File systems over the network

Hung-Wei Tseng

Recap: How your application reaches storage device

User data - fread/fwrite — input.bin/output.bin

M Aeiy Buffer

File system
read/write — 0, 512, 4096, .. (block address)

Device independent I/O interface (e.g.ioctl)
read/writéta addresses

Device Driver Device Driver
read/write addresses

Device Controller FTL
Hardware Device Controller

HDD #1 SSD

Network?

Recap: File systems on a computer

- Unix File System

- Hierarchical directory structure

- File — metadata (inode) + data

- Everythingisfiles

- BSD Fast File System — optimize for reads

- Cylinder group — Layout data carefully with device characteristics, replicated metadata
- Larger block size & fragments to fix the drawback

- A few other new features

- Sprite Log-structured File System — optimize for small random writes

- Computers cache a lot — reads are no more the dominating traffic

- Aggregates small writes into large sequential writes to the disk
- Invalidate older copies to support recovery

Recap: Extent file systems — ext2, ext3, ext4

- Basically optimizations over FFS + Extent + Journaling (write-ahead logs)

- Extent — consecutive disk blocks
- Afile in ext file systems — a list of extents

- Journal
- Write-ahead logs — performs writes as in LFS

- Apply the log to the target location when appropriate

- Block group
- Modern H.D.Ds do not have the concept of “cylinders”
- They label neighboring sectors with consecutive block addresses
- Does not work for SSDs given the internal log-structured management of block
addresses

Recap: flash SSDs, NVM-based SSDs

- Asymmetric read/write behavior/performance
- Wear-out faster than traditional magnetic disks

- Another layer of indirection is introduced
- Intensify log-on-log issues
- We need to revise the file system design

The introduction of virtual file system interface

User-space

open,.close, .read,. write,

Virtual File System
open, close, read, write,

File system #1 (e.g. ext4) @ File system #2 (e.g. f2fs)
Kernel read/write — 0] 512, 4096, .. (block address)

Device independent I/O interface (e.g.ioctl)

dataT | read/wri€éta|block|addresses

Device Driver Device Driver

Device Controller FTL
Hardware Device Controller

HDD #1 SSD

Outline

+ NFS
. Google file system

Network File System

The introduction of virtual file system interface

User-space

open,.close, .read,. write,

Virtual File System

open, close, read, write, .. open,l close, read, write,

File system #1 (e.g.ext4) @File system #2 (e.g.f2fs) @ File system #3 — NFS
Kernel read/write — 0] 512, 4096, .. (block address) open,] close, read, write,

Device independent I/O interface (e.g.ioctl)

data __block aflfffekses

Device Driver Device Driver

Network Stack

Network Device Driver

Device Controller FTL Device Controller

Hardware Device Controller
HDD #1 SSD

NIC

10

NFS Client/Server

User-
space
open, close, open, close,
iEe'éc':Imv(/fi't'é' '""""r'e'éél',"Wfi’t’e’,"f."'
Virtual File System Virtual File System
open, close, open close, T
ead, write write, .l
NFS Dlsk F|Ie System
Kernel _ read/write —
block addresses
Network Stack Network Stack 1/0 interface
Network Device Driver Network Device Driver Device Driver
Hardware Device Controller Device Controller Device Controller

NIC NIC HDD #1

How does NFS handle a file?

- The client gives it's file system a tuple to describe data

- Volume: Identify which server contains the file — represented by
the mount point in UNIX

- Inode: Where in the server
- generation numer: version number of the file

- The local file system forwards the requests to the server

- The server response the client with file system attributes as
local disks

12

Caching

- NFS operations are expensive

- Lots of network round-trips

- NFS server is a user-space daemon

- With caching on the clients

- Only the first reference needs network communication
- Later requests can be satisfied in local memory

17

ldempotent operations

- Given the same input, always give the same output regardless
how many times the operation is employed

- You only need to retry the same operation if it failed

21

Think about this

Client A

update foo.txt in cache

Cache

Network Stack

Client B
Application

File System

Cache

Network Stack

Server

File Server

File System

Network Stack fOO-t, Xt

Client C
Application

File System

Cache

Network Stack

Client C won't be
aware of the change
in Client A

Solution

- Flush-on-close: flush all write buffer contents when close the
file

- Later open operations will get the latest content

- Force-getattr:

- Open afile requires getattr from server to check timestamps

- attribute cache to remedy the performance

23

The Google File System

Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung
Google

24

Why we care about GFS

- Conventional file systems do not fit the demand of data centers

- Workloads Iin data centers are different from conventional
computers

- Storage based on inexpensive disks that fail frequently

- Many large files in contrast to small files for personal data
- Primarily reading streams of data

- Sequential writes appending to the end of existing files

- Must support multiple concurrent operations

- Bandwidth is more critical than latency

28

Data-center workloads for GFS

- Google Search (Web Search for a Planet: The Google Cluster Architecture, IEEE
Micro, vol. 23, 2003)

- MapReduce (MapReduce: Simplified Data Processing on Large Clusters, OSDI
2004)

- Large-scale machine learning problems
- Extraction of user data for popular queries

- Extraction of properties of web pages for new experiments and products
- Large-scale graph computations

- BigTable (Bigtable: A Distributed Storage System for Structured Data, OSDI
2000)

- Google analytics
- Google earth
- Personalized search

29

What GFS proposes?

- Maintaining the same interface
- The same function calls
- The same hierarchical directory/files

- Files are decomposed into large chunks (e.g. 64MB) with
replicas

- Hierarchical namespace implemented with flat structure
- Master/chunkservers/clients

30

Latency Numbers Every Programmer Should Know

Operations Latency (ns) Latency (us) Latency (ms)

L1 cache reference 0.5ns ~ 1 CPU cycle
Branch mispredict 5 ns

L2 cache reference / ns 14x L1 cache
Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps 10,000 ns 10 us

network

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from 250,000 ns 250 us

memory

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentlally from SSD* 1,000,000 ns 1,000 us Tms ~1GB/sec SSD, 4X memory

Send packet CA-Netherlands-CA 150 OOO 000 ns 150 000 us 150 ms

Flat file system structure

- Directories are illusions
- Namespace maintained like a hash table

Unlike many traditional file systems, GFS does not have
a per-directory data structure that lists all the files in that

directory. Nor does it support alases for the same file or
directory (i.e, hard or symbolic links in Unix terms). GFS

ogically represents 1ts namespace as a lookup table mapping
full pathnames to metadata. With prefix compression, this

35

GFS Architecture

decoupled data and control paths —
only control path goes through master

file namespace
[foo/bar, 2efO

Application

filename, size “

GFS Client

filename, chunk index
P chunk location

chunk handle, chunk Master
chunk handle, offset locations

ingtrucfions to chunk server
tatus from chunk servers

Chunk Server

Chunk Server

Linux FS

Having a single master vastly simplifies our design and
enables the master to make sophisticated chunk placement

Linux FS

we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches

Ioad balanCing, replicas among chunkservers this information for a limited time and interacts with the

chunkservers directly for many subsequent operations.
14 L —— P,

Distributed architecture

- Single master

- maintains file system metadata including namespace, mapping, access control
and chunk locations.

- controls system wide activities including garbage collection and chunk migration.
- Chunkserver

. stores data chunks

- chunks are replicated to improve reliability (3 replicas)
- Client

- APIs to interact with applications
- interacts with masters for control operations

- Interacts with chunkservers for accessing data
- Can run on chunkservers

15

Reading data in GFS

Application

filename, size
filename, chunk index

GFS Client

chunk handle, chunk
locations

handle, byte Chunk server

data from file

16

Writing data in GFS

Application

filename, data response
filename, chunk index

GFS Client

chunk handle, primary
and secondary replicas

data Chunk server

primary defines the
&)1y =105l ¢ order of updates in

chunk servers

response write command

primary
Chunk server

17

GFS: Relaxed Consistency model

- Distributed, simple, efficient
- Filename/metadata updates/creates are atomic
- Consistency modes

Write — write to a specific offset ERREIES W"ftifeto SIPCEICIE

Serial success Defined
Defined with interspersed with

Inconsistent
Concurrent success Consistent but undefined

Inconsistent

- Consistent: all replicas have the same value
- Defined: replica reflects the mutation, consistent

- Applications need to deal with inconsistent cases themselves

18

Real world, industry experience

- Linux problems (section /)
- Linux driver issues — disks do not report their capabilities honestly

- The cost of fsync — proportion to file size rather than updated
chunk size

- Single reader-writer lock for mmap

- Due to the open-source nature of Linux, they can fix it and
contribute to the rest of the community

« GFS iS not Open'SOurced system behavior. When appropriate, we improve the kernel

and share the changes with the open source community.

19

Single master design

- GFS claims this will not be a bottleneck
- In-memory data structure for fast access

- Only involved in metadata operations — decoupled data/
control paths

. Client cache
- What if the master server fails?

20

The evolution of GFS

- Mentioned in "Spanner: Google's Globally-Distributed
Database” OSDI 2012 — “tablet’s state is stored in set of B-
tree-like files and a write-ahead log, all on a distributed file
system called Colossus (the successor to the Google File

SyStem) N [I U EU E Case Study

GFS: Evolution on Fast-forward

° S I n g I e m a Ste r A discussion between Kirk McKusick and Sean Quinlan about the origin and evolution

of the Google File System.
proportionate increas2 in the amount of metzdata the master had to maintain. Also, operzations such

as scanning the metadata to look for recoveries all scaled linearly with the volume of data. So the
amopunt of wark required of the master grew substantially. The amount of storage needed to retain all
_that information grew as well,
In additinn, this pmved to be a hottleneck for the clients, even thangh the clients issue few

metacata operations themselves—for example, & client talks to the master whenever it does an

open. When you have thousands ot clients all talking to the master at the same time, given that the MCKUSIKCK /ind historically you've had onc cell per data center, right!

master is capable of doing only a few thousand operations a second, the average client isn’t able to QUINLAN That was initially the goal, but it didn’t work vut like that to a large extent—partly

command all that many operations per second. Also bear in mind that there are applications such b‘:_‘a““ of the limitations of the single-master design and partly because isolation ':fo'“'cd to be
. . dificult. As a consequence, people generally ended up with more than one cell per cata center.

as MapReduce, where you might suddenly have a thousand tasks, each wanting to open a number ’ '

of files. Obviously, it would take a long time to handlz all those requests, and the master would be

under a fair amonnt af diracc

We also ended up doing what we call a “multi.cell” apprnach, which hasically made it possihle to

put multiple GES masters on top of a pool of chunkservers. That way, the chunkscrvers could be

cunfigured to have, say, eight GFS inasters assigried to then:, and tiat would give you at least one

pool of underlying storage—with multiple master heacs on it, if you will. Then the application was
21 responsidle for partitioning data across those cCifferent cells.

The evolution of GFS

- Support for smaller chunk size — gmaill

QUINLAN The distributed master certainly allows you to grow file counts, in line with the number
of machines you're willing to throw at it. That certainly helps.

One of the appeals of the distributed multimaster model is that if you scale everything up by two
orders of magnitude, then getting down to a 1-MB average file size is going to be a lot different from
having a 64-MB average [ile size. Il you end up going below 1 MB, then you're also going (o run
into other issues that vou really need to be careful about. For example, if you end up having to read
10,000 10-KB files, you're going to be doing a lot more seeking than if you're just reading 100 1-MB
files.

My gut feeling is that if you design for an average 1-MB file size, then that should provide for a
miuch larger class of things than does a design that assumes a 64-MB average file size. Ideally, you
would like to imagine a system that goes all the way down to much smaller file sizes, but 1 MB seems
a reasonable compromise in our environment.

MCKUSICK What have you been doing to design GES to work with 1-MB files?

QUINLAN We haven’t been doning anything with the existing GFS design. Our distributed master
system that will provide for 1-MB files is essentially a whole new design. That way, we can aim for
somelhing on Lthe order ol 100 million [iles per masler. You can also have hundreds ol maslers.

22

Lots of other interesting topics

- snapshots

- namespace locking

- replica placement

- Create, re-replication, re-balancing

- garbage collection

- stable replica detection

- data integrity

- diagnostic tools: logs are your friends

23

Do they achieve their goals?

- Storage based on inexpensive disks that fail frequently —
replication, distributed storage

- Many large files in contrast to small files for personal data —
large chunk size

- Primarily reading streams of data — large chunk size

- Sequential writes appending to the end of existing files — large
chunk size

- Must support multiple concurrent operations — flat structure
- Bandwidth is more critical than latency — large chunk size

24

Why we care about GFS

- Conventional file systems do not fit the demand of data centers

- Workloads Iin data centers are different from conventional
computers

- Storage based on inexpensive disks that fail frequentlx
— MapReduceé is fault tolerant

Many large files in contrast to small files for personal data

— MapReduce aims at processing large amount of data once

Primar”y reading streams of data — MapReduce reads chunks of large files
Seqguential writes appending to the end of existing files

— Output file keep growing as workers keep writing

Must support multiple concurrent operations

—MapReduce has thousands of workers simultaneously

Bandwidth is more critical than latenc

—MapReduce only wants to finish tasks within “reasonable” amount of time

25

What's missing in GFS?

- GFS only supports consistency models
- Scalability — single master

- Only efficient in dealing with large data
- No geo-redundancy

26

Nicoll
hit Sa

Che New York Eimes

Human Error Investigated flos Angeles Times

in California Blackout’s i Beyonce cause the Super Bowl blackout?
Spread to Six Million

San Francisco Chronicle

'‘Abnormality’' caused power

e Pzt Yasinskas
& ESEN Staff ‘Writer
e 4

NEW ORLEANS -- As ho ran 108 vards for the longest k

CALIFORNIA WILDFIRES

PG&E outages: Blackouts could hit nearly
every zone of service area by Sunday

Jowl history, Jucoby Junes saw only one thing.

9 J.D. Morris Cct. 24, 2019 Upda sc: Fab. 24, 2020 120 p.m.

"Daylight," Jones suid alter helping the Balimors River 3

over the San Francisco 192rs. "Follow anv avenue and it

0000

‘1he wrony wal
forever will by

period ol dar

4 Iens ook an 1o 1he tield atter 2 sudden powsr utege
Minules aller Naw Orlaars, (Getty Images)

a 28-6 lead ol

kickoff, the li By MEREDITH SLAKE “EE. 4, 2013 12 AM
The major ty of kghts went out in the Mercedes-Be
Supercome durirg the Super Bowl causing a .) . ‘e . g I
A4 minuts dalny hackup lightil Bevonce shut it down during the| ¢

play was slup

minutes, and Only a few minutes after the pop

television broadeast was interrupted.,

4

Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav,
Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,
Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Hag, Muhammad lkram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas Rigas
Microsoft

28

Data center workloads for WAS
| [%Requests | %Capacity | %ingress | %kgress _

XBox
GameSaves

XBox
Telemetry

29

70.31 48.28 66.17
29.68 49.61 33.07
0.01 211 0.76
60.45 16.73 29.11
39.55 83.14 70.79
0 0.13 0.1
99.99 99.84 99.88
0.01 0.16 0.12
0 0 0
19.57 50.25 11.26
80.43 49.25 88.29

0 0.5 0.45
999 98.22 96.21
0.1 1.78 3.79
0 0 0

Why Windows Azure Storage

- A cloud service platform for social network search, video streaming,
XBOX gaming, records management, and etc. in M$.
- Must tolerate many different data abstractions: blobs, tables and queues

- Data types:

- Blob(Binary Large OBjects) storage: pictures, excel files, HTML files, virtual
hard disks (VHDs), big data such as logs, database backups -- pretty much
anything.

Large - Table: database tables

Queue: store and retrieve messages. Queue messages can be up to 64 KB in

Small size, and a queue can contain millions of messages. Queues are generally
used to store lists of messages to be processed asynchronously.

Large

30

Why Windows Azure Storage (cont.)

- Learning from feedbacks in existing cloud storage
- Strong consistency

- Global and scalable namespace/storage

- Disaster recovery

- Multi-tenancy and cost of storage

31

All problems in computer science can be solved by another level of
iIndirection

—David Wheeler

32

What WAS proposes?

Virtual IP

- Stamp is the basic granularity of storage

. provisioning, fault domain, geo-replication.
'« A stamp can contain 10—20 racks with 18

disk-heavy storage node per rack.
- You may consider each stamp is similar to a
"GFS"

Storage stamp

Partition layer

33

What WAS proposes?

- Manages account namespace across ., Location
all storage stamps . Service

« Manages all storage stamps e

- Distributed across multiple geographic
locations

34

GFS v.s. stamp in WAS

Stream layer

Stream Manager
aljocate gxtentgeplicaset

Extent¢—Extent€¢—Extent Extent

node ?node ?node node

primary-SsecondarySsecondary
@® @®

Extent = Extent = Extent Extent
node node node node

35

Write failure

- Consider the case where 1 of 3 nodes handling a write fails and
the current extent is sealed at latest commit boundary (end of
extent) — that data will be on failed node

- new extent created
- SM chooses three new replicas to store extents
- client retries via new primary among the three new replicas

- failed node, upon restart, will coord w/ SM to synchronize its
extent to the commit length decided upon

42

GFS v.s. stamp in WAS

Partition layer Partition layer

43

Partition layer

- Managing high-level data abstractions
- Providing scalable object namespaces

- Providing transaction ordering and strong consistency for
objects

. Storing object data on top of the stream layer
. Cache object data to reduce disk |/O

47

GFS v.s. stamp in WAS

Mer-stam

Front-end layer

- A set of stateless servers taking incoming requests
- Think about the benefits of stateless in NFS

- Keep partition maps to forward the request to the right server

- A stamp can contain 10—20 racks with 18 disk-heavy storage
node per rack

- Stream large objects directly from the stream layer and cache
frequently accessed data for efficiency

49

Are they doing well?

50,000

d

- s (QET el PUT === Batch PUT
O 40,000

Good scalability

30,000

20,000

10,000

Entities Per Sec

0 4 o 12 16 s (5t BlOD === Put Blob

Number of VMs

Good scalability

Megabytes Per Second
S
o

0 - 8 12 16

Number of VMs
50

GFS v.s. WAS

file stream
File organizations chunk extent
block record
. m r ream manager
System architecture aste strea anage
chunkserver extent nodes
Data updates append only updates
Consistency models relaxed consistency strong consistency
Data formats files multiple types of objects
Replications intra-cluster replication geo-replication
Usage of nodes chunk server can perform both separate computation and storage

51

f4: Facebook's Warm BLOB Storage
System

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill,
Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar,
Viswanath Sivakumar, Linpeng Tang, and Sanjeev Kumar.

52

The original NFS-based FB storage

- Within a data center with high-speed network, the round-trip
latency of network accesses is not really a big deal

- However, the amount of metadata, especially directory
metadata, iIs huge — cannot be cached

. As aresult, each file access still requires ~ 10 inode/data
requests from disks/network nodes — kill performance

53

Haystack

user requests (browsers, mobile devices)
N 4(10)

Content
Delivery
Network

b
web server (Gi T(9)

Haystack cache

Haystack store

Haystack directory

http://<CDN>/<Cache>/<Machine ID>/<logical volume,Photo>

- Finding a needle in Haystack: Facebook’s photo storage, OSDI 2010

Haystack

- Each storage unit provides 10TB of usable space, using RAID-6 — 20%
redundancy for parity bits
- Each storage split into 100 physical volumes (100GB)
- Physical volumes on different machines grouped into logical volumes
- A photo saved to a logical volume is written to all corresponding physical volumes —
3 replicas

- Each volume is actually just

a large file — Hoader 1iagic Nurber
Cooki
. Needle represents a photo Noadio oy
.« «pre [Alternate Key
- Each needle is identified Flags
through the offset osio 2 =
. Sealed (the same as WAS) ra— Data
one the file reaches 100GB Footer Magic Number
\//-\\ Data Checksum
55 : Padding

“"Temperature”

of data

== Profile Photo = HD Photo == HD Mobile Sync == Group Attachment = HD Video == Warm

99t Percentile IOPS/TB

Relative Request Rate, [0X intervals
/

| 2 4 2

Day Week Month
BLOB Age (log)

o
8

100 |

10 |

== Photo == Mobile Sync - Video = Message Attachment

2

Mo|nth Year

Day * Week
BLOB Age (log)

log scale — not encouraged to graph like this if you're writing a
technical document or scientific paper

62

"Temperature” of data

Access Frequency Most frequent

Less frequent

Not so frequently read
Created often, delete often Not so frequently deleted
Maybe read-only

Long-term storage, usually
takes hours to retrieve

65PB in 2014 and growing rapidly

63

Facebook storage architecture

user requests (browsers, mobile devices)

Read(4)

Content
Create(1) Read(1) Distribution

Network

IRead(S)
Create(2)

Blob Storage System

Create(3) Haystack Hot Storage

f4 Warm Storage

Graph Store — Tao Cold Data

64

Storage efficiency

- Reed-Solomon erasure coding

- Strips: 10GB data + 4GB parity — 1.4x space efficiency

- One volume contains 10 strips

- XOR Geo-replication

- Use XOR to reduce overhead further (e.g., Azure makes full copies)
- Block Ain DC1 + block B in DC2 -> parity block P in DC3

- Any two blocks can be used to generate the third

- 1.5x space efficiency

- 1.4*1.5 = 2.1x space efficiency in total

data center 3

Block A 1.4x XOR———— [: It

data center 1 data center 2

Block B 1.4x

65

Fault tolerance

1%-2% HDD fail in a year
- replicate data across multiple disks

- Use erasure coding for storage efficiency
- nblocks -> n + k blocks, can tolerate k simultaneous failures
- higher cost for recovering data when there is a failure

- Host failures (periodically)

- replicate coded blocks on different hosts
Rack failures (multiple times/year)

- replicate coded blocks on different racks
Datacenter failures (rare, but catastrophic)

- replicate blocks across data centers

- use XOR to reduce overhead further (e.g., Azure makes full copies)
- block Ain DC1 + block B in DC2 -> parity block P in DC3
- any two blocks can be used to generate the third

Index files
- use normal triple replication (tiny, little benefit in coding them)

66

What happens if fault occurs?

- Drive falls

- Reconstruct blocks on another drive

- Heavy disk, Network, CPU operation

- one in background

- During failure, may need to reconstruct data online

- rebuilder node reads BLOB from data + parity, reconstructs

- only reads + reconstructs the BLOB (40KB), not the entire block
(1GB)

67

Performance of 4

0.8

0.6

0.4

0.2 Haystack =

f4 o
0 | | | | |

0 20 40 60 80 100
Latency (ms)

CDF of Read Responses

68

Cells

- Each cell contains 14 racks of 15 hosts, each host contains 30
4TB H.D.Ds.

- A unit of acquisition, deployment
- Storage for a set of volumes
- Similar to the idea of stamps

69

Make common case fast,
make rare case correct

/0

