding semaphores
iImplemented through atomic instructions?

® Semap
@ Semap
® Semap

nores can only support limited amount of concurrency/threads
nores can work correctly if one of the threads go into a faulty state

nores do not prevent deadlock situations

@ A thread entering its critical section protected by (a) semaphore(s) may not be
able to make meaningful progress during a scheduling quanta

moowxz
A WMN-—-O

27

Are semaphores good enough?

- How many of the following statements are correct regarding semaphores
iImplemented through atomic instructions?

® Semap
@ Semap
® Semap

nores can only support limited amount of concurrency/threads
nores can work correctly if one of the threads go into a faulty state

nores do not prevent deadlock situations

@ A thread entering its critical section protected by (a) semaphore(s) may not be
able to make meaningful progress during a scheduling quanta

moowxz
A WMN-—-O

28

Are semaphores good enough?

- How many of the following statements are correct regarding semaphores
iImplemented through atomic instructions?
® Semaphores can only support limited amount of concurrency/threads
x Semaphores can work correctly if one of the threads go into a faulty state
® Semaphores do not prevent deadlock situations
@ A thread entering its critical section protected by (a) semaphore(s) may not be

able to make meaningful progress during a scheduling quanta

moo w »
AN —- O

29

RCU Usage In the Linux Kernel: Eighteen
Years Later

Paul E. McKenney (Facebook), Joel Fernandes (Google), and Silas Boyd-Wickize (MIT CSAIL)
ACM SIGOPS Operating Systems Review Vol. 54, No. 1, August 2020, pp. 47-63.

30

RCU: Read-copy-update

- Consider the following linked-list structure

.
n~
.
.
.
.
.
S
.

‘ﬂ '
"
L
.

L 4 .
0. *
‘ +*

A d

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?

® Any running thread can traverse the linked list without waiting for a lock

®@ RCU can only allow as many concurrent reading threads as the number of hardware threads (i.e., number of processor threads).

® If athread is removing B from the list and replacing B with a new node E, B can only be physically removed if all preceding threads
traversing the linked list have completed

@ RCU is an implementation of wait-free synchronization
A O

mo o w
A w >N

31

RCU: Read-copy-update

- Consider the following linked-list structure

.
n~
.
.
.
.
.
S
.

‘ﬂ '
"
L
.

L 4 .
0. *
‘ +*

A d

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?

® Any running thread can traverse the linked list without waiting for a lock

®@ RCU can only allow as many concurrent reading threads as the number of hardware threads (i.e., number of processor threads).

® If athread is removing B from the list and replacing B with a new node E, B can only be physically removed if all preceding threads
traversing the linked list have completed

@ RCU is an implementation of wait-free synchronization
A O

mo o w
A w >N

32

RCU: Read-copy-update

- Consider the following linked-list structure

.
n~
.
.
.
.
.
S
.

o’
.
.
.

04 .
0. “‘
A L]
A d

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?

® Any running thread can traverse the linked list without waiting for a lock

®@ RCU can only allow as many concurrent reading threads as the number of hardware threads (i.e., number of processor threads).

® If athread is removing B from the list and replacing B with a new node E, B can only be physically removed if all preceding threads
traversing the linked list have completed

@ RCU is an implementation of wait-free synchronization
A O

mo o w
A w >N

33

RCU API

APl Name C Equivalent

rcu_read_lock() = rcu_read_unlock() Simply disable/re-enable interrupts

rcu_assign_pointer(p, x) P =X

rcu_dereference(p) P

Wait for existing RCU critical sections
to complete

synchronize_rcu()

34

RCU: Read-copy-update

- Consider the following linked-list structure

n'~ n n
.
‘e '
., o*
., .
rS L
.
S *
. o®
A .
.

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?
Any running thread can traverse the linked list without waiting for a lock— Yes — just disable interrupt, deterministic operations

¢ RCU can only aIIov*as rBany concurrent reading threads as the number of hard.YV r? thre?lds (i.e., number of pr,ocessorthrea(gls).
, — Yes, because t ereé:\re?n t ser}nan procests(gaval a?:)g are runnin sm?ernterrlgotare Isabled
® If athread is removing B from the list and replacing B with a néw node E, B can only be physically removed if all preceding threads
traversing the linked list have completed
@ RCU is an implementation of wait-free synchronization
A. O

moow
A w >N

35

Why disabling interrupts

- How many of the following statements describing the reason why
rcu_read_lock disable interrupts
® Guarantee mutual exclusions for reads
@ Guarantee mutual exclusions for updates
® Guarantee all readers can run to finish without being context switched out

@ Simplifies the implementation of updates
A. O

moow
A wWOWDN-=-

36

Why disabling interrupts

- How many of the following statements describing the reason why
rcu_read_lock disable interrupts
® Guarantee mutual exclusions for reads
@ Guarantee mutual exclusions for updates
® Guarantee all readers can run to finish without being context switched out

@ Simplifies the implementation of updates
A. O

moow
A wWOWDN-=-

37

Why disabling interrupts

- How many of the following statements describing the reason why
rcu_read_lock disable interrupts

x Guarantee mutual exclusions for reads — (1) Does not help & (2) It's never a goal of RCU
x Guarantee mutual exclusions for updates — (1) Does not help & (2) You need locks
® Guarantee all readers can run to finish without being context switched out

. .o . . — Yes — but why we need to guarantee this?
@ Simplifies the implementation of updates
A O — Here is the reason!!!

m 0w
A W(IN -

38

RCU Update

synchronilze, rcu synchronize rcu
rcu_read_lock rcu_read _unlock rcu_read unloc

Processor #1 A B C »)

rcu_read lock

C
synchronize rcu
rcu_read lock rcu_read/ unlock

Processor#2_ [INENIN INCHNNNENN | ,

synchronize, rcurcu_read_lock
rcu_read lock rcu_read, unlock

Processor #3

: sgnchroniz rcu
spinlock rcu_assign_po r(p, X

)

spin_unlock
III:III IIIEIII IIIEIII III:III
0000... “"
39

RCU: Read-copy-update

- Consider the following linked-list structure

n'~ n n
.
‘e '
., R
., .
& L
.
S *
.A o*
.
.

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?
Any running thread can traverse the linked list without waiting for a lock— Yes — just disable interrupt, deterministic operations
\ﬁ RCU canonly aIIov*as rBany concurrent readin t!‘lrgads as the number of hard.YV;F)r? thre?lds (i.e., number of processor thread
y

).
, es, because there are only these many proce availa are running since jnterru taredsls bled
@ If a thread is removing B from t eﬁst ano"lj‘ rep?ac ng W?tﬁnan vl\? nodeslzs,(gcan on gep ysically remo eon?alfprececﬁng threads

traversing the '”ﬁeﬁwli%tt'haé’ﬁm%%ﬂ?lﬁtﬁbu — allowing threads to continue without being affected by the update
@ RCU is an implementation of wait-free synchronization

A. O

moow

1

2
3
4

40

Wait-free Synchronization

Maurice Herlihy
Brown University
ACM Transactions on Programming Languages and Systems (TOPLAS), 1991

41

Wait-free synchronization

- How many of the following statements fulfill the requirements of wait-free
synchronization?

® Any operation from a process accessing the shared data structure must be completed
within a finite number of steps

@ No process can be prevented from completing its operation by failures from other
processes

® The implementation of wait-free synchronization cannot depend on hardware support

@ The implementation of wait-free synchronization should work regardless of the
processing speed

0

moow»
AwN =

42

Wait-free synchronization

- How many of the following statements fulfill the requirements of wait-free
synchronization?

® Any operation from a process accessing the shared data structure must be completed
within a finite number of steps

@ No process can be prevented from completing its operation by failures from other
processes

® The implementation of wait-free synchronization cannot depend on hardware support

@ The implementation of wait-free synchronization should work regardless of the
processing speed

0

moow»
AwN =

43

Wait-free synchronization

A wait-free implementation of a concurrent data object is one that guarantees
that any process can complete any operation in a finite number of steps, regardless
of the execution speeds on the other processes. The wait-free condition provides
fault-tolerance: no process can be prevented from completing an operation by
undetected halting failures of other processes, or by arbitrary variations in their
speed. The fundamental problem of wait-free synchronization can be phrased as
follows:

(;iven two concurrent objects X and Y, does there exist a wait-free
implementation of X by Y7

44

Wait-free synchronization

- How many of the following statements fulfill the requirements of wait-free
synchronization?

® Any operation from a process accessing the shared data structure must be completed
within a finite number of steps

@ No process can be prevented from completing its operation by failures from other
processes

x The implementation of wait-free synchronization cannot depend on hardware support

@ The implementation of wait-free synchronization should work regardless of the
processing speed

0

moow»
AwN =

45

Wait-free synchronization

- How many of the following statements fulfill the requirements of wait-free
synchronization?

® Any operation from a process accessing the shared data structure must be completed
within a finite number of steps — only true for RCU reads

@ No process can be prevented from completing its operation by failures from other
ProcessSesS — Only true for RCU reads

x The implementation of wait-free synchronization cannot depend on hardware support

@ The implementation of wait-free synchronization should work regardless of the
processing speed _ only true for RCU reads

moow>
A WON-—-O

46

Wait-Free Queues With Multiple Enqueuers and Dequeuers *

Alex Kogan

Department of Computer Science
Technion, Israel

sakogan@cs.technion.ac.il

Abstract

The queue data structure is fundamental and ubiquitous. Lock-
free versions of the queue are well known. However, an impor-
tant open question is whether practical wait free queues exist. Un

til now, only versions with limited concurrency were proposed.
In this paper we provide a design for a practical wait-free quecue.
Qur construction 1s based on the highly etficient lock-free queue of
Michael and Scott. To achieve wait-freedom, we employ a priority-
based helping scheme 1n which faster threads help the slower peers
to complcte their pending operations. We have implemented our
scheme on multicore machines and present performance measure-
ments comparing our implementation with that of Michael and
Scott in several system configurations.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages): Language Constructs and Features — Concurrent program-
ming structures; L.l [Data structures]: Lists, stacks, and queunes

General Terms Algorithms, Performance

Keywords concurrent queunes, wait-free algorithms

1. Introduction

The proliferation of multicore systems motivates the research for
efficient concurrent data structures. Being a fundamental and com-
monly used structure, first-in first-out (FIFO) queues’ have been

etndiad avtencivelu reenlting in manu hichlv canenrrant aloarithme

Erez Petrank

Department of Computer Science
Technion, Israel

erez@cs.technion.ac.il

strict deadlines for operation completion exist, e.g., in real-time
applications or when operating under a service level agreement
(SLA), or in heterogenous execution environments where some of
the threads mav perform much faster or slower than others. Yet,
most previous queue implementations (e.g., (14,17, 19, 21, 24, 25))
provide the weaker lock-free property; lock-freedom ensures that
among all processes accessing a queue, at least one will succeed to
finish its operation. Although such non-blocking implementations
guarantee global progress, thev allow scenarios in which all but one
thread starve while trying to execute an operation on the queue.
I'he few wait-free queue constructions that exist, as discussed later,
arc cither stem from gencral transformations on scquential objects
and arc impractical duc to significant performance drawbacks, or
scverely limit the number of threads that may perform onc or both
of the queue operations concurrently.

In fact, when considering concurrent data structures in general,
one realizes that with only a few exceptions (e.g., [5, 22]), wait-
free constructions are very rare in practice. A possible reason for
this sitnation is that such constructions are hard to design in an
efficient and practical way. This paper presents the first practical
design of wail-free queves, which supports multiple concurrent de-
gueuvers and enqueuers. Our idea is based on the lock-[ree queue
implementation by Michael and Scott [19], considered to be one of
the most efficient and scalable non-blocking algorithms in the liter-
ature [11, 14, 24]. Our design employs an efficient helping mech-
anism, which ensures that each operation is applied exactly once
and in a haimdad rima Wa achisve wair-fraasdam hu accioninn sach

Announcement

- Regarding in-person instructions starting from February

- We will have live sessions in Material Science Building 103 starting next Tuesday 2p!

- Online options remain open

- Please setup “Poll everywhere"” before attending lectures — both in-person and online — by next Tuesday as well
- Midterm

- Will release on 2/10/2021 0:00am and due on 2/11/2021 11:59:00pm

- You will have to find a consecutive, non-stop 80-minute slot with this period

- One time, cannot reinitiate — please make sure you have a stable system and network

« No late submission is allowed

- Project released — https://github.com/hungweitseng/CS202-MMA

- Groups in 2. 3 is acceptable, but not recommended

- Pull the latest version — had some changes for later kernel versions

« Install an Ubuntu Linux 20.04 VM as soon as you can!

- Please do not use a real machine — you may not be able to reboot again

- Need help? Check for office hours — https://calendar.google.com/calendar/u/O/r?
cid=ucr.edu_b8u6bdvkretn6kg6igunlcobldg@group.calendar.google.com

- Reading quizzes due next Tuesday

48

https://github.com/hungweitseng/CS202-MMA
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

Computer

Engineering

