
Task Scheduling
Hung-Wei Tseng

Recap: Each process has a separate virtual memory space

3

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Virtual memory
heap

stack

code

static data

Processor
Virtually, every process seems to have a

processor, but only a few of them are
physically executing.

They are isolated from one
another. Each of them is not

supposed to know what
happens to another one

Recap: Threads

4

Virtual memory

heap

code

static data

code

stack

Task #1

0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memory

heap

code

static data

code

stack

Task #2

0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

• Process is an abstraction of a computer
• When you create a process, you duplicate everything
• However, you only need to duplicate CPU abstraction to parallelize

computation tasks
• Threads as lightweight processes

• Thread is an abstraction of a CPU in a computer
• Maintain separate execution context
• Share other resources (e.g. memory)

5

Recap: Why Threads?

• Mechanisms of changing processes
• Basic scheduling policies
• Linux Scheduling
• An experimental time-sharing system — The Multi-Level

Scheduling Algorithm

6

Outline

• The OS controls the scheduling — can change the running
process even though the process does not give up the
resource

• But how?

7

Preemptive Multitasking

• System calls / trap instructions — raised by applications
• Display images, play sounds

• Exceptions — raised by processor itself
• Divided by zero, unknown memory addresses

• Interrupts — raised by hardware
• Keystroke, network packets

8

Three ways to invoke OS handlers

add 0x1bad(%eax),%dh
add %al,(%eax)
decb 0x52(%edi)
in $0x8d,%al
mov %eax,0x101c
lea -0x2bb84(%ebx),%eax
mov %eax,-0x2bb8a(%ebx)
lgdtl -0x2bb8c(%ebx)
lea -0x2bf3d(%ebx),%eax
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx)
and %cl,(%rbx)
xor $0x19,%al
add %edx,(%rbx)
add %al,(%rax)
syscall
add %al,(%rbx)
……
……
……
div %ecx
……
……
……
……

trap

return-from-trap

exception

return from
exception handler

interrupt
return from

interrupt handler

• Setup a timer (a hardware feature by the processor)event
before the process start running

• After a certain period of time, the timer generates interrupt
to force the running process transfer the control to OS
kernel

• The OS kernel code decides if the system wants to
continue the current process
• If not — context switch
• If yes, return to the process

9

How preemptive multitasking works

Scheduling Policies from
Undergraduate OS classes

10

11

• Virtualizing the processor
• Multiple processes need to share a single processor
• Create an illusion that the processor is serving my task by rapidly

switching the running process
• Determine which process gets the processor for how long

12

CPU Scheduling

• Non-preemptive/cooperative: the task runs until it finished
• FIFO/FCFS: First In First Out / First Come First Serve
• SJF: Shortest Job First

• Preemptive: the OS periodically checks the status of processes
and can potentially change the running process
• STCF: Shortest Time-to-Completion First
• RR: Round robin

13

What you learned before

An experimental time-sharing system
Fernando J. Corbató, Marjorie Merwin-Daggett and Robert C. Daley
Massachusetts Institute of Technology, Cambridge, Massachusetts

17

• System saturation — the demand of computing is larger than
the physical processor resource available

• Service level degrades
• Lots of program swap ins-and-outs (known as context switches

in our current terminology)
• User interface response time is bad

— you have to wait until your turn
• Long running tasks cannot make

good progress — frequent
swap in-and-out

21

What happens to round robin when the system is saturated?Why Multi-level scheduling algorithm?

Context Switch Overhead

25

You think round robin should act like this —

0 1 2 3 4 5 6 7 8 9 10
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1

But the fact is —
P1 P2 P3Overhead

P1 -> P2
Overhead
P2 -> P3

Overhead
P3 -> P1

0 1 1 2 2 3
P1 P2Overhead

P1 -> P2
Overhead
P2 -> P3

3 4 4 5

•Your processor utilization can be very low if you switch frequently
•No process can make sufficient amount of progress within a given period of time
•It also takes a while to reach your turn

• Place new process in the one of the queue
• Depending on the program size

• Schedule processes in one of N queues
• Start in initially assigned queue n
• Run for 2n quanta (where n is current depth)
• If not complete, move to a higher queue (e.g. n +1)

• Level m is run only when levels 0 to m-1 are empty
26

The Multilevel Scheduling Algorithm

wp is the program memory size — smaller ones are
assigned to lower numbered queues

• Smaller tasks are given higher priority in the beginning
Why?

• Larger process will execute longer before switch

• Smaller process, newer process are given higher priority

• Not optimized for anything — it’s never possible to have an
optimized scheduling algorithm without prior knowledge
regarding all running processes

• It’s practical — many scheduling algorithms used in modern
OSes still follow the same idea

27

The Multilevel Scheduling Algorithm

The Linux Scheduler: a Decade of
Wasted Cores

J-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova

28

• Real time process classes – always run first (rare)
• Interactive processes: Usually blocked, low total run time, high

priority

• Other processes:
• Red-black BST of process, organized by CPU time they’ve

received.
• Pick the ready process that has run for the shortest (normalized)

time thus far.
• Run it, update it’s CPU usage time, add to tree

29

Linux’s Completely Fair Scheduler (CFS)

• Each processor has a run-queue — the load within each local
queue may not be balanced

• Run load balancing algorithms
• Cannot invoked often — Expensive computation-wise and

communication-wise
• “Emergency” load-balancing if any core is idle

30

CFS on multicore systems

User-level v.s kernel threads

31

user-level threads

Kernel

privilege boundary

user-
level

kernel
mode

Process

runtime
library

thread list

process list

The process is a
virtual processor

kernel threads

Process

Kernel

process list

thread list

thread
thread

• The OS kernel is unaware of user-level threads
• Switching threads does not require kernel mode operations
• A thread can block other threads within the same process

• The kernel can control threads directly
• Thread switch requires kernel/user mode switch and system calls
• Thread works individually

Load balancing

32

Processor
Core

#1

L=1000

task load = weight × % of cpu use

L=1000

L=1000

L=1000

Processor
Core

#2

L=4000

Scheduling group #1Scheduling group #0

Load balancing — if we have more cores?

33

Processor
Core

#0

L=1000

L=1000

L=1000

L=1000

Processor
Core

#2

L=4000

Processor
Core

#1
Processor

Core
#3

Scheduling group #1Scheduling group #0

Load balancing — if we have more cores?

34

Processor
Core

#0

L=1000

L=1000

Processor
Core

#2

L=4000

Processor
Core

#1
Processor

Core
#3

L=1000

L=1000

balanced!

avg. load = 2000! avg. load = 2000!

idle!!!balanced!

Scheduling group #2

Loading balancing — grouping?

35

Scheduling group #1Scheduling group #0

Processor
Core

#0

L=1000

L=1000

Processor
Core

#2

Processor
Core

#1
Processor

Core
#3

L=1000

L=1000

idle!!! L=4000

avg. load = 2000! avg. load = 2000!balanced!

• Group Imbalance bug
• Thread load are divided
• Work stealing based on average load — use minimum load instead

• The Scheduling Group Construction bug
• Linux spawns threads on the same core as their parent thread

• The Overload-on-Wakeup bug
• a thread that was asleep may wake up on an overloaded core while other cores in

the system are idle
• promotes cache reuse

• The Missing Scheduling Domains bug
• When a core is disabled and then re-enabled using the /proc interface, load

balancing between any NUMA nodes is no longer performed.
36

“Bugs” in Linux CFS

Lottery Scheduling: Flexible Proportional-
Share Resource Management

Carl A. Waldspurger and William E. Weihl

37

Why Lottery

38

We want Quality of Service

Most approaches are not flexible, responsive

The overhead of running those
algorithms are high!

No body knows how they work…

Solution — Lottery and Tickets

39

• Each process hold a certain number of lottery tickets
• Randomize to generate a lottery
• If a process wants to have higher priority

• Obtain more tickets!

42

What lottery proposed?

• Ticket transfers
• Ticket inflation
• Ticket currencies
• Compensation tickets

44

Ticket economics

• The overhead is not too bad
• 1000 instructions ~ less than 500 ns on a 2

GHz processor
• Fairness

• Figure 5: average ratio in proportion to the
ticket allocation

• Flexibility
• Allows Monte-Carlo

algorithm to dynamically
inflate its tickets

• Ticket transfer
• Client-server setup

45

How good is lottery?

• Data center scheduling
• You buy “times”
• Lottery scheduling of your virtual machine

46

The impact of “lottery”

• Will it be good for
• Event-driven application
• Real-time application
• GUI-based system

• Is randomization a good idea?
• The authors later developed a deterministic stride-scheduling

47

Will you use lottery for your system?

