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Recap: Each process has a separate virtual memory space
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Processor
Virtually, every process seems to have a 

processor, but only a few of them are 
physically executing.

They are isolated from one 
another. Each of them is not 

supposed to know what 
happens to another one



Recap: Threads
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• Process is an abstraction of a computer 
• When you create a process, you duplicate everything 
• However, you only need to duplicate CPU abstraction to parallelize 

computation tasks 
• Threads as lightweight processes 

• Thread is an abstraction of a CPU in a computer 
• Maintain separate execution context 
• Share other resources (e.g. memory)
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Recap: Why Threads?



• Mechanisms of changing processes 
• Basic scheduling policies 
• Linux Scheduling 
• An experimental time-sharing system — The Multi-Level 

Scheduling Algorithm
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Outline



• The OS controls the scheduling — can change the running 
process even though the process does not give up the 
resource 

• But how?
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Preemptive Multitasking



• System calls / trap instructions — raised by applications 
• Display images, play sounds 

• Exceptions — raised by processor itself 
• Divided by zero, unknown memory addresses 

• Interrupts — raised by hardware 
• Keystroke, network packets
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Three ways to invoke OS handlers

add    0x1bad(%eax),%dh 
add    %al,(%eax) 
decb   0x52(%edi) 
in     $0x8d,%al 
mov    %eax,0x101c 
lea    -0x2bb84(%ebx),%eax 
mov    %eax,-0x2bb8a(%ebx) 
lgdtl  -0x2bb8c(%ebx) 
lea    -0x2bf3d(%ebx),%eax 
push   $0x10 
…… 
…… 
…… 
…… 
…… 
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb    %ecx,0x13(%rcx) 
and    %cl,(%rbx) 
xor    $0x19,%al 
add    %edx,(%rbx) 
add    %al,(%rax) 
syscall 
add    %al,(%rbx) 
…… 
…… 
…… 
div    %ecx 
…… 
…… 
…… 
……

trap

return-from-trap

exception

return from
exception handler

interrupt
return from

interrupt handler



• Setup a timer (a hardware feature by the processor)event 
before the process start running 

• After a certain period of time, the timer generates interrupt 
to force the running process transfer the control to OS 
kernel 

• The OS kernel code decides if the system wants to 
continue the current process 
• If not — context switch 
• If yes, return to the process
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How preemptive multitasking works



Scheduling Policies from 
Undergraduate OS classes
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• Virtualizing the processor 
• Multiple processes need to share a single processor 
• Create an illusion that the processor is serving my task by rapidly 

switching the running process 
• Determine which process gets the processor for how long
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CPU Scheduling



• Non-preemptive/cooperative: the task runs until it finished 
• FIFO/FCFS: First In First Out / First Come First Serve 
• SJF: Shortest Job First 

• Preemptive: the OS periodically checks the status of processes 
and can potentially change the running process 
• STCF: Shortest Time-to-Completion First 
• RR: Round robin
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What you learned before



An experimental time-sharing system
Fernando J. Corbató, Marjorie Merwin-Daggett and Robert C. Daley
Massachusetts Institute of Technology, Cambridge, Massachusetts
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• System saturation — the demand of computing is larger than 
the physical processor resource available 

• Service level degrades 
• Lots of program swap ins-and-outs (known as context switches 

in our current terminology) 
• User interface response time is bad

— you have to wait until your turn 
• Long running tasks cannot make

good progress — frequent 
swap in-and-out
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What happens to round robin when the system is saturated?Why Multi-level scheduling algorithm?



Context Switch Overhead
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You think round robin should act like this —

0        1         2         3         4         5         6        7         8         9       10
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1

But the fact is —
P1 P2 P3Overhead

P1 -> P2
Overhead
P2 -> P3

Overhead
P3 -> P1

0        1 1        2 2        3 
P1 P2Overhead

P1 -> P2
Overhead
P2 -> P3

3        4 4        5 

•Your processor utilization can be very low if you switch frequently
•No process can make sufficient amount of progress within a given period of time
•It also takes a while to reach your turn



• Place new process in the one of the queue 
• Depending on the program size

• Schedule processes in one of N queues 
• Start in initially assigned queue n 
• Run for 2n quanta (where n is current depth) 
• If not complete, move to a higher queue (e.g. n +1)

• Level m is run only when levels 0 to m-1 are empty
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The Multilevel Scheduling Algorithm

wp is the program memory size — smaller ones are 
assigned to lower numbered queues 

• Smaller tasks are given higher priority in the beginning
Why?

• Larger process will execute longer before switch

• Smaller process, newer process are given higher priority 



• Not optimized for anything — it’s never possible to have an 
optimized scheduling algorithm without prior knowledge 
regarding all running processes 

• It’s practical — many scheduling algorithms used in modern 
OSes still follow the same idea
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The Multilevel Scheduling Algorithm



The Linux Scheduler: a Decade of 
Wasted Cores

J-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova
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• Real time process classes – always run first (rare) 
• Interactive processes: Usually blocked, low total run time, high 

priority 

• Other processes: 
• Red-black BST of process, organized by CPU time they’ve 

received. 
• Pick the ready process that has run for the shortest (normalized) 

time thus far. 
• Run it, update it’s CPU usage time, add to tree
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Linux’s Completely Fair Scheduler (CFS)



• Each processor has a run-queue — the load within each local 
queue may not be balanced 

• Run load balancing algorithms 
• Cannot invoked often — Expensive computation-wise and 

communication-wise 
• “Emergency” load-balancing if any core is idle
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CFS on multicore systems



User-level v.s kernel threads
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user-level threads

Kernel

privilege boundary

user-
level

kernel
mode

Process

runtime
library

thread list
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The process is a 
virtual processor

kernel threads

Process

Kernel

process list

thread list

thread
thread

• The OS kernel is unaware of user-level threads 
• Switching threads does not require kernel mode operations 
• A thread can block other threads within the same process

• The kernel can control threads directly 
• Thread switch requires kernel/user mode switch and system calls 
• Thread works individually



Load balancing

32

Processor 
Core 

#1

L=1000

task load = weight × % of cpu use

L=1000

L=1000

L=1000

Processor 
Core 

#2

L=4000



Scheduling group #1Scheduling group #0

Load balancing — if we have more cores?

33

Processor 
Core 

#0

L=1000

L=1000

L=1000

L=1000

Processor 
Core 

#2

L=4000

Processor 
Core 

#1
Processor 

Core 
#3



Scheduling group #1Scheduling group #0

Load balancing — if we have more cores?
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Scheduling group #2

Loading balancing — grouping?
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• Group Imbalance bug 
• Thread load are divided 
• Work stealing based on average load — use minimum load instead 

• The Scheduling Group Construction bug 
• Linux spawns threads on the same core as their parent thread 

• The Overload-on-Wakeup bug 
• a thread that was asleep may wake up on an overloaded core while other cores in 

the system are idle 
• promotes cache reuse 

• The Missing Scheduling Domains bug 
• When a core is disabled and then re-enabled using the /proc interface, load 

balancing between any NUMA nodes is no longer performed.
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“Bugs” in Linux CFS



Lottery Scheduling: Flexible Proportional-
Share Resource Management

Carl A. Waldspurger and William E. Weihl
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Why Lottery
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We want Quality of Service

Most approaches are not flexible, responsive

The overhead of running those 
algorithms are high!

No body knows how they work…



Solution — Lottery and Tickets
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• Each process hold a certain number of lottery tickets 
• Randomize to generate a lottery 
• If a process wants to have higher priority 

• Obtain more tickets!
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What lottery proposed?



• Ticket transfers 
• Ticket inflation 
• Ticket currencies 
• Compensation tickets
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Ticket economics



• The overhead is not too bad 
• 1000 instructions ~ less than 500 ns on a 2 

GHz processor 
• Fairness 

• Figure 5: average ratio in proportion to the 
ticket allocation 

• Flexibility 
• Allows Monte-Carlo 

algorithm to dynamically 
inflate its tickets 

• Ticket transfer 
• Client-server setup
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How good is lottery?



• Data center scheduling 
• You buy “times” 
• Lottery scheduling of your virtual machine
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The impact of “lottery”



• Will it be good for 
• Event-driven application 
• Real-time application 
• GUI-based system 

• Is randomization a good idea? 
• The authors later developed a deterministic stride-scheduling
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Will you use lottery for your system?


