
File systems over the network
Hung-Wei Tseng



Recap: How your application reaches storage device

2

HDD #1

Device Controller

User

Kernel

Hardware

Applications

SSD
Device Controller

FTL

File system

Device independent I/O interface (e.g. ioctl)Buffer

Device Driver Device Driver Device Driver
data

read/write — 0, 512, 4096, … (block address) 

read/write — block addresses 

read/write — block addresses 

fread/fwrite — input.bin/output.bin

I/O libraries Buffer
fread/fwrite — input.bin/output.bin

data

data

Network?



• Unix File System 
• Hierarchical directory structure 
• File — metadata (inode) + data 
• Everything is files 

• BSD Fast File System — optimize for reads 
• Cylinder group — Layout data carefully with device characteristics, replicated metadata 
• Larger block size & fragments to fix the drawback 
• A few other new features 

• Sprite Log-structured File System — optimize for small random writes 
• Computers cache a lot — reads are no more the dominating traffic 
• Aggregates small writes into large sequential writes to the disk 
• Invalidate older copies to support recovery

3

Recap: File systems on a computer



• Basically optimizations over FFS + Extent + Journaling (write-ahead logs) 
• Extent — consecutive disk blocks 
• A file in ext file systems — a list of extents 
• Journal 

• Write-ahead logs — performs writes as in LFS 
• Apply the log to the target location when appropriate 

• Block group 
• Modern H.D.Ds do not have the concept of “cylinders” 
• They label neighboring sectors with consecutive block addresses 
• Does not work for SSDs given the internal log-structured management of block 
addresses

4

Recap: Extent file systems — ext2, ext3, ext4



• Asymmetric read/write behavior/performance 
• Wear-out faster than traditional magnetic disks 
• Another layer of indirection is introduced 

• Intensify log-on-log issues 
• We need to revise the file system design

5

Recap: flash SSDs, NVM-based SSDs



The introduction of virtual file system interface 

6

HDD #1

Device Controller

User-space

Kernel

Hardware

Applications, user-space libraries

SSD
Device Controller

FTL

File system #2 (e.g. f2fs)

Device independent I/O interface (e.g. ioctl)
data

read/write — 0, 512, 4096, … (block address) 

read/write — block addresses data

Virtual File System

open, close, read, write, …

File system #1 (e.g. ext4)

Device Driver Device Driver

open, close, read, write, …

read/write — block addresses 



• NFS 
• Google file system

8

Outline



Network File System

9



The introduction of virtual file system interface 

10

HDD #1

Device Controller

User-space

Kernel

Hardware

Applications, user-space libraries

SSD
Device Controller

FTL

File system #2 (e.g. f2fs)

Device independent I/O interface (e.g. ioctl)
data

read/write — 0, 512, 4096, … (block address) 

read/write — block addresses data

Virtual File System

open, close, read, write, …

File system #1 (e.g. ext4)

Device Driver Device Driver

open, close, read, write, …

read/write — block addresses 

File system #3 — NFS
open, close, read, write, …

NIC

Device Controller

Network Device Driver

Network Stack
open, close, read, write, …



open, close, 
read, write, …

open, close, 
read, write, …

NFS Client/Server

11

User-
space

Kernel

Hardware

Applications, user-
space libraries

Virtual File System

NFS

NIC
Device Controller

Network Stack

Network Device Driver

open, close, 
read, write, …

NFS Server

Virtual File System

NIC
Device Controller

Network Stack

Network Device Driver

open, close, 
read, write, …

Disk File System

HDD #1
Device Controller

I/O interface

Device Driver

read/write — 
block addresses 



• The client gives it’s file system a tuple to describe data 
• Volume: Identify which server contains the file — represented by 
the mount point in UNIX 

• inode: Where in the server 
• generation numer: version number of the file 

• The local file system forwards the requests to the server 
• The server response the client with file system attributes as 
local disks

12

How does NFS handle a file?



• NFS operations are expensive 
• Lots of network round-trips 
• NFS server is a user-space daemon 

• With caching on the clients 
• Only the first reference needs network communication 
• Later requests can be satisfied in local memory

17

Caching



• Given the same input, always give the same output regardless 
how many times the operation is employed 

• You only need to retry the same operation if it failed

21

Idempotent operations



Think about this

22

Network

Server
File Server

File System

Network Stack Disk

Client A
Application

File System

Cache

Network Stack

Client B
Application

File System

Cache

Network Stack

Client C
Application

File System

Cache

Network Stack

foo.txtfoo.txtfoo.txt

update foo.txt in cache

Client C won’t be 
aware of the change 

in Client A



• Flush-on-close: flush all write buffer contents when close the 
file 
• Later open operations will get the latest content 

• Force-getattr:  
• Open a file requires getattr from server to check timestamps 
• attribute cache to remedy the performance

23

Solution



The Google File System
Sanjay Ghemawat, Howard Gobioff, and 

Shun-Tak Leung
Google

24



• Conventional file systems do not fit the demand of data centers 
• Workloads in data centers are different from conventional 
computers 
• Storage based on inexpensive disks that fail frequently 
• Many large files in contrast to small files for personal data 
• Primarily reading streams of data 
• Sequential writes appending to the end of existing files 
• Must support multiple concurrent operations 
• Bandwidth is more critical than latency

28

Why we care about GFS



• Google Search (Web Search for a Planet: The Google Cluster Architecture, IEEE 
Micro, vol. 23, 2003) 

• MapReduce (MapReduce: Simplified Data Processing on Large Clusters, OSDI 
2004) 
• Large-scale machine learning problems 
• Extraction of user data for popular queries 
• Extraction of properties of web pages for new experiments and products 
• Large-scale graph computations 

• BigTable (Bigtable: A Distributed Storage System for Structured Data, OSDI 
2006) 
• Google analytics 
• Google earth 
• Personalized search

29

Data-center workloads for GFS



• Maintaining the same interface 
• The same function calls 
• The same hierarchical directory/files 

• Files are decomposed into large chunks (e.g. 64MB) with 
replicas 

• Hierarchical namespace implemented with flat structure 
• Master/chunkservers/clients

30

What GFS proposes?



Latency Numbers Every Programmer Should Know

34

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5   ns
L2 cache reference 7   ns 14x L1 cache
Mutex lock/unlock 25   ns
Main memory reference 100   ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000   ns 3 us
Send 1K bytes over 1 Gbps 
network

10,000   ns 10 us

Read 4K randomly from SSD* 150,000   ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from 
memory

250,000   ns 250 us

Round trip within same datacenter 500,000   ns 500 us
Read 1 MB sequentially from SSD* 1,000,000   ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Read 512B from disk 10,000,000   ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000   ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms



• Directories are illusions 
• Namespace maintained like a hash table

35

Flat file system structure 



GFS Architecture

14

Application

GFS Client
filename, size

Master

filename, chunk index

file namespace
/foo/bar, 2ef0

chunk location
chunk handle, chunk 

locations

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

Chunk Server
Linux FS

Disk Disk
Disk Disk
Disk Disk

instructions to chunk servers 
status from chunk servers 

chunk handle, offset
data

data

decoupled data and control paths — 
only control path goes through master

load balancing, replicas among chunkservers



• Single master 
• maintains file system metadata including namespace, mapping, access control 
and chunk locations. 

• controls system wide activities including garbage collection and chunk migration. 
• Chunkserver 

• stores data chunks 
• chunks are replicated to improve reliability (3 replicas) 

• Client 
• APIs to interact with applications 
• interacts with masters for control operations 
• interacts with chunkservers for accessing data 
• Can run on chunkservers

15

Distributed architecture



Reading data in GFS

16

Application

GFS Client Master

filename, size
filename, chunk index

chunk handle, chunk 
locations

Chunk server

Chunk server

Chunk server

chunk handle, byte 
range

data from file

data



Writing data in GFS

17

Application

GFS Client Master

filename, data
filename, chunk index

chunk handle, primary 
and secondary replicas

Chunk server

Chunk server

Chunk server

data

primary defines the 
order of updates in 

chunk servers

response

data

data

write command primaryresponse



• Distributed, simple, efficient 
• Filename/metadata updates/creates are atomic 
• Consistency modes

• Consistent: all replicas have the same value 
• Defined: replica reflects the mutation, consistent 

• Applications need to deal with inconsistent cases themselves
18

GFS: Relaxed Consistency model

Write — write to a specific offset Append — write to the end of a 
file

Serial success Defined
Defined with interspersed with 

inconsistent
Concurrent success Consistent but undefined

Failure inconsistent



• Linux problems (section 7) 
• Linux driver issues — disks do not report their capabilities honestly 
• The cost of fsync — proportion to file size rather than updated 
chunk size 

• Single reader-writer lock for mmap 
• Due to the open-source nature of Linux, they can fix it and 
contribute to the rest of the community

19

Real world, industry experience

• GFS is not open-sourced



• GFS claims this will not be a bottleneck 
• In-memory data structure for fast access 
• Only involved in metadata operations — decoupled data/
control paths 

• Client cache 
• What if the master server fails?

20

Single master design



• Mentioned in “Spanner: Google's Globally-Distributed 
Database”, OSDI 2012 — “tablet’s state is stored in set of B-
tree-like files and a write-ahead log, all on a distributed file 
system called Colossus (the successor to the Google File 
System)” 

• Single master

21

The evolution of GFS



• Support for smaller chunk size — gmail

22

The evolution of GFS



• snapshots 
• namespace locking 
• replica placement 
• create, re-replication, re-balancing 
• garbage collection 
• stable replica detection 
• data integrity 
• diagnostic tools: logs are your friends

23

Lots of other interesting topics



• Storage based on inexpensive disks that fail frequently — 
replication, distributed storage 

• Many large files in contrast to small files for personal data — 
large chunk size 

• Primarily reading streams of data — large chunk size 
• Sequential writes appending to the end of existing files — large 
chunk size 

• Must support multiple concurrent operations — flat structure 
• Bandwidth is more critical than latency — large chunk size

24

Do they achieve their goals?



• Conventional file systems do not fit the demand of data centers 
• Workloads in data centers are different from conventional 
computers 
• Storage based on inexpensive disks that fail frequently 
• Many large files in contrast to small files for personal data 
• Primarily reading streams of data 
• Sequential writes appending to the end of existing files 
• Must support multiple concurrent operations 
• Bandwidth is more critical than latency

25

Why we care about GFS

— MapReduce is fault tolerant
— MapReduce aims at processing large amount of data once

— MapReduce reads chunks of large files

— Output file keep growing as workers keep writing
—MapReduce has thousands of workers simultaneously

—MapReduce only wants to finish tasks within “reasonable” amount of time



• GFS only supports consistency models 
• Scalability — single master 
• Only efficient in dealing with large data 
• No geo-redundancy

26

What’s missing in GFS?



27



Windows Azure Storage: A Highly Available Cloud Storage 
Service with Strong Consistency

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, 
Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar, 
Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya 

Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas Rigas
Microsoft

28



Data center workloads for WAS

29



• A cloud service platform for social network search, video streaming, 
XBOX gaming, records management, and etc. in M$. 
• Must tolerate many different data abstractions: blobs, tables and queues 
• Data types: 

• Blob(Binary Large OBjects) storage: pictures, excel files, HTML files, virtual 
hard disks (VHDs), big data such as logs, database backups -- pretty much 
anything. 

• Table: database tables 
• Queue: store and retrieve messages. Queue messages can be up to 64 KB in 
size, and a queue can contain millions of messages. Queues are generally 
used to store lists of messages to be processed asynchronously.

30

Why Windows Azure Storage

Large
Large
Small



• Learning from feedbacks in existing cloud storage 
• Strong consistency 
• Global and scalable namespace/storage 
• Disaster recovery 
• Multi-tenancy and cost of storage

31

Why Windows Azure Storage (cont.)



–David Wheeler

All problems in computer science can be solved by another level of 
indirection

32



What WAS proposes?

33

Client

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Virtual IP Virtual IP

Location 
Service

DNS (Domain Name 
Service)

locations

Application

data

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Virtual IP

inter-stamp 
replication

inter-stamp 
replication

• Stamp is the basic granularity of storage 
provisioning, fault domain, geo-replication.  

• A stamp can contain 10—20 racks with 18 
disk-heavy storage node per rack.  

• You may consider each stamp is similar to a 
“GFS”



What WAS proposes?

34

Client

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Virtual IP Virtual IP

Location 
Service

DNS (Domain Name 
Service)

Application
URI: 

data

http(s)://AccountName.<service>.core.windows.net/PartitionName/ObjectName

http(s)://AccountName.<service>.core.windows.net/

PartitionName/ObjectName

virtual IP of a stamp

Storage stamp

Front-ends

Partition layer

Stream layer
Intra-stamp replication

Virtual IP

inter-stamp 
replication

inter-stamp 
replication

AccountName
• Manages account namespace across 

all storage stamps 
• Manages all storage stamps 
• Distributed across multiple geographic 

locations



GFS v.s. stamp in WAS

35

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent 
node

replication

replication

filename, chunk index

chunk handle, primary 
and secondary replicas

chunk handle, byte 
range

data from file

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

create extentwrite

primary secondary secondary

allocate extent replica set

rep
lica

tio
n

rep
lica

tio
n

ack

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

inter-stamp 
replication



• Consider the case where 1 of 3 nodes handling a write fails and 
the current extent is sealed at latest commit boundary (end of 
extent) — that data will be on failed node 

• new extent created 
• SM chooses three new replicas to store extents 
• client retries via new primary among the three new replicas 
• failed node, upon restart, will coord w/ SM to synchronize its 
extent to the commit length decided upon

42

Write failure



GFS v.s. stamp in WAS

43

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent 
node

replication

replication

filename, chunk index

chunk handle, primary 
and secondary replicas

chunk handle, byte 
range

data from file

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

create extentwrite

primary secondary secondary

allocate extent replica set

rep
lica

tio
n

rep
lica

tio
n

ack

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

inter-stamp 
replication



• Managing high-level data abstractions 
• Providing scalable object namespaces 
• Providing transaction ordering and strong consistency for 
objects 

• Storing object data on top of the stream layer 
• Cache object data to reduce disk I/O

47

Partition layer



48

Master

Chunk server

Chunk server

Chunk server

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent 
node

replication

replication

filename, chunk index

chunk handle, primary 
and secondary replicas

chunk handle, byte 
range

data from file

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

create extentwrite

primary secondary secondary

allocate extent replica set

rep
lica

tio
n

rep
lica

tio
n

ack

Front-ends

Partition layer

Stream layer
Stream ManagerStream ManagerStream Manager

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

Extent 
node

inter-stamp 
replication

GFS v.s. stamp in WAS



• A set of stateless servers taking incoming requests 
• Think about the benefits of stateless in NFS 

• Keep partition maps to forward the request to the right server 
• A stamp can contain 10—20 racks with 18 disk-heavy storage 
node per rack 

• Stream large objects directly from the stream layer and cache 
frequently accessed data for efficiency

49

Front-end layer



Are they doing well?

50

Good scalability

Good scalability



GFS v.s. WAS

51

GFS (OSDI 2003) WAS (SOSP 2011)

File organizations
file

chunk
block

stream
extent
record

System architecture master
chunkserver

stream manager
extent nodes

Data updates append only updates

Consistency models relaxed consistency strong consistency

Data formats files multiple types of objects

Replications intra-cluster replication geo-replication

Usage of nodes chunk server can perform both separate computation and storage



f4: Facebook's Warm BLOB Storage 
System

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, 
         Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar, 

        Viswanath Sivakumar, Linpeng Tang, and Sanjeev Kumar.

52



• Within a data center with high-speed network, the round-trip 
latency of network accesses is not really a big deal 

• However, the amount of metadata, especially directory 
metadata, is huge — cannot be cached 

• As a result, each file access still requires ~ 10 inode/data 
requests from disks/network nodes — kill performance

53

The original NFS-based FB storage



Haystack

54

user requests (browsers, mobile devices)

web server

Haystack directory

Content    
Delivery 
Network

Haystack store

Finding a needle in Haystack: Facebook’s photo storage, OSDI 2010

Haystack cache

(1)

(2) (3)

(4)

(5)

(6)

(7) (8)

(9)

(10)



• Each storage unit provides 10TB of usable space, using RAID-6 — 20% 
redundancy for parity bits 
• Each storage split into 100 physical volumes (100GB) 
• Physical volumes on different machines grouped into logical volumes 
• A photo saved to a logical volume is written to all corresponding physical volumes — 
3 replicas 

• Each volume is actually just 
a large file 
• Needle represents a photo 
• Each needle is identified 
through the offset 

• Sealed (the same as WAS)
one the file reaches 100GB

55

Haystack



“Temperature” of data

62

log scale — not encouraged to graph like this if you’re writing a 
technical document or scientific paper



“Temperature” of data

63

Hot Warm Cold

Access Frequency Most frequent Less frequent Rare

Pattern Created often, delete often
Not so frequently read

Not so frequently deleted 
Maybe read-only

Long-term storage, usually 
takes hours to retrieve

Size 65PB in 2014 and growing rapidly



Facebook storage architecture

64

user requests (browsers, mobile devices)

web tier

Graph Store — Tao

Blob Storage System

Content 
Distribution 

Network
Read(1)Create(1)

Create(2)

Create(3) Read(2)

Read(3)

Read(4)

Haystack Hot Storage

f4 Warm Storage

Cold Data



• Reed-Solomon erasure coding 
• Strips: 10GB data + 4GB parity — 1.4x space efficiency 
• One volume contains 10 strips 

• XOR Geo-replication 
• Use XOR to reduce overhead further (e.g., Azure makes full copies) 
• Block A in DC1 + block B in DC2 -> parity block P in DC3 
• Any two blocks can be used to generate the third 
• 1.5x space efficiency 

• 1.4*1.5 = 2.1x space efficiency in total

65

Storage efficiency

Block A 1.4x

Block B 1.4x

Block C 1.4xXOR
data center 1 data center 2

data center 3



• 1%-2% HDD fail in a year 
• replicate data across multiple disks 
• Use erasure coding for storage efficiency 

• n blocks -> n + k blocks, can tolerate k simultaneous failures 
• higher cost for recovering data when there is a failure 

• Host failures (periodically) 
• replicate coded blocks on different hosts 

• Rack failures (multiple times/year) 
• replicate coded blocks on different racks 

• Datacenter failures (rare, but catastrophic) 
• replicate blocks across data centers 
• use XOR to reduce overhead further (e.g., Azure makes full copies) 

• block A in DC1 + block B in DC2 -> parity block P in DC3 
• any two blocks can be used to generate the third 

• Index files 
• use normal triple replication (tiny, little benefit in coding them)

66

Fault tolerance



• Drive fails 
• Reconstruct blocks on another drive 
• Heavy disk, Network, CPU operation 
• one in background 

• During failure, may need to reconstruct data online 
• rebuilder node reads BLOB from data + parity, reconstructs 
• only reads + reconstructs the BLOB (40KB), not the entire block 
(1GB)

67

What happens if fault occurs?



Performance of f4

68



• Each cell contains 14 racks of 15 hosts, each host contains 30 
4TB H.D.Ds. 

• A unit of acquisition, deployment 
• Storage for a set of volumes 
• Similar to the idea of stamps

69

Cells



Make common case fast, 
make rare case correct

70


