Task Scheduling

Hung-Wel Tseng

Recap: Each process has a separate virtual memory space

code code code code

static data static data static data static data

heap heap

heap

heap

They are isolated from one
another. Each of them is not Virtually, every process seems to have a
supposed to know what Processor processor, but only a few of them are

happens to another one physically executing.

Task #1

Thread #1 Thread #2

= ™ I

code

static data

0x01234567

Recap: Threads

Thread #3

CPU

Task #2

Thread #1 Thread #2

PC

cru |fgem cPU

code

static data

0x01234567

Thread #3

ES <

Recap: Why Threads?

- Process is an abstraction of a computer
- When you create a process, you duplicate everything

- However, you only need to duplicate CPU abstraction to parallelize
computation tasks

- Threads as lightweight processes

- Thread is an abstraction of a CPU in a computer
- Maintain separate execution context

- Share other resources (e.g. memory)

Recap: Synchronization mechanisms

- Locks

- Mutual exclusion

- Progress

- Fairness

- Accommodation of nondeterminism/multiple processors

- Semaphores

- Allow multiple concurrent processes/threads working together
- Waitlist to reduce CPU load

- RCU

- Wait-free/Lock-free when reads

- Used intensively in Linux kernels

- Wait-free synchronization

- Wait-free regardless reads/writes

- All above needs to be implemented through atomic instructions

5

Outline

- Mechanisms of changing processes
- Basic scheduling policies
- Linux Scheduling

- An experimental time-sharing system — The Multi-Level
Scheduling Algorithm

The mechanisms of changing the running processes

- Cooperative Multitasking (non-preemptive multitasking)
- Preemptive Multitasking

Preemptive Multitasking

- The OS controls the scheduling — can change the running
process even though the process does not give up the
resource

- But how?

Three ways to invoke OS handlers

. System calls / trap instructions — raised by applications
- Display images, play sounds

- Exceptions — raised by processor itself
- Divided by zero, unknown memory addresses

OS kernel

- Interrupts — raised by hardware g
. Keystroke, network packets

How preemptive multitasking works

. Setup a timer (a hardware feature by the processor)event
before the process start running

- After a certain period of time, the timer generates interrupt
to force the running process transfer the control to OS
kernel

- The OS kernel code decides if the system wants to
continue the current process

- |[f not — context switch
- If yes, return to the process

10

Scheduling Policies from
Undergraduate OS classes

Google Scholar operating system scheduling algorithms

Articles About 2,380,000 results (0.10 sec)

12

CPU Scheduling

- Virtualizing the processor
- Multiple processes need to share a single processor

- Create an illusion that the processor is serving my task by rapidly
switching the running process

- Determine which process gets the processor for how long

13

Scheduling Metrics

- CPU utilization — how busy we keep the CPU to be

- Throughput — the amount of "tasks/processes/threads” that we can
finish within a given amount of time

- Turnaround time — the time between submission/arrival and
completion

- Response time — the time between submission and the first time
when the job is scheduled

- Wait time — the time between the job is ready (not including the
overhead of queuing, command processing) and the first time when
the job is scheduled

- Fairness — every process should get a fair chance to make progress

14

What you learned before

- Non-preemptive/cooperative: the task runs until it finished

- FIFO/FCES: First In First Out / First Come First Serve

- SJF: Shortest Job First

- Preemptive: the OS periodically checks the status of processes
and can potentially change the running process

- STCF: Shortest Time-to-Completion First

- RR: Round robin

15

Parameters for policies

- How many of the following scheduling policies require knowledge of
process run times before execution?
@® FIFO/FCFS: First In First Out / First Come First Serve
@ SJF: Shortest Job First
® STCF: Shortest Time-to-Completion First
® RR: Round robin
A. O

moOoOw
A W N -

16

Parameters for policies

- How many of the following scheduling policies require knowledge of
process run times before execution?

® FIFO/FCEFS: First In First Out / First Come First Serve
(% . ohortest JobD FIrs

¢ STCF: Shortest Time-to

® RR: Round robin

A. O .
5 1 The best ones you learned in undergraduate

C. 2] OS does not even work in real!
D. — forget about them in real implementation
E.

3
A

18

An experimental time-sharing system

Fernando J. Corbato, Marjorie Merwin-Daggett and Robert C. Daley
Massachusetts Institute of Technology, Cambridge, Massachusetts

19

Why Multi-level scheduling algorithm

- Why MIT's experimental time-sharing system proposes Multi-level
schedule algorithm? How many of the followings is it trying to optimize?

® Turn-around time
Wait time
Fairness
Response time

MOOW>»0EeeO0E

A~ WOWDN -0

20

Why Multi-level scheduling algorithm

- Why MIT's experimental time-sharing system proposes Multi-level

schedule algorithm? How many of the followings is it trying to optimize?
Turn_around tlme excessive in size or in time requirements. The

mOooOwWw>»eeeE o

A~ WOWDN -0

predicament can be alleviated if it is assumed

. . that a od desi for the system is to have a
Wait time go en 7

saturation procedure which gives graceful de-
gradation of the response time and effective

FalrneSS real-time computation speed of the large and

Response time

long-running users.

4, The response time for preograms of equal
ciZe, entering the system at the same time, and
being run for multiple quanta, is no worse than
approximately twice the response-time occurring
in a single guanta round-rchbin procedure. If

Several important conclusions can be drawn
from the above algorithm which allow the perfor-
mance of the system to be bounded.

22

Why Multi-level scheduling algorithm?

. System saturation — the demand of computing is larger than
the physical processor resource available

. Service level degrades

- Lots of program swap ins-and-outs (known as context switches
In our current terminology) T

- User interface response timeisbad .
— you have to wait until your turn

- Long running tasks cannot make l
good progress — frequent N
swap in-and-out n —>

Figure 1, Service vs. Number of
23 Active Users

What happens during a context switch?

- How many of the followings must occur during a “context switch"?
(® Save the current process's PC/registers to its PCB

Flush/invalidate the cache content of the current process

Restore the upcoming process’'s PC/registers from its PCB

Load memory pages of the upcoming processes

MOOW>Ee0

> WO N —O

24

What happens during a context switch?

- How many of the followings must occur during a “context switch"?
® Save the current process's PC/registers to its PCB
@ Flush/invalidate the cache content of the current process
® Restore the upcoming process's PC/registers from its PCB

@ Load memory pages of the upcoming processes
A. O

.
. 2

O W

m o
|

26

Context Switch Overhead

You think round robin should act like this —

O 1 2 3 4 5 ©6 /7 8 9 10

But the factis —
FE - e
1 1 2 2 3 3 4 4 5

e Your processor utilization can be very low if you switch frequently

0

eNo process can make sufficient amount of progress within a given period of time

o[t also takes a while to reach your turn

27

The Multilevel Scheduling Algorithm

- Place new process in the one of the queue
- Depending on the program size

p =

- w - . .
l.log ([_P.} + 1)J Wp is the program memory size — smaller ones are
o 2 W
q

assigned to lower numbered queues Why')

- Smaller tasks are given higher priority in the beginning

- Schedule processes in one of N queues
- Start in initially assigned queue n
- Run for 27 quanta (where rn is current depth)

- If not complete, move to a higher queue (e.g.n +1)
« Larger process will execute longer before switch

- Level m is run only when levels O to m-1 are empty

- Smaller process, hewer process are given higher priority
28

The Multilevel Scheduling Algorithm

- Not optimized for anything — it's never possible to have an
optimized scheduling algorithm without prior knowledge
regarding all running processes

- |t's practical — many scheduling algorithms used in modern
OSes still follow the same idea

29

The Linux Scheduler: a Decade of
Wasted Cores

J-P.Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova

Linux's Completely Fair Scheduler (CFS)

- Real time process classes — always run first (rare)

- Interactive processes: Usually blocked, low total run time, high
priority

. Other processes:

- Red-black BST of process, organized by CPU time they've
received.

- Pick the ready process that has run for the shortest (normallzed)

time thus far. x,@-)’\’"i o)
- Run it, update it's CPU usage time, add to tree s e TN
& | g ime

Wl u we ClCPU
31 mage seLeor: NToe S w inm cemydeve b aerwerks ikl
iG anbety ~ychadyley

CFS on multicore systems

- Each processor has a run-gueue — the load within each local
queue may not be balanced

- Run load balancing algorithms

- Cannot invoked often — Expensive computation-wise and
communication-wise

- "Emergency” load-balancing if any core is idle

32

User-level v.s kernel threads

user-level threads kernel threads

thread

user-
level The processis a
virtual processor
runtime
library \
]
]
kernel
]
mode \
.]
process list \ thread list
process list
« The OS kernel is unaware of user-level threads - The kernel can control threads directly

- Switching threads does not require kernel mode operations - Thread switch requires kernel/user mode switch and system calls

A thread can block other threads within the same process - Thread works individually
33

Load balancing

task load = weight X % of cpu use

Processor

Core
#1

Processor

Core
#2

34

Load balancing — if we have more cores?

Scheduling group #0 : Scheduling group #1

3l Processor g Processor 3 Processor Jll Processor [

Core Core E 3 Core Core
#0 A 4 #2 #3

Load balancing — if we have more cores?
avg.load = 2000! avg. load = 2000!

Scheduling group #1

balanced!

4 Processor [l Processor E
Core Core

4 Processor il Processor §
3 Core Core E

#0 #1 #2 #3

36

Loading balancing — grouplnglooo,

R avg.load = 20001....... balanced! sessssse. avg.load =.20001..........

Schedullng group #2

3 Processor
Core

Processor [l Processor § 3 Processor
Core [l Core § 3 Core

“Bugs” in Linux CFS

- Group Imbalance bug
- Thread load are divided
- Work stealing based on average load — use minimum load instead

- The Scheduling Group Construction bug
- Linux spawns threads on the same core as their parent thread

- The Overload-on-Wakeup bug

- a thread that was asleep may wake up on an overloaded core while other cores in
the system are idle

- promotes cache reuse

- The Missing Scheduling Domains bug

- When a core is disabled and then re-enabled using the /proc interface, load
balancing between any NUMA nodes is no longer performed.

38

Lottery Scheduling: Flexible Proportional-
Share Resource Management

Carl A. Waldspurger and William E. Weihl

39

Why Lottery

normous impact on throughput and response time. Accu-
enormous impact on throughput and response time. Accu Few general-purpose schemes even come close to sup-
rate control over the quality of service provided to users

and applications requires support for specilying relative Mporung flexible, ﬁresponswe co_nfllrol Eg_ir SCIVICE rale§.
computation rates. Such control is desirable across a wide ost approaches are not flexible, responsive

spectrum of systems. For long-running computations such
as scientific applications and simulations. the consumption
of computing resources that are shared among users and ap-
plications of varying importance must be regulated [Hel93].
For interactive computations such as databases and media-
based applications, programmers and users need the ability

. lone-running computations. Interactive systems require
We want Quality ot Service “Theoverhead of running those

ware systems. In fact, with the exception of hard real-time algorithms are high!
systems, it has been observed that the assignment of pri-
orities and dynamic priority adjustment schemes are often
ad-hoc [De190]. Even popular priority-based schemes tor
CPU allocation such as decay-usage scheduling are poorly
understood, despite the fact that they are employed by nu-
merous operating systems, including Unix [Hel93].

Existing fair share schedulers [Hen84, Kay88] and mi-
croeconomic schedulers [Fer88, Wal92] successtully ad-
dress some of the problems with absolute priority schemes.
However, the assumptions and overheads associated with
these systems limit them to relatively coarse control over

No body knows how they work...

40

Solution — Lottery and Tickets

What does ticket abstraction promote?

- How many of the following can the ticket abstraction in the lottery
paper promote?
® Proportional fairness
@ Machine-independent implementation of the scheduling policy
® Generic scheduling policy across different devices

@ Starvation free
A. O

moOoOw
A W N -

44

What lottery proposed?

- Each process hold a certain number of lottery tickets
- Randomize to generate a lottery

- |f a process wants to have higher priority
- Obtain more tickets!

47

What does ticket abstraction promote?

- How many of the following can the ticket abstraction in the lottery
paper promote?
@ Proportion al fairness Tickets represent the share of a process should receive from a resource

@ Machine-independent implementation of the scheduling policy

® Generic scheduling polilyFACFESE TIffErErie gt feggendent of machine speeds or detall

@ Starvation free You may use tickets on everything you would like to share

A O Eventually every process with a ticket gets to run
. It's also state-free — reduce the overhead

O 0w
w N S

48

Ticket economics

- Ticket transfers

- Ticket inflation

- Ticket currencies

. Compensation tickets

49

How good is lottery?

The overhead is not too bad

- 1000 instructions ~ less than 500 nsona 2

GHz processor
Fairness

- Figure 5: average ratio in proportion to the

ticket allocation
Flexibility
. Allows Monte-Carlo

algorithm to dynamically
Inflate its tickets

Ticket transfer
- Client-server setup

50

30000 —

V\/\/\/\f hAVANA

20000) -

10O =

Average lterations (per sec)

L] 1 L] L] L] L] Ll L] I Ll Ll L] 1 I L] 1 1 L] I
0 50 100 150 200

Time (sec)

Figure 5: Fairness Over Time. Two tasks execuling the Dhry
stone benchmark with a 2: 1 ticket allocation. Averaged over the
entire run, the two tasks executed 25378 and 12619 iterations/sce.,
[or an aclual rato of 2.01 : 1.

The impact of “lottery”

- Data center scheduling
- You buy "times”
- Lottery scheduling of your virtual machine

57

Will you use lottery for your system?

- Will it be good for

- Event-driven application
- Real-time application

- GUIl-based system

- |s randomization a good idea?
- The authors later developed a deterministic stride-scheduling

52

Setup Poll Everywhere — https://pollev.com/hungweitseng

2:26 7 w T =

< Search

0 Poll Everywhere
<D @

4.8 %% % K % #52 4+

What’s New Version History
Version 2.0.¢ 1w ago

- Add menu link to register with a presenter
- Allow signing up as a participant
- Improved error messaging more

Preview

Download the
“"Poll
Everywhere"

app

LoginorSgnup Login or create an account

Participants @ Poll Everywhere

Join a presentation

Register with a presenter Login

Respond by keyword htseng@ucr.edu ‘

Privacy Terms
Help & Feedback T

Contact support

Login through the app using
UCRNetID@ucr.edu

@ Poll Everywhere

Join a presentation

PollEv.com/hungweitseng

Join

Recent presentations

PollEv.com/hungweitseng

Join

PollEv.com

hun weitsen

https://pollev.com/hungweitseng
http://PollEv.com/hungweitseng
http://PollEv.com/hungweitseng

Announcement

- Regarding in-person instructions starting from February

- We will have live sessions in Material Science Building 103 starting next Tuesday 2p!

- Online options remain open — Zoom or youtube

- Please setup “Poll everywhere"” before attending lectures — both in-person and online — by next Tuesday as well
- Midterm

- Will release on 2/10/2021 0:00am and due on 2/11/2021 11:59:00pm

- You will have to find a consecutive, non-stop 80-minute slot with this period

- One time, cannot reinitiate — please make sure you have a stable system and network

« No late submission is allowed

- Project released — https://github.com/hungweitseng/CS202-MMA

- Groups in 2. 3 is acceptable, but not recommended

- Pull the latest version — had some changes for later kernel versions

« Install an Ubuntu Linux 20.04 VM as soon as you can!

- Please do not use a real machine — you may not be able to reboot again

- Need help? Check for office hours — https://calendar.google.com/calendar/u/O/r?
cid=ucr.edu_b8u6bdvkretn6kg6igunlcobldg@group.calendar.google.com

- Reading quizzes due next Tuesday

54

https://github.com/hungweitseng/CS202-MMA
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

Computer

Engineering

