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Recap: von Neumman Architecture
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By loading different programs into memory, 
your computer can perform different functions



What happens when creating a process
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Virtual memory
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Dynamic allocated data: malloc()

Local variables, 
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code
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Linux contains a .bss section 
for uninitialized global variables
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The operating system 
needs to track all of these for 

each process!



• Most operations can directly execute on the processor without OS’s 
intervention 

• The OS only takes care of protected resources,  change running processes 
or anything that the user program cannot handle properly 

• Divide operations into two modes 
• User mode 

• Restricted operations 
• User processes 

• Kernel mode 
• Can perform privileged operations 
• The operating system kernel 

• Requires architectural/hardware supports
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Recap: Restricted operations



• The processor provides 
normal instructions and privileged 
instructions 

• Normal instructions: ADD, SUB, MUL, and 
etc … 

• Privileged instructions: HLT, CLTS, LIDT, 
LMSW, SIDT, ARPL, and etc…  

• The processor provides different modes 
• User processes can use normal instructions 
• Privileged instruction can only be used if the 

processor is in proper mode — otherwise, it 
incurs an exception and the OS handler 
needs to deal with it
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Recap: Architectural support: privileged instructions
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• Through the API: System calls 
• Implemented in “trap” instructions 

• Raise an exception in the processor 
• The processor saves the exception 

PC and jumps to the corresponding 
exception handler in the OS kernel

6

Recap: How applications can use privileged operations?

add    0x1bad(%eax),%dh 
add    %al,(%eax) 
decb   0x52(%edi) 
in     $0x8d,%al 
mov    %eax,0x101c 
lea    -0x2bb84(%ebx),%eax 
mov    %eax,-0x2bb8a(%ebx) 
lgdtl  -0x2bb8c(%ebx) 
lea    -0x2bf3d(%ebx),%eax 
push   $0x10 
…… 
…… 
…… 
…… 
…… 
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb    %ecx,0x13(%rcx) 
and    %cl,(%rbx) 
xor    $0x19,%al 
add    %edx,(%rbx) 
add    %al,(%rax) 
syscall 
add    %al,(%rbx) 
…… 
…… 
…… 
…… 
…… 
…… 
…… 
……

trap

return-from-trap

Preserve register values/
PC into memory

Restore register values/
PC from memory



• The OS kernel only get involved when necessary 
• System calls 
• Hardware interrupts 
• Exceptions 

• The OS kernel works on behave of the requesting process — not a 
process 
• Somehow like a function call to a dynamic linking library 
• The the process’ PC set to the invoked kernel code and enters kernel mode 
• Kernel code preserve the current architectural states and update the PCB 
• As a result — overhead of copying registers, allocating local variables for 

kernel code and etc…
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Recap: Kernel



• Kernel (cont.) 
• How to read research papers 
• The Structure of the 'THE'-Multiprogramming System 
• The Nucleus of a Multiprogramming System
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Outline



The overhead of kernel
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Latency Numbers Every Programmer Should Know 
(2020 Version)
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Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 3 ns
L2 cache reference 4 ns 14x L1 cache
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100   ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 us
Read 1 MB sequentially from memory 3,000  ns 3 us
Read 4K randomly from SSD* 16,000   ns 16 us
Read 1 MB sequentially from SSD* 49,000  ns 49 us
Round trip within same datacenter 500,000   ns 500 us
Read 1 MB sequentially from disk 825,000   ns 825 us
Disk seek 2,000,000   ns 2,000 us 2 ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html


• Measure kernel switch overhead using lmbench http://
www.bitmover.com/lmbench/
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Demo: Kernel Switch Overhead

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/


How does the processor knows where to jump to?
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power on/boot

install trap tables using 
privileged instructions

system call handlers

system call

kernel mode

user process

user mode

user process

system call



How to read research papers
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• For each paper, you should identify the followings: 
• Why? 

• Why should we care about this paper? 
• What’s the problem that this paper is trying to address? 

• What? 
• What has been proposed? 
• Contributions of the paper 

• How? 
• How does the paper accomplish the proposed idea? 
• How does the result perform?
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How to read research papers
The most important thing when you’re reading/writing a paper

The second most important thing when  you’re reading/writing a paper

They are important only if you want to implement the proposed idea



• What are those related papers that you read before? 
• Compare with those related papers and re-exam their whys, 

whats and hows 
• What will you propose if you’re solving the same “why”?
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Recap & Brainstorm



• As a researcher 
• You want to identify important problems 
• You want to know what has been accomplished 

• As an engineer 
• You want to know if there is a solution of the design problems of 

your systems, applications 
• You want to know if you can apply the proposed mechanism 
• You want to know how to do it
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Why is reading papers important



The Structure of the 'THE'-
Multiprogramming System 

Edsger W. Dijkstra 
Technological University, Eindhoven, The Netherlands
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• 11 May 1930 – 6 August 2002 
• Dijkstra's algorithm (single-source shortest path problem) 
• Synchronization primitive, Mutual exclusion, Critical sections — 

appendix of this paper 
• Dining philosophers problem 
• Program verification 
• Multithreaded programming 
• Concurrent programming 
• Dijkstra–Scholten algorithm 
• ……
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Edsger W. Dijkstra



Where is why?
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Usually, you should be able to identify the why in the 
very beginning part of a paper



• CPU utilization — how busy we keep the CPU to be — CPU is busy does not 
mean it’s making progress for the user program 

• Latency — the time between start execution and completion 
• Throughput — the amount of “tasks/processes/threads” that we can finish 

within a given amount of time 
• Turnaround time — the time between submission/arrival and completion 
• Response time — the time between submission and the first time when 

the job is scheduled 
• Wait time — the time between the job is ready (not including the overhead 

of queuing, command processing) and the first time when the job is 
scheduled 

• Fairness — every process should get a fair chance to make progress
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Performance Metrics



• Why should people care about this paper in 1968? 
• Turn-around time of short programs 
• Economic use of peripherals 
• Automatic control of backing storage 
• Economic use of the machine 
• Designing a system is difficult in 1968 

• Difficult to verify soundness 
• Difficult to prove correctness 
• Difficult to deal with the complexities
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THE



The computer in the era of “THE”
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Memory

Processor

Storage

Core memory

Processor

Drum

now the era of “THE”

cycle time: 2.5 us
(clock rate: 400KHz)

32K

512KWords
response time: 40ms

1000 chars/sec
1+ TB

response time: 20us - 10ms 
100MB/sec-2.4GB/sec

cycle time: 0.5 ns 
(clock rate: 2 GHz)

8GB+



Where is what?
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processes

strict layered design
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What has been proposed?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized 
peripherals

virtualized 
processor

virtualized 
console

Each layer has a different privilege mode — your 
processor needs to provide 5 levels of execution modes



Where is how?
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• Built the layered system to facilitate debugging 
• Priority scheduling to improve turn-around time  
• Mutual synchronization for sharing resource among processes 

• Processor allocation for processes 
• Access of the physical console among virtual consoles 
• Access peripherals among user programs 
• Keep this in mind, we will discuss mutual exclusion in detail later

38

How they achieved these goals?



Where else do you see hierarchical designs?
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Application

Transport

Network

Link

Physical

Application

Transport

Network

Link
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TCP/UDP…

IEEE 802.3, IEEE 802.11

IPv4, IPv6

Optical Fiber, Cooper wires, Air



• Process abstraction 
• Hierarchical system design 
• Virtual memory 
• Mutual Synchronization
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Impacts of THE



The Nucleus of a Multiprogramming 
System

Per Brinch Hansen 
A/S Regnecentralen, Copenhagen, Denmark
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System Nucleus …
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System Nucleus
S

process



Can multiple OSs running concurrently?
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System Nucleus
S—The primitive OS

process A—
OS #1

B—
OS #2

C—
OS #3

D—
App

E—
App

F—
App



How many layers?
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System Nucleus
S—The primitive OS

A—
OS #1

B—
OS #2

C—
OS #3

D—
App

E—
App

F—
App

privileged 
mode

user 
mode

process



• Hierarchical 
• Ease of debugging/verification/testing 
• Lack of flexibility — you can only interact with neighbor layers 
• Overhead in each layer — not so great for performance 

• Flat 
• Flexibility/Freedom
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Hierarchical design v.s. flat structure



• Reading quizzes due this Thursday 
• We will make both midterm and final exams online this quarter 

• Avoid the uncertainty of COVID-19 
• Avoid high-density in the classroom (only sits 60 and we have 59 

for now) during examines
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Announcement


