
Design philosophy of operating
systems (I)

Hung-Wei Tseng

Recap: von Neumman Architecture

2

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

What happens when creating a process

3

Virtual memory

heap

stack

Dynamic allocated data: malloc()

Local variables,
arguments

code

static data

program

code

static data

Linux contains a .bss section
for uninitialized global variables

R0
R1
R2

R3
1

....
....

registers

The operating system
needs to track all of these for

each process!

• Most operations can directly execute on the processor without OS’s
intervention

• The OS only takes care of protected resources, change running processes
or anything that the user program cannot handle properly

• Divide operations into two modes
• User mode

• Restricted operations
• User processes

• Kernel mode
• Can perform privileged operations
• The operating system kernel

• Requires architectural/hardware supports
4

Recap: Restricted operations

• The processor provides
normal instructions and privileged
instructions

• Normal instructions: ADD, SUB, MUL, and
etc …

• Privileged instructions: HLT, CLTS, LIDT,
LMSW, SIDT, ARPL, and etc…

• The processor provides different modes
• User processes can use normal instructions
• Privileged instruction can only be used if the

processor is in proper mode — otherwise, it
incurs an exception and the OS handler
needs to deal with it

5

Recap: Architectural support: privileged instructions

Kernel

Ring 3
Ring 2
Ring 1
Ring 0

Device Drivers

Device Drivers

Applications
Least privileged

Most privileged

• Through the API: System calls
• Implemented in “trap” instructions

• Raise an exception in the processor
• The processor saves the exception

PC and jumps to the corresponding
exception handler in the OS kernel

6

Recap: How applications can use privileged operations?

add 0x1bad(%eax),%dh
add %al,(%eax)
decb 0x52(%edi)
in $0x8d,%al
mov %eax,0x101c
lea -0x2bb84(%ebx),%eax
mov %eax,-0x2bb8a(%ebx)
lgdtl -0x2bb8c(%ebx)
lea -0x2bf3d(%ebx),%eax
push $0x10
……
……
……
……
……
……

OS kernel

kernel/privileged
mode

user program

user
mode

sbb %ecx,0x13(%rcx)
and %cl,(%rbx)
xor $0x19,%al
add %edx,(%rbx)
add %al,(%rax)
syscall
add %al,(%rbx)
……
……
……
……
……
……
……
……

trap

return-from-trap

Preserve register values/
PC into memory

Restore register values/
PC from memory

• The OS kernel only get involved when necessary
• System calls
• Hardware interrupts
• Exceptions

• The OS kernel works on behave of the requesting process — not a
process
• Somehow like a function call to a dynamic linking library
• The the process’ PC set to the invoked kernel code and enters kernel mode
• Kernel code preserve the current architectural states and update the PCB
• As a result — overhead of copying registers, allocating local variables for

kernel code and etc…
7

Recap: Kernel

• Kernel (cont.)
• How to read research papers
• The Structure of the 'THE'-Multiprogramming System
• The Nucleus of a Multiprogramming System

8

Outline

The overhead of kernel

9

Latency Numbers Every Programmer Should Know
(2020 Version)

10

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 3 ns
L2 cache reference 4 ns 14x L1 cache
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 us
Read 1 MB sequentially from memory 3,000 ns 3 us
Read 4K randomly from SSD* 16,000 ns 16 us
Read 1 MB sequentially from SSD* 49,000 ns 49 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from disk 825,000 ns 825 us
Disk seek 2,000,000 ns 2,000 us 2 ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html

• Measure kernel switch overhead using lmbench http://
www.bitmover.com/lmbench/

13

Demo: Kernel Switch Overhead

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

How does the processor knows where to jump to?

15

power on/boot

install trap tables using
privileged instructions

system call handlers

system call

kernel mode

user process

user mode

user process

system call

How to read research papers

16

• For each paper, you should identify the followings:
• Why?

• Why should we care about this paper?
• What’s the problem that this paper is trying to address?

• What?
• What has been proposed?
• Contributions of the paper

• How?
• How does the paper accomplish the proposed idea?
• How does the result perform?

17

How to read research papers
The most important thing when you’re reading/writing a paper

The second most important thing when you’re reading/writing a paper

They are important only if you want to implement the proposed idea

• What are those related papers that you read before?
• Compare with those related papers and re-exam their whys,

whats and hows
• What will you propose if you’re solving the same “why”?

18

Recap & Brainstorm

• As a researcher
• You want to identify important problems
• You want to know what has been accomplished

• As an engineer
• You want to know if there is a solution of the design problems of

your systems, applications
• You want to know if you can apply the proposed mechanism
• You want to know how to do it

19

Why is reading papers important

The Structure of the 'THE'-
Multiprogramming System

Edsger W. Dijkstra
Technological University, Eindhoven, The Netherlands

20

• 11 May 1930 – 6 August 2002
• Dijkstra's algorithm (single-source shortest path problem)
• Synchronization primitive, Mutual exclusion, Critical sections —

appendix of this paper
• Dining philosophers problem
• Program verification
• Multithreaded programming
• Concurrent programming
• Dijkstra–Scholten algorithm
• ……

21

Edsger W. Dijkstra

Where is why?

24

Usually, you should be able to identify the why in the
very beginning part of a paper

• CPU utilization — how busy we keep the CPU to be — CPU is busy does not
mean it’s making progress for the user program

• Latency — the time between start execution and completion
• Throughput — the amount of “tasks/processes/threads” that we can finish

within a given amount of time
• Turnaround time — the time between submission/arrival and completion
• Response time — the time between submission and the first time when

the job is scheduled
• Wait time — the time between the job is ready (not including the overhead

of queuing, command processing) and the first time when the job is
scheduled

• Fairness — every process should get a fair chance to make progress
26

Performance Metrics

• Why should people care about this paper in 1968?
• Turn-around time of short programs
• Economic use of peripherals
• Automatic control of backing storage
• Economic use of the machine
• Designing a system is difficult in 1968

• Difficult to verify soundness
• Difficult to prove correctness
• Difficult to deal with the complexities

28

THE

The computer in the era of “THE”

29

Memory

Processor

Storage

Core memory

Processor

Drum

now the era of “THE”

cycle time: 2.5 us
(clock rate: 400KHz)

32K

512KWords
response time: 40ms

1000 chars/sec
1+ TB

response time: 20us - 10ms
100MB/sec-2.4GB/sec

cycle time: 0.5 ns
(clock rate: 2 GHz)

8GB+

Where is what?

30

processes

strict layered design

31

What has been proposed?

layer 0: processor allocation & scheduling

layer 1: memory (segment/page) management

layer 2: message interpreter

layer 3: I/O & peripherals buffering

layer 4: applications

layer 5: operators

virtual memory

virtualized
peripherals

virtualized
processor

virtualized
console

Each layer has a different privilege mode — your
processor needs to provide 5 levels of execution modes

Where is how?

36

37

• Built the layered system to facilitate debugging
• Priority scheduling to improve turn-around time
• Mutual synchronization for sharing resource among processes

• Processor allocation for processes
• Access of the physical console among virtual consoles
• Access peripherals among user programs
• Keep this in mind, we will discuss mutual exclusion in detail later

38

How they achieved these goals?

Where else do you see hierarchical designs?

39

Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

TCP/UDP…

IEEE 802.3, IEEE 802.11

IPv4, IPv6

Optical Fiber, Cooper wires, Air

• Process abstraction
• Hierarchical system design
• Virtual memory
• Mutual Synchronization

40

Impacts of THE

The Nucleus of a Multiprogramming
System

Per Brinch Hansen
A/S Regnecentralen, Copenhagen, Denmark

41

System Nucleus …

47

System Nucleus
S

process

Can multiple OSs running concurrently?

49

System Nucleus
S—The primitive OS

process A—
OS #1

B—
OS #2

C—
OS #3

D—
App

E—
App

F—
App

How many layers?

50

System Nucleus
S—The primitive OS

A—
OS #1

B—
OS #2

C—
OS #3

D—
App

E—
App

F—
App

privileged
mode

user
mode

process

• Hierarchical
• Ease of debugging/verification/testing
• Lack of flexibility — you can only interact with neighbor layers
• Overhead in each layer — not so great for performance

• Flat
• Flexibility/Freedom

52

Hierarchical design v.s. flat structure

• Reading quizzes due this Thursday
• We will make both midterm and final exams online this quarter

• Avoid the uncertainty of COVID-19
• Avoid high-density in the classroom (only sits 60 and we have 59

for now) during examines

53

Announcement

