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Recap: von Neumman Architecture
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By loading different programs into memory, 
your computer can perform different functions



• Mechanisms of maintaining the abstraction 
• Segmentation 
• Demanding page + Swapping 

• Hierarchical page table to save space overhead in mapping 
• TLB (translation look-aside buffer) to reduce the translation latency — CS203 

• Policies to decide how big the space in the physical main memory each process 
can enjoy 

• Working set/page local replacement — VMS/UNIX/Mach 
• Global page replacement — Babaoglu’s UNIX 

• Policies to decide what page to stay in the physical main memory  
• FIFO + freelist — VMS/UNIX/Mach 
• Clock+ freelist — Babaoglu’s UNIX  
• WS-Clock — After Carr and Hennessy 
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Recap: Virtual memory



• How our systems interact with I/O 
• The basics of storage devices 
• File
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Outline



The computer is now like a small network
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Physical main memory is not directly linking to 
the system interconnect



• Registers 
• Command: receiving commands from host 
• Status: tell the host the status of the device 
• Data: the location of exchanging data 

• Microcontroller 
• Memory 
• ASICs
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What’s in each device?

Registers Microcontroller

MemoryASICs

ASIC (e.g. NAND)
DRAM

Controller + Registers



How your application interact with peripherals
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Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

How do I know if the device has something for me? Or … 
How the device know if I have something for it?



• The device signals the processor only when 
the device requires the processor/OS 
handle some tasks/data 

• The processor only signals the device when 
necessary
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System Interconnect

• The processor/OS constantly asks if the 
device (e.g. examine the status register of 
the device) is ready to or requires the 
processor/OS handle some tasks/data 

• The OS/processor executes corresponding 
handler if the device can handle demand 
tasks/data or has tasks/data ready
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To switch or not to switch that’s the question.
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I/O Device
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Accessing Device

Context Switch
P1 -> P2

Context Switch
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system call

Kernel

device received 
the command interrupt

If TContext switch P1->P2 + TContext switch P2->P1 < T Accessing peripherals

makes sense to context switch

I/O stack
Kernel



• Cache warm up cost when you switch back 
• TLB warm up cost
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But context switch overhead is not the only thing



What if we don’t switch?
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CPU

I/O Device

P1 P1

Accessing Device

I/O stack

system call

Kernel

device received 
the command interrupt

I/O stack
Kernel

CPU is idle! 
Let’s lower the frequency to save power!

Now, this will take longer as we need to 
wait for the clock rate back to normal!



• Interrupt is only a good option if the benefit from context 
switching or energy saving is larger than waiting for the I/O to 
finish 

• In general, applying polling on faster devices 
• DRAM 
• Non-volatile memory (e.g., flash, PCM)

19

When should we poll? When should we interrupt



Case study: interacting with hard 
disk drives
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• Position the head to proper track 
(seek time) 

• Rotate to desired sector.
(rotational delay) 

• Read or write  data from/to disk to 
in the unit of sectors (e.g. 512B) 

• Takes at least 5ms for each 
access
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Hard Disk Drive
tracksector

cylinder

Each sector is identified, locate by an “block address”

head



Latency Numbers Every Programmer Should Know
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Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 5   ns
L2 cache reference 7   ns 14x L1 cache
Mutex lock/unlock 25   ns
Main memory reference 100   ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000   ns 3 us
Send 1K bytes over 1 Gbps 
network

10,000   ns 10 us

Read 4K randomly from SSD* 150,000   ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from 
memory

250,000   ns 250 us

Round trip within same datacenter 500,000   ns 500 us
Read 1 MB sequentially from SSD* 1,000,000   ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Read 512B from disk 10,000,000   ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000   ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms



• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8 
ms. Assume the controller overhead is 0.2ms. What’s the 
latency and bandwidth of accessing a 512B sector?
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Seagate Barracuda 12 

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+
0.5

1024
300 +0.2 ms

= 8 ms + 4.17 ms + 0.00167 us + 0.2 ms = 12.36 ms

= 0.5KB
12.36ms = 40.45KB/sec



• SATA II (300MB/s in theory), 7200 R.P.M., seek time around 8 
ms. Assume the controller overhead is 0.2ms. What’s the 
latency and bandwidth of accessing consecutive 4MB data?
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Seagate Barracuda 12 

Trading latencies with bandwidth

Latency = seek time + rotational delay + transfer time + controller overhead

Bandwidth = volume_of_data over period_of_time

8 ms + 1
2 × 1

7200
60

+ 4
300 +0.2 ms

= 8 ms + 4.17 ms + 13.33 ms + 0.2 ms = 25.69 ms

= 4MB
25.69ms = 155.7 MB/sec



Numbering the disk space with block addresses
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How your application interact with peripherals
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Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

The application needs to be tightly coupled with the underlying device — 
Not generic 

Not portable

read/write — 0, 512, 4096, … (block address) 



–David Wheeler

All problems in computer science can be solved by 
another level of indirection
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The file & file system abstraction
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What we’ve learned in the past…
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How your application interact with peripherals
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Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries

Applications with Direct I/O

Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite/
fopen/fclose open/close



How your application reaches H.D.D.
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Device Driver Device Driver Device Driver

Device Controller Device Controller Device Controller

Device #1 Device #2 Device #3 Device #4

User

Kernel

Hardware

Applications

I/O libraries Buffer
data

File system

Device independent I/O interface (e.g. ioctl)

fread/fwrite — input.bin/output.bin

fread/fwrite — input.bin/output.bin

Buffer
data

read/write — 0, 512, 4096, … (block address) 

read/write — block addresses 

read/write — block addresses 

The application only needs 
to interact with files!



int fd, nr, nw; 
void *in_buff; 
in_buff = malloc(BUFF_SIZE); 

fd1 = open(“infile.txt”, O_RDONLY); 
fd2 = open(“outfile.txt”, O_RDWR | O_CREAT); 
nr = read(fd1, in_buff, BUFF_SIZE); 
nw = write(fd2, in_buff, BUFF_SIZE); 
lseek(fd1, -8, SEEK_END); 
nr = read(fd1, in_buff, 8); // read last 8 bytes 
// more fancy stuff here… 
close(fd1); 
close(fd2);
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How you access files in C



Kernel

File System

open
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infile.txt

fd PIDs Location
0 8,12
1
2
3

fd = open(“infile.txt”); 22

file descriptor table

1



Kernel

File System

read
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infile.txt

fd PIDs Location
0 8,12
1
2
3

read(fd, buff, n); 22

file descriptor table

1

buff:



• Namespace has tree-like structure 
• Root directory (/) with subdirectories, each containing its own 

subdirectories 
• Links break the tree analogy
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Hierarchical File System Structure

/

usr home var

local bin hungwei tyler spool logsrc

tylervim



• The “/“ on storage device A will become /backup now!
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Mount

Storage Device A

/

usr home var

local bin hungwei tyler spool logsrc

tylervim

Storage Device B
/

usr home var backup



The design of a file system
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Recap: Numbering the disk space with block addresses
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• How do we locate files? 
• How do we manage hierarchical namespace? 
• How do we manage file and file system metadata? 

• How do we allocate storage space? 
• How do we make the file system fast? 
• How do we ensure file integrity?
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Questions for file systems



How the original UNIX file system use disk blocks
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Disk blocks
File System Metadata (Superblock)

Information about the “file system” itself.
(e.g. free blocks)

File Metadata Information about the 
“files”. e.g. inodes

Data

Data



• Contains critical file system information 
• The volume size 
• The number of nodes 
• Pointer to the head of the free list 

• Located at the very beginning of the file system
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Superblock — metadata of the file system



• File types: directory, file 
• File size 
• Permission 
• Attributes
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inode — metadata of each file



• File types: directory, file 
• File size 
• Permission 
• Attributes 
• Types of pointers: 

• Direct: Access single data block 
• Single Indirect: Access n data blocks 
• Double indirect: Access n2 data blocks 
• Triple indirect: Access n3 data blocks 

• inode has 15 pointers: 12 direct, 1 each 
single-, double-, and triple-indirect 

• If data block size is 512B and n = 256: 
max file size = 
(12+256+2562+2563)*512 = 8GB
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Unix inode



• Scenario: User wants to access 
/home/hungwei/CS202/foo.c 

• Procedure: File system will… 
• Open “/” file (This is in known from superblock.) 
• Locate entry for “home,” open that file 
• Locate entry for “hungwei”, open that file 
• … 
• Locate entry for “foo.c” and open that file 

• Let’s use “strace” to see what happens
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What must be done to reach your files



How to reach /home/hungwei/CS202/foo.c
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Disk blocks
File System Metadata (Superblock)

File Metadata

Superblock inode 1
owner_id 0
permission 755
type dir
address 24
…

/
usr 13
var 14

home 15

inode 15
owner_id 0

permission 755
type dir

address 31
…

index node (inode)

home
tyler 20

hungwei 21

inode 21
owner_id 0

permission 755
type dir

address 34
…

hungwei
CS202 16

Dropbox 17

inode 16
owner_id 0

permission 755
type dir

address 44
…

CS202
bar.c 18
foo.c 19

inode 19
owner_id 0

permission 755
type file

address 55
…

#include 
<stdio.h> 
. 
. 
. 
. 
. 



• Reading quiz due next Tuesday 
• Recording videos should be set correctly this week 
• Project due 3/3 

• We highly recommend you to fresh install a Ubuntu 16.04.6 
Desktop version within a VirtualBox 
• Virtual box is free 
• If you crash the kernel, just terminate the instance and 

restart virtual box 
• Use office hours to discuss projects
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Announcement



• Contiguous: the file resides in continuous addresses
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How do we allocate space?

a.txt

• Non-contiguous: the file 
can be anywhere

a.txt

• Extents: the file resides in 
several group of smaller 
continuous address

a.txt



• Need to track location of blocks on per file basis 
• Contiguous only needs a pair <start, size> 
• Extents requires a table of pairs 
• Non-contiguous requires either a linked list of blocks OR a 

table of block pointers (i.e. a map)
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Space overhead for storage allocation strategies



• Disk accesses are slow! 
• Memory access: 100ns 
• Disk access: 5-12ms 
• Flash SSD: 30-120us 

• Can reduce average access time by clustering data together… 
but still slow! 

• Ideas: Reduce the number of disk accesses using: 
• Read-ahead: Bring in multiple blocks when reading a single 

block (locality!)
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Now, what about performance?



• Buffer cache is a cache of recently used disk blocks resides in 
DRAM-based main memory 

• Modern OSs aggressively use free DRAM space for buffer 
caches 

• When accessing disk (read/write), we follow these steps: 
• Check if block is in cache; stop if in cache 
• If not in cache, access disk and place block in the cache 
• Replacement Policy: LRU implemented with a linked list 
• Head of list is next to replace 
• Tail of list is last to replace
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Buffer Cache


