File Systems & The Era of Flash-
based SSD

Hung-Wel Tseng

Outline

- Modern file systems

- Flash-based SSDs and eNVy: A non-volatile, main memory
storage system

- Don't stack your log on my log

1

Modern file system desigh —
Extent File Systems

How do we allocate disk space?

- Contiguous: the file resides in continuous addresses
- Non-contiguous: the file

can be anywhere

° ° ,':'. ‘.'
external fragment as in Segmentation

13

Conventional Unix inode

- File types: directory, file

- File size
- Permission
mode
owners (2) . Attributes
timestamps (3) S - Types of pointers:
size block count - Direct: Access single data block
data - Single Indirect: Access n data blocks
— data . 1 .
. File size is limited by tdtQPUbI? |n.d|rect. Access n2 data blokcks
Fas e - X number of point ers' Triple indirect: Access n3 d.ata blocks
. » data - inode has 15 pointers: 12 direct, 1 each
" F— data = — single-, double-, and triple-indirect
i o ol [data S - If data block size is 512B and n = 256:
d . —+——»| data
ouble indirect > : .
triple indirect : max file size =
r I >
i el (124256+2562+2563)*512 = 8GB

» data
14

How do we allocate space?

- Contiguous: the file resides in continuous addresses
Non-contiguous: the file

can be anywhere

Extents: the file resides in «
3 txt several group of smaller
continuous address

.
.
-

atxt’

15

Using extents in inodes

- Contiguous blocks only need a pair <start, size> to represent
- Improve random seek performance
- Save inode sizes

- Encourage the file system to use contiguous space allocation

16

Extent file systems — ext2, ext3, ext4

- Basically optimizations over FFS + Extent + Journaling (write-
ahead logs)

17

Using extents in inodes

- Contiguous blocks only need a pair <start, size> to represent
- Improve random seek performance
- Save inode sizes

- Encourage the file system to use contiguous space allocation

18

How EXtFS use disk blocks

Disk blocks
0 File System Metadata (Superblock)
8 File Metadata Data ""';;. block group
16 Data 23
24 File System Metadata (Superblock) i
32 File Metadata Data .
40 Data e . track

48 File System Metadata (Superblock) sector

56| File Metadata Data
Data

19 cylinder

Write-ahead log

- Basically, an idea borrowed from LFS to facilitate writes and

crash recovery
- Write to log first, apply the change after the log transaction

commits
- Update the real data block after the log writes are done

- Invalidate the log entry if the data is presented in the target location
- Replay the log when crash occurs

20

Flash-based SSDs
and
eNVy: A non-volatile, main memory storage system

Michael Wu and Willy Zwaenepoel
Rice University

21

Flash memory: eVNy and now

Modern SSDs

Technologies

Read granularity Pages (4K or 8K)

Supports byte accesses

Write/program granularity Pages (4K or 8K) Supports byte accesses

Write once? Yes Yes

In blocks (64 ~ 384 pages) 04 KB

Program-erase cycles 3,000 - 10,000 ~ 100,000

25

Basic flash operations
Program Read Programmed page

Page#: 0O 1 2 3 4 5 6/ 7 n-8n-7 n-6 n-5n-4 n-3n-2 n-1
Block #0

Block #1

Block #2

Block #n-2

Erase "

Types of Flash Chips

2 voltage levels, 4 voltage levels, 3 voltage levels, 16 voltage levels,
1-bit 2-bit 3-bit 4-bit

Single-Level Cell Multi-Level Cell Triple-Level Cell Quad-Level Cell
(SLC) (MLC) (TLC) (QLC)

27

Programming in MLC

4 voltage levels,
2-bit 3.1400000000000001243449787580

= O0x40091EBB51EB851F
11 = 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

10
phase #1
phase #2 01
phase #3

3 Cycles/Phases to finish programming

O1

00

Multi-Level Cell
(MLC)

28

Programming in MLC

4 voltage levels,

2-bit 3.1400000000000001243449787580
= Ox40091EBB51EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

phase #1

phase #1

1 Phase to finish programming the first page!
29

Programming the 2nd page in MLC

Sna AVoltage levels, 3.1400000000000001243449787580
a992 pit = Ox40091EB851EB851F

= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111
= 01000000 00001001 00011110 10111000 01010001 11101011 10000101 00011111

phase #1

phase #2 O’I
phase #1
phase #2 O’]

Multi-Level Cell
1stpage (MLC) 2 Phase to finish programming the second page!

30

QLC = More Density Per NAND Cell

(:) Lower $ per GB ;

SLC MLC TLC QLC

1111

¥
1101
1100
011
1010
00

1000
0111
0110
0101
0100

(L

0011
0010
0000
1 Bit Per Cell 2 Bits Per Cell 3 Bits Per Cell 4 Bits Per Cell
First SSD NAND technaolagy 100% increase 50% increase 33% in 58
100K P/E Cycles 10K P/E Cycles 3K P/E Cycles 1K P/E Cycles

(at tachnclogy introduction)

Fewer writes per cell

Not a good practice Flas'!g performance

105 A1,500 3000
n
o Q
= - €
E 70 = 1,000 iz 2000
o o s
3 2 S
35 T T 500 1000 -
IiLf SLC I
O‘§§§§§§§§§§§ 3 3BEEBEEESD S O e e e w e £
b Y b @ o 3 =
[] ® 0
Reads: Program/write: Erase:
less than 150us less than 2ms less than 3.6ms

Similar relative performance for reads, writes and erases

Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H. Siegel, and Jack K. Wolf.

Characterizing flash memory: anomalies, observations, and applications. In MICRO 2009.
32

Recap: How vour application reaches H.D.D.

User data - fread/fwrite — input.bin/output.bin

M Aeiy Buffer

File system
read/write — 0, 512, 4096, .. (block address)

Buffer Device independent I/O interface (e.g.ioctl)
read/write — block addresses

Device Driver Device Driver Device Driver

Device Controller [Device Controller Device Controller
Hardware

33

Kernel 4,15

What happens on a write if we use the same abstractions as H.D.D.

Can we write to page #0 directly? No.

We have to copy page #1, page #2 in block #0 to
somewhere (e.g. RAM buffer) and then erase the block

Write this the new 0 and the old 15 back to block #0
again!
Read: 6*30us + Writing: 2ms*3 + Erasing 3ms ~ 9 ms

Not much faster than the H.D.D.— also hurts the lifetime

3SD
Controller

Erase .’

Block #1

Block #2

Block #3

Block #4

All problems in computer science can be solved by another level of
iIndirection

—David Wheeler

36

How vour application reaches S.S.D.

User data - fread/fwrite — input.bin/output.bin

M Aeiy Buffer

File system
read/write — 0, 512, 4096, .. (block address)
Buffer Device independent I/O interface (e.g.ioctl)

Kernel 4.+, read/write — block addresses

Device Driver Device Driver Device Driver

FTL FTL: Flash translation layer

I W VW IWVW Wi I Wilwi Y WV IWWY WWiilel Wilwi WMoVivwve WVIIWLIVIIVI

37

Hardware

Flash Translation Layer (FTL)

- We are always lazy to modify our applications

- FTL maintains an abstraction of LBAs (logic block addresses) used
between hard disk drives and software applications

- FTL dynamically maps your logical block addresses to physical
addresses on the flash memory chip

- It needs your SSD to have a processor in it now

41

What happens on aread with FTL

LBA Flash Block Flash Page
0x3241 0 0
0x3242 0] 63
0x3243 1 3
0x3244 2 4
0x3245 3 §)
0x3246 2 /

N

What happens on a write with FTL

0x3242 0 63 valid page
0x3243 1 3

0x3244 2 4

0Ox3245 3 © free page
0x3246 2 7

Garbage Collectionin FTL

0x3244
0Ox3245
0Ox3246

N W N = O
N

Buffer

Eras

LBA Flash Block Flash Page . invall
Write Sy FlShBiock FlashPace
SSD WSy e valid page
Controller REPIE °

Id page

free page

|

|

Flash Translation Layer (FTL)

- We are always lazy to modify our applications

- FTL maintains an abstraction of LBAs (logic block addresses) used
between hard disk drives and software applications

- FTL dynamically maps your logical block addresses to physical
addresses on the flash memory chip

- FTL performs copy-on-write when there is an update

- FTL reclaims invalid data regions and data blocks to allow future
updates

- FTL executes wear-leveling to maximize the life time
- It needs your SSD to have a processor in it now

45

Why eNVy

- Flash memories have different characteristics than
conventional storage and memory technologies

- We want to minimize the modifications in our software

46

What eNVy proposed

- A file system inside flash that performs
- Transparent in-place update

- Page remapping

- Caching/Buffering

- Garbage collection

. Exactly like LFS

47

Utilization and performance

- Performance degrades as your store more data
- Modern SSDs provision storage space to address this issue

o 45000

W s
g O
o O
o O
o O

/A

N
o
o
o
o
M

—
o !
o O
o O
o O

Measured Throughput (TP
&
S

5000 S -
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flash Array Utilization

-<- 10,000 TPS + 20,000 TPS 4 30,000 TPS -©- 40,000 TPS

Figure 14: Throughput for Various Levels of Utilization
48

The impact of eNVy

- Your SSD structured exactly like this!

Stores the mapping table

. ASIC (e.g.NAND) 05 805

Controller + Registers

Perform FTL algorithms

49

Don't stack your log on my log

Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and
Swaminathan Sundararaman
SanDisk Corporation

53

Why should we care about this paper?

- Log is everywhere Omi'[e AP ACHE, .
. . - BigTable
- Application: database DATABASE .

files, offsets

- File system
- Flash-based SSDs

- They can interfere with each
other!

File system Write-ahead Log

logic block

I/0O interface

logic block|addresses

- An issue with software Flash translation layer (also log-structured)
engineering nowadays

physicalladdresses

54

- FTL mapping table
LB A) me———————————————————————————> 0 1 0
File system S F | JKCDEGHLMN O P 1 1
i 2 - -
logic block|addresses - 3
= 4
/O interface = 5 1 5
. 6 - _
10gIC DloCKIadAIESSeS | i eeieeeeeeeeeenrnnrnnrnnrnns I - -
8 2 0
9 2 1
10 2 2
SSD A|B - i |y]kfclpfelelH] |ifminfo] [| [] *© 2 2
Block #1 Block #2 Block #3 12 2 4
13 2 5
14 2 6
15 2 /
16 3 0
17 3 1
18 3 2
invalid 19 3 3
valid 20 . .
21
free 22

55

N
w

Now, SSD wants to reclaim a block................

- FTL mapping table
. 0 3 4

3 5

LBA: O

File system [§J: F 10 K c/DE e lH LM N o

logic block{addresses

/O interface

logic block{addresses

L L] Dludxlelolefefn] [uimin]ofals[F]
Block #2 Block #3

Block #1

00O NO O N -
W
o

> ©

SSD

—_
—_

N
N

-
(OV)

N L N
0 N O O

invalid

- N
o
I W N ONO O P OWON—2O 1

—_—
N
W W W WNDNDNNDNDNNDNDDN L

N
@)

valid

NN
N —

free
56

N
w

Garbage collection on the SSD done!..............

- FTL mapping table
. 0 3

3

: LBA: O
File system [P F | J KCDEGHLMNO

ol A

logic block{addresses

/O interface

logic block{addresses

SSD M 1 [J]k[clofeleln| [Lm[n|ofals|F]
Block #1 Block #2 Block #3

00O NO O N -
w
o

©

— =
- O

N
N

-
(OV)

N L N
0 N O O

invalid

- N
©
I W N2 ONO O WN— O

—_—
N
W W W WNDNDNNDNDNDNDDN I

N
@)

valid

NN
N —
o
o

free -

N
w
[

[

What will happen if the FS wants to perform.GC?......

FTL mapping table

. LBA:) —m—mMm™— — ™ - 0 : -
File system | | J KCDEGHLMNGOAGBF g i i
: : : = 2 - -

logic block|addresses - 3 - -

: 4 _ _

/O interface = 5 . .

I 6 _ _

................. logic blockjaddresses | Ivviieesssssmmsmsesseesenssssnnnnnsd DR - -

9 2 1

10 2 2

SSD 3| F ykjclplefeln] |ulminfol | | |Al T D 2
Block #1 Block #2 Block #3 12 2 4

13 2 5

We could have avoided writing the e °

stale A, B, F if they are coordinated! 3 0

17 3 1

18 3 2

invalid 19 3 3

valid 20 3 Z

21 1 0

free 22 1 1

58 23

All problems in computer science can be solved by another level of
Indirection

—David Wheeler

...except for the problem of too many layers of indirection.

59

File systems for flash-based SSDs

- Still an open research question

- Software designer should be aware of the characteristics of underlying
hardware components

+ Revising the layered design to expose more SSD information to the file

system or the other way around Snotifv is writine massive amounts of
IBC_|z TECH ENTERTAINMENT DEALS BUSINESS SCIENCE L FESTYLE 'ives
(TECH

s of gigabytes per day.

Spotify has been quietly killing your SSD’s life for months

Doctors |
promising

The mos

KAML: Modernize the storage interfacé

ONQCQ?;:E Ay . A Google Cloud
DATABASE HBHSE BigTab

Processor

File systems

Set/Get/Delete/Append...

Flash translation layer

physical addresses

"
NYMeSSD

<+ Yanqin Jin, Hung-Wei Tseng, Steven Swanson and Yannis
Papakonstantinou. KAML: A Flexible, High-Performance Key-Value
SSD.In HPCA 2017.

62

