
I/O & Basics of File Systems
Hung-Wei Tseng

Recap: von Neumman Architecture

2

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

• Mechanisms of maintaining the abstraction
• Segmentation
• Demanding page + Swapping

• Hierarchical page table to save space overhead in mapping
• TLB (translation look-aside buffer) to reduce the translation latency — CS203

• Policies to decide how big the space in the physical main memory each process
can enjoy

• Working set/page local replacement — VMS/UNIX/Mach
• Global page replacement — Babaoglu’s UNIX

• Policies to decide what page to stay in the physical main memory
• FIFO + freelist — VMS/UNIX/Mach
• Clock+ freelist — Babaoglu’s UNIX
• WS-Clock — After Carr and Hennessy

3

Recap: Virtual memory

• How our systems interact with I/O
• The basics of storage devices
• File

4

Outline

The computer is now like a small network

5

SATA SSD

HDD

Wireless NIC

NIC

Processor

DRAM

processor-memory bus

GPU
Accelerator

NVMe SSD
FPGA/ASIC

Physical main memory is not directly linking to
the system interconnect

• Registers
• Command: receiving commands from host
• Status: tell the host the status of the device
• Data: the location of exchanging data

• Microcontroller
• Memory
• ASICs

6

What’s in each device?

Registers Microcontroller

MemoryASICs

ASIC (e.g. NAND)
DRAM

Controller + Registers

How your application interact with peripherals

7

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

How do I know if the device has something for me? Or …
How the device know if I have something for it?

• The device signals the processor only when
the device requires the processor/OS
handle some tasks/data

• The processor only signals the device when
necessary

8

Interrupt

System Interconnect

CPU System Memory

(3)

(4) (1)

(2)

Registers Microcontroller

MemoryASICs

System Interconnect

• The processor/OS constantly asks if the
device (e.g. examine the status register of
the device) is ready to or requires the
processor/OS handle some tasks/data

• The OS/processor executes corresponding
handler if the device can handle demand
tasks/data or has tasks/data ready

9

Polling

(2) (3)

CPU System Memory

Registers Microcontroller

MemoryASICs

(1) (4)

To switch or not to switch that’s the question.

15

CPU

I/O Device

P1 P2 P1

Accessing Device

Context Switch
P1 -> P2

Context Switch
P2 -> P1I/O stack

system call

Kernel

device received
the command interrupt

If TContext switch P1->P2 + TContext switch P2->P1 < T Accessing peripherals

makes sense to context switch

I/O stack
Kernel

• Cache warm up cost when you switch back
• TLB warm up cost

16

But context switch overhead is not the only thing

What if we don’t switch?

17

CPU

I/O Device

P1 P1

Accessing Device

I/O stack

system call

Kernel

device received
the command interrupt

I/O stack
Kernel

CPU is idle!
Let’s lower the frequency to save power!

Now, this will take longer as we need to
wait for the clock rate back to normal!

• Interrupt is only a good option if the benefit from context
switching or energy saving is larger than waiting for the I/O to
finish

• In general, applying polling on faster devices
• DRAM
• Non-volatile memory (e.g., flash, PCM)

19

When should we poll? When should we interrupt

Case study: interacting with hard
disk drives

20

• Position the head to proper track
(seek time)

• Rotate to desired sector.
(rotational delay)

• Read or write data from/to disk to
in the unit of sectors (e.g. 512B)

• Takes at least 5ms for each
access

21

Hard Disk Drive
tracksector

cylinder

Each sector is identified, locate by an “block address”

head

Latency Numbers Every Programmer Should Know

22

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps
network

10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from
memory

250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Read 512B from disk 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What’s the
latency and bandwidth of accessing a 512B sector?

23

Seagate Barracuda 12

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+
0.5

1024
300 +0.2 ms

= 8 ms + 4.17 ms + 0.00167 us + 0.2 ms = 12.36 ms

= 0.5KB
12.36ms = 40.45KB/sec

• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8
ms. Assume the controller overhead is 0.2ms. What’s the
latency and bandwidth of accessing consecutive 4MB data?

24

Seagate Barracuda 12

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+ 4
300 +0.2 ms

= 8 ms + 4.17 ms + 13.33 ms + 0.2 ms = 25.69 ms

= 4MB
25.69ms = 155.7 MB/sec

Numbering the disk space with block addresses

25

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks

How your application interact with peripherals

26

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

The application needs to be tightly coupled with the underlying device —
Not generic

Not portable

read/write — 0, 512, 4096, … (block address)

–David Wheeler

All problems in computer science can be solved by
another level of indirection

27

The file & file system abstraction

28

What we’ve learned in the past…

31

How your application interact with peripherals

33

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite/
fopen/fclose open/close

How your application reaches H.D.D.

34

Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite — input.bin/output.bin

fread/fwrite — input.bin/output.bin

Buffer
data

read/write — 0, 512, 4096, … (block address)

read/write — block addresses

read/write — block addresses

The application only needs
to interact with files!

int fd, nr, nw;
void *in_buff;
in_buff = malloc(BUFF_SIZE);

fd1 = open(“infile.txt”, O_RDONLY);
fd2 = open(“outfile.txt”, O_RDWR | O_CREAT);
nr = read(fd1, in_buff, BUFF_SIZE);
nw = write(fd2, in_buff, BUFF_SIZE);
lseek(fd1, -8, SEEK_END);
nr = read(fd1, in_buff, 8); // read last 8 bytes
// more fancy stuff here…
close(fd1);
close(fd2);

35

How you access files in C

Kernel

File System

open

36

infile.txt

fd PIDs Location
0 8,12
1
2
3

fd = open(“infile.txt”); 22

file descriptor table

1

Kernel

File System

read

37

infile.txt

fd PIDs Location
0 8,12
1
2
3

read(fd, buff, n); 22

file descriptor table

1

buff:

• Namespace has tree-like structure
• Root directory (/) with subdirectories, each containing its own

subdirectories
• Links break the tree analogy

38

Hierarchical File System Structure

/

usr home var

local bin hungwei tyler spool logsrc

tylervim

• The “/“ on storage device A will become /backup now!

39

Mount

Storage Device A

/

usr home var

local bin hungwei tyler spool logsrc

tylervim

Storage Device B
/

usr home var backup

The design of a file system

40

Recap: Numbering the disk space with block addresses

41

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks

• How do we locate files?
• How do we manage hierarchical namespace?
• How do we manage file and file system metadata?

• How do we allocate storage space?
• How do we make the file system fast?
• How do we ensure file integrity?

42

Questions for file systems

How the original UNIX file system use disk blocks

43

tracksector

cylinder

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks
File System Metadata (Superblock)

Information about the “file system” itself.
(e.g. free blocks)

File Metadata Information about the
“files”. e.g. inodes

Data

Data

• Contains critical file system information
• The volume size
• The number of nodes
• Pointer to the head of the free list

• Located at the very beginning of the file system

44

Superblock — metadata of the file system

• File types: directory, file
• File size
• Permission
• Attributes

45

inode — metadata of each file

• File types: directory, file
• File size
• Permission
• Attributes
• Types of pointers:

• Direct: Access single data block
• Single Indirect: Access n data blocks
• Double indirect: Access n2 data blocks
• Triple indirect: Access n3 data blocks

• inode has 15 pointers: 12 direct, 1 each
single-, double-, and triple-indirect

• If data block size is 512B and n = 256:
max file size =
(12+256+2562+2563)*512 = 8GB

46

Unix inode

• Scenario: User wants to access
/home/hungwei/CS202/foo.c

• Procedure: File system will…
• Open “/” file (This is in known from superblock.)
• Locate entry for “home,” open that file
• Locate entry for “hungwei”, open that file
• …
• Locate entry for “foo.c” and open that file

• Let’s use “strace” to see what happens

50

What must be done to reach your files

How to reach /home/hungwei/CS202/foo.c

51

0 7
8 15

16 23
24 31
32 39
40 47
48 55
56 63

Disk blocks
File System Metadata (Superblock)

File Metadata

Superblock inode 1
owner_id 0
permission 755
type dir
address 24
…

/
usr 13
var 14

home 15

inode 15
owner_id 0

permission 755
type dir

address 31
…

index node (inode)

home
tyler 20

hungwei 21

inode 21
owner_id 0

permission 755
type dir

address 34
…

hungwei
CS202 16

Dropbox 17

inode 16
owner_id 0

permission 755
type dir

address 44
…

CS202
bar.c 18
foo.c 19

inode 19
owner_id 0

permission 755
type file

address 55
…

#include
<stdio.h>
.
.
.
.
.

• Reading quiz due next Tuesday
• Recording videos should be set correctly this week
• Project due 3/3

• We highly recommend you to fresh install a Ubuntu 16.04.6
Desktop version within a VirtualBox
• Virtual box is free
• If you crash the kernel, just terminate the instance and

restart virtual box
• Use office hours to discuss projects

52

Announcement

• Contiguous: the file resides in continuous addresses

53

How do we allocate space?

a.txt

• Non-contiguous: the file
can be anywhere

a.txt

• Extents: the file resides in
several group of smaller
continuous address

a.txt

• Need to track location of blocks on per file basis
• Contiguous only needs a pair <start, size>
• Extents requires a table of pairs
• Non-contiguous requires either a linked list of blocks OR a

table of block pointers (i.e. a map)

57

Space overhead for storage allocation strategies

• Disk accesses are slow!
• Memory access: 100ns
• Disk access: 5-12ms
• Flash SSD: 30-120us

• Can reduce average access time by clustering data together…
but still slow!

• Ideas: Reduce the number of disk accesses using:
• Read-ahead: Bring in multiple blocks when reading a single

block (locality!)

58

Now, what about performance?

• Buffer cache is a cache of recently used disk blocks resides in
DRAM-based main memory

• Modern OSs aggressively use free DRAM space for buffer
caches

• When accessing disk (read/write), we follow these steps:
• Check if block is in cache; stop if in cache
• If not in cache, access disk and place block in the cache
• Replacement Policy: LRU implemented with a linked list
• Head of list is next to replace
• Tail of list is last to replace

59

Buffer Cache

