
Synchronization
Hung-Wei Tseng

The virtual memory of multithreaded applications

2

Virtual memory

heap

code

static data

stack #1

stack #2

stack #3

Everything here is shared/
visible among all threads
within the same process!

• Also referred to as “producer-consumer” problem
• Producer places items in shared buffer
• Consumer removes items from shared buffer

3

Recap: Bounded-Buffer Problem

producer consumer

5 22 18 38 2 15buffer

4

Recap: We need to control accesses to the buffer!

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;

 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;

 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {

 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;

 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global

1. Mutual exclusion — at most one process/thread in its critical
section

2. Progress — a thread outside of its critical section cannot
block another thread from entering its critical section

3. Fairness — a thread cannot be postponed indefinitely from
entering its critical section

4. Accommodate nondeterminism — the solution should work
regardless the speed of executing threads and the number of
processors

5

Recap: Solving the “Critical Section Problem”

• How many of the following can the naive implementation guarantee for the
producer-consumer problem?
① At most one process/thread in its critical section
② A thread outside of its critical section cannot block another thread from entering

its critical section
③ A thread cannot be postponed indefinitely from entering its critical section
④ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

6

Recap: Naive implementation

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 *lock = 0;
}

7

Naive implementation

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock)
{
 *lock = 0;
}

what if context switch
happens here?

what if the thread
crashes/halts here?

all threads can see
lock as 0 at this point

coherence cache misses? page fault?

• Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

8

How to achieve preemptive multitasking
Poll close in

• Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

9

How to achieve preemptive multitasking
Poll close in

• Setup a timer (a hardware feature by the processor)event
before the process start running

• After a certain period of time, the timer generates interrupt
to force the running process transfer the control to OS
kernel

• The OS kernel code decides if the system wants to
continue the current process
• If not — context switch
• If yes, return to the process

10

How preemptive multitasking works

• Which of the following mechanism are used to support
preemptive multitasking?

A. Exception
B. Interrupt
C. System calls

11

How to achieve preemptive multitasking

• System calls / trap instructions — raised by applications
• Display images, play sounds

• Exceptions — raised by processor itself
• Divided by zero, unknown memory addresses

• Interrupts — raised by hardware
• Keystroke, network packets

12

Three ways to invoke OS handlers

add 0x1bad(%eax),%dh
add %al,(%eax)
decb 0x52(%edi)
in $0x8d,%al
mov %eax,0x101c
lea -0x2bb84(%ebx),%eax
mov %eax,-0x2bb8a(%ebx)
lgdtl -0x2bb8c(%ebx)
lea -0x2bf3d(%ebx),%eax
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx)
and %cl,(%rbx)
xor $0x19,%al
add %edx,(%rbx)
add %al,(%rax)
syscall
add %al,(%rbx)
……
……
……
div %ecx
……
……
……
……

trap

return-from-trap

exception

return from
exception handler

interrupt
return from

interrupt handler

• How many of the following can the disable interrupts guarantee for the
producer-consumer problem?
① At most one process/thread in its critical section
② A thread outside of its critical section cannot block another thread from entering

its critical section
③ A thread cannot be postponed indefinitely from entering its critical section
④ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

13

Disable interrupts?
Poll close in

• How many of the following can the disable interrupts guarantee for the
producer-consumer problem?
① At most one process/thread in its critical section
② A thread outside of its critical section cannot block another thread from entering

its critical section
③ A thread cannot be postponed indefinitely from entering its critical section
④ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

14

Disable interrupts?
Poll close in

• How many of the following can the disable interrupts guarantee for the
producer-consumer problem?
① At most one process/thread in its critical section
② A thread outside of its critical section cannot block another thread from entering

its critical section
③ A thread cannot be postponed indefinitely from entering its critical section
④ The solution should work regardless the speed of executing threads and the

number of processors
A. 0
B. 1
C. 2
D. 3
E. 4

15

Disable interrupts?

— you can only disable the interrupt on the current processor

— threads on other processors can still run

— now many of them can go…

16

We must use atomic instructions

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (*lock == 1) // TEST (lock)
 ; // spin
 *lock = 1; // SET (lock)
}

void Pthread_mutex_unlock(volatile unsigned int *lock)
{
 *lock = 0;
}

what if context switch
happens here?

— the lock must be updated atomically

17

We must use atomic instructions

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

static inline uint xchg(volatile unsigned int *addr,
unsigned int newval) {
 uint result;
 asm volatile("lock; xchgl %0, %1" : "+m" (*addr),
"=a" (result) : "1" (newval) : "cc");
 return result;
}

void Pthread_mutex_lock(volatile unsigned int *lock) {
 // what code should go here?
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 // what code should go here?
}

a prefix to xchgl that locks the whole cache line
exchange the content in %0 and %1

18

We must use atomic instructions

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 while(TRUE) {
 int item = …;
 Pthread_mutex_lock(&lock);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Pthread_mutex_lock(&lock);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 Pthread_mutex_unlock(&lock);
 // do something w/ item
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
volatile unsigned int lock = 0;

static inline uint xchg(volatile unsigned int *addr,
unsigned int newval) {
 uint result;
 asm volatile("lock; xchgl %0, %1" : "+m" (*addr),
"=a" (result) : "1" (newval) : "cc");
 return result;
}

void Pthread_mutex_lock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1);
}

void Pthread_mutex_unlock(volatile unsigned int *lock) {
 xchg(lock, 0);
}

Semaphores

19

• A synchronization variable
• Has an integer value — current value dictates if thread/process

can proceed
• Access granted if val > 0, blocked if val == 0
• Maintain a list of waiting processes

20

Semaphores

• sem_wait(S)
• if S > 0, thread/process proceeds and decrement S
• if S == 0, thread goes into “waiting” state and placed in a special

queue
• sem_post(S)

• if no one waiting for entry (i.e. waiting queue is empty), increment S
• otherwise, allow one thread in queue to proceed

21

Semaphore Operations

Semaphore Op Implementations

22

sem_init(sem_t *s, int initvalue) {
 s->value = initvalue;
}

sem_wait(sem_t *s) {
 while (s->value <= 0)
 put_self_to_sleep(); // put self to sleep
 s->value--;
}

sem_post(sem_t *s) {
 s->value++;
 wake_one_waiting_thread(); // if there is one
}

• Semaphore operations must operate atomically
• Requires lower-level synchronization methods requires (test-and-

set, etc.)
• Most implementations still require on busy waiting in spinlocks

• What did we gain by using semaphores?
• Easier for programmers
• Busy waiting time is limited

23

Atomicity in Semaphore Ops

• What variables to use for this problem?

24

Adding Synchronization?

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 Sem_init(&filled, 0);
 Sem_init(&empty, BUFF_SIZE);
 while(TRUE) {
 int item = …;
 Sem_wait(&W);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Sem_post(&X);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Sem_wait(&Y);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 // do something w/ item
 Sem_post(&Z);
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
sem_t filled, empty;

W X Y Z
A empty empty filled filled
B empty filled filled empty
C filled empty empty filled

Poll close in

• What variables to use for this problem?

25

Adding Synchronization?

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 Sem_init(&filled, 0);
 Sem_init(&empty, BUFF_SIZE);
 while(TRUE) {
 int item = …;
 Sem_wait(&W);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Sem_post(&X);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Sem_wait(&Y);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 // do something w/ item
 Sem_post(&Z);
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
sem_t filled, empty;

W X Y Z
A empty empty filled filled
B empty filled filled empty
C filled empty empty filled

Poll close in

• What variables to use for this problem?

26

Adding Synchronization?

int main(int argc, char *argv[]) {
 pthread_t p;
 printf("parent: begin\n");
 // init here
 Pthread_create(&p, NULL, child, NULL);
 int in = 0;
 Sem_init(&filled, 0);
 Sem_init(&empty, BUFF_SIZE);
 while(TRUE) {
 int item = …;
 Sem_wait(&W);
 buffer[in] = item;
 in = (in + 1) % BUFF_SIZE;
 Sem_post(&X);
 }
 printf("parent: end\n");
 return 0;
}

void *child(void *arg) {
 int out = 0;
 printf("child\n");
 while(TRUE) {
 Sem_wait(&Y);
 int item = buffer[out];
 out = (out + 1) % BUFF_SIZE;
 // do something w/ item
 Sem_post(&Z);
 }
 return NULL;
}

int buffer[BUFF_SIZE]; // shared global
sem_t filled, empty;

W X Y Z
A empty empty filled filled
B empty filled filled empty
C filled empty empty filled

• How many of the following statements are correct regarding semaphores
implemented through atomic instructions?
① Semaphores can only support limited amount of concurrency/threads
② Semaphores can work correctly if one of the threads go into a faulty state
③ Semaphores do not prevent deadlock situations
④ A thread entering its critical section protected by (a) semaphore(s) may not be

able to make meaningful progress during a scheduling quanta
A. 0
B. 1
C. 2
D. 3
E. 4

27

Are semaphores good enough?
Poll close in

• How many of the following statements are correct regarding semaphores
implemented through atomic instructions?
① Semaphores can only support limited amount of concurrency/threads
② Semaphores can work correctly if one of the threads go into a faulty state
③ Semaphores do not prevent deadlock situations
④ A thread entering its critical section protected by (a) semaphore(s) may not be

able to make meaningful progress during a scheduling quanta
A. 0
B. 1
C. 2
D. 3
E. 4

28

Are semaphores good enough?
Poll close in

• How many of the following statements are correct regarding semaphores
implemented through atomic instructions?
① Semaphores can only support limited amount of concurrency/threads
② Semaphores can work correctly if one of the threads go into a faulty state
③ Semaphores do not prevent deadlock situations
④ A thread entering its critical section protected by (a) semaphore(s) may not be

able to make meaningful progress during a scheduling quanta
A. 0
B. 1
C. 2
D. 3
E. 4

29

Are semaphores good enough?

RCU Usage In the Linux Kernel: Eighteen
Years Later

Paul E. McKenney (Facebook), Joel Fernandes (Google), and Silas Boyd-Wickize (MIT CSAIL)
ACM SIGOPS Operating Systems Review Vol. 54, No. 1, August 2020, pp. 47–63.

30

• Consider the following linked-list structure

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?
① Any running thread can traverse the linked list without waiting for a lock
② RCU can only allow as many concurrent reading threads as the number of hardware threads (i.e., number of processor threads).
③ If a thread is removing B from the list and replacing B with a new node E, B can only be physically removed if all preceding threads

traversing the linked list have completed
④ RCU is an implementation of wait-free synchronization
A. 0
B. 1
C. 2
D. 3
E. 4

31

RCU: Read-copy-update
Poll close in

A B C D

E

• Consider the following linked-list structure

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?
① Any running thread can traverse the linked list without waiting for a lock
② RCU can only allow as many concurrent reading threads as the number of hardware threads (i.e., number of processor threads).
③ If a thread is removing B from the list and replacing B with a new node E, B can only be physically removed if all preceding threads

traversing the linked list have completed
④ RCU is an implementation of wait-free synchronization
A. 0
B. 1
C. 2
D. 3
E. 4

32

RCU: Read-copy-update
Poll close in

A B C D

E

• Consider the following linked-list structure

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?
① Any running thread can traverse the linked list without waiting for a lock
② RCU can only allow as many concurrent reading threads as the number of hardware threads (i.e., number of processor threads).
③ If a thread is removing B from the list and replacing B with a new node E, B can only be physically removed if all preceding threads

traversing the linked list have completed
④ RCU is an implementation of wait-free synchronization
A. 0
B. 1
C. 2
D. 3
E. 4

33

RCU: Read-copy-update

A B C D

E

RCU API

34

API Name C Equivalent

rcu_read_lock() = rcu_read_unlock() Simply disable/re-enable interrupts

rcu_assign_pointer(p, x) p = x

rcu_dereference(p) *p

synchronize_rcu() Wait for existing RCU critical sections
to complete

• Consider the following linked-list structure

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?
① Any running thread can traverse the linked list without waiting for a lock
② RCU can only allow as many concurrent reading threads as the number of hardware threads (i.e., number of processor threads).
③ If a thread is removing B from the list and replacing B with a new node E, B can only be physically removed if all preceding threads

traversing the linked list have completed
④ RCU is an implementation of wait-free synchronization
A. 0
B. 1
C. 2
D. 3
E. 4

35

RCU: Read-copy-update

A B C D

E

— Yes — just disable interrupt, deterministic operations

— Yes, because there are only these many processor available & all are running since interrupt are disabled

• How many of the following statements describing the reason why
rcu_read_lock disable interrupts
① Guarantee mutual exclusions for reads
② Guarantee mutual exclusions for updates
③ Guarantee all readers can run to finish without being context switched out
④ Simplifies the implementation of updates
A. 0
B. 1
C. 2
D. 3
E. 4

36

Why disabling interrupts
Poll close in

• How many of the following statements describing the reason why
rcu_read_lock disable interrupts
① Guarantee mutual exclusions for reads
② Guarantee mutual exclusions for updates
③ Guarantee all readers can run to finish without being context switched out
④ Simplifies the implementation of updates
A. 0
B. 1
C. 2
D. 3
E. 4

37

Why disabling interrupts
Poll close in

• How many of the following statements describing the reason why
rcu_read_lock disable interrupts
① Guarantee mutual exclusions for reads
② Guarantee mutual exclusions for updates
③ Guarantee all readers can run to finish without being context switched out
④ Simplifies the implementation of updates
A. 0
B. 1
C. 2
D. 3
E. 4

38

Why disabling interrupts

— (1) Does not help & (2) It’s never a goal of RCU

— (1) Does not help & (2) You need locks

— Yes — but why we need to guarantee this?

— Here is the reason!!!

RCU Update

39

Processor #1
rcu_read_lock

A B C D

rcu_read_unlock

Processor #2
rcu_read_lock

A B C D

Processor #3
rcu_read_lock

A B C D

Processor #4 Remove BAdd E

spinlock
Update A

spin_unlock

rcu_assign_pointer(p, x)

A

rcu_read_lock
B C D

rcu_read_unlock
synchronize_rcu

rcu_read_unlock
synchronize_rcu

rcu_read_unlock
synchronize_rcu

synchronize_rcu

synchronize_rcu

A

rcu_read_lock

E

A C DB

E

• Consider the following linked-list structure

How many of the following statements are true (or can be done) if we use RCU to traverse/update the data structure
appropriately?
① Any running thread can traverse the linked list without waiting for a lock
② RCU can only allow as many concurrent reading threads as the number of hardware threads (i.e., number of processor threads).
③ If a thread is removing B from the list and replacing B with a new node E, B can only be physically removed if all preceding threads

traversing the linked list have completed
④ RCU is an implementation of wait-free synchronization
A. 0
B. 1
C. 2
D. 3
E. 4

40

RCU: Read-copy-update

A B C D

E

— Yes — just disable interrupt, deterministic operations

— Yes, because there are only these many processor available & all are running since interrupt are disabled

— This the magic of RCU — allowing threads to continue without being affected by the update

Wait-free Synchronization
Maurice Herlihy

Brown University
ACM Transactions on Programming Languages and Systems (TOPLAS), 1991

41

• How many of the following statements fulfill the requirements of wait-free
synchronization?
① Any operation from a process accessing the shared data structure must be completed

within a finite number of steps
② No process can be prevented from completing its operation by failures from other

processes
③ The implementation of wait-free synchronization cannot depend on hardware support
④ The implementation of wait-free synchronization should work regardless of the

processing speed
A. 0
B. 1
C. 2
D. 3
E. 4

42

Wait-free synchronization
Poll close in

• How many of the following statements fulfill the requirements of wait-free
synchronization?
① Any operation from a process accessing the shared data structure must be completed

within a finite number of steps
② No process can be prevented from completing its operation by failures from other

processes
③ The implementation of wait-free synchronization cannot depend on hardware support
④ The implementation of wait-free synchronization should work regardless of the

processing speed
A. 0
B. 1
C. 2
D. 3
E. 4

43

Wait-free synchronization
Poll close in

Wait-free synchronization

44

• How many of the following statements fulfill the requirements of wait-free
synchronization?
① Any operation from a process accessing the shared data structure must be completed

within a finite number of steps
② No process can be prevented from completing its operation by failures from other

processes
③ The implementation of wait-free synchronization cannot depend on hardware support
④ The implementation of wait-free synchronization should work regardless of the

processing speed
A. 0
B. 1
C. 2
D. 3
E. 4

45

Wait-free synchronization

• How many of the following statements fulfill the requirements of wait-free
synchronization?
① Any operation from a process accessing the shared data structure must be completed

within a finite number of steps
② No process can be prevented from completing its operation by failures from other

processes
③ The implementation of wait-free synchronization cannot depend on hardware support
④ The implementation of wait-free synchronization should work regardless of the

processing speed
A. 0
B. 1
C. 2
D. 3
E. 4

46

Wait-free synchronization

— Only true for RCU reads

— Only true for RCU reads

— Only true for RCU reads

47

• Regarding in-person instructions starting from February
• We will have live sessions in Material Science Building 103 starting next Tuesday 2p!
• Online options remain open
• Please setup “Poll everywhere” before attending lectures — both in-person and online — by next Tuesday as well

• Midterm
• Will release on 2/10/2021 0:00am and due on 2/11/2021 11:59:00pm
• You will have to find a consecutive, non-stop 80-minute slot with this period
• One time, cannot reinitiate — please make sure you have a stable system and network
• No late submission is allowed

• Project released — https://github.com/hungweitseng/CS202-MMA
• Groups in 2. 3 is acceptable, but not recommended
• Pull the latest version — had some changes for later kernel versions
• Install an Ubuntu Linux 20.04 VM as soon as you can!
• Please do not use a real machine — you may not be able to reboot again
• Need help? Check for office hours — https://calendar.google.com/calendar/u/0/r?

cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
• Reading quizzes due next Tuesday

48

Announcement

https://github.com/hungweitseng/CS202-MMA
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

つづく

Computer
Science &
Engineering

202

