
Design philosophy of operating
systems (II)

Hung-Wei Tseng

• Nucleus (cont.)
• The UNIX time-sharing operating system
• Mach: A New Kernel Foundation For UNIX Development

8

Outline

What the OS kernel should do?

17

The UNIX Time-Sharing System
Dennis M. Ritchie and Ken Thompson

Bell Laboratories

18

19

• How many of following statements is/are the motivations of building
UNIX?
! Reducing the cost of building machines with powerful OSes
" Reducing the burden of maintaining the OS code
Reducing the size of the OS code
$ Supporting networks and multiprocessors
A. 0
B. 1
C. 2
D. 3
E. 4

20

Why they built “UNIX”Poll close in

• How many of following statements is/are the motivations of building
UNIX?
! Reducing the cost of building machines with powerful OSes
" Reducing the burden of maintaining the OS code
Reducing the size of the OS code
$ Supporting networks and multiprocessors
A. 0
B. 1
C. 2
D. 3
E. 4

21

Why they built “UNIX”Poll close in

• How many of following statements is/are the motivations of building
UNIX?
! Reducing the cost of building machines with powerful OSes
" Reducing the burden of maintaining the OS code
Reducing the size of the OS code
$ Supporting networks and multiprocessors
A. 0
B. 1
C. 2
D. 3
E. 4

22

Why they built “UNIX”

• A powerful operating system on “inexpensive” hardware (still
costs USD $40,000)

• An operating system promotes simplicity, elegance, and ease
of use

• They made it

23

Why should we care about “UNIX”

• Providing a file system
• File as the unifying abstraction in UNIX
• Remind what we mentioned before

24

What UNIX proposed

Right amplification

31

• chmod u+s allows “others” to execute the program as the
creator

• There exists a file “others” cannot read
• Another program can dump the content
• Without setuid, others still cannot read the content
• With setuid, others can read that!

32

Demo: setuid

UNIX’s interface of managing
processes

33

• fork
• wait
• exec
• exit

34

The basic process API of UNIX

• pid_t fork();
• fork used to create processes (UNIX)
• What does fork() do?

• Creates a new address space (for child)
• Copies parent’s address space to child’s
• Points kernel resources to the parent’s resources (e.g. open files)
• Inserts child process into ready queue

• fork() returns twice
• Returns the child’s PID to the parent
• Returns “0” to the child

35

fork()

• void exit(int status)
• exit frees resources and terminates the process

• Runs an functions registered with atexit
• Flush and close all open files/streams
• Releases allocated memory.
• Remove process from kernel data structures (e.g. queues)

• status is passed to parent process
• By convention, 0 indicates “normal exit”

45

exit()

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

65

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

• On a 3.2GHz intel Core i5-6500 Processor
• Process fork+exit: 53.5437 microseconds
• More than 16K cycles

66

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• Zombie: process that exits but whose parent doesn’t call wait
• Can’t be killed normally
• Resources freed but pid remains in use

• Orphan: Process whose parent has exited before it has
• Orphans are adopted by init process, which calls wait periodically

67

Zombies, Orphans, and Adoption

Let’s write our own shells

70

• Say, we want to do ./a > b.txt
• fork
• The forked code opens b.txt
• The forked code dup the file descriptor
• The forked code assigns b.txt to stdin/stdout
• The forked code closes b.txt
• exec(“./a”, NULL)

71

How to implement redirection in shell

• Say, we want to do ./a > b.txt
• fork
• The forked code opens b.txt
• The forked code dup the file descriptor to stdin/stdout
• The forked code closes b.txt
• exec(“./a”, NULL)

72

How to implement redirection in shell

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

Virtual memory

int pid, fd;
char cmd[2048], prompt = “myshell$”
while(gets(cmd) != NULL) {
 if ((pid = fork()) == 0) {
 fd = open(“b.txt”, O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
 dup2(fd, stdout);
 close(fd);
 execv(“./a”,NULL);
 }
 else
 printf(“%s ”,prompt);
}

static data

stack

heap

code

The shell can respond to next input

Homework for you:
Think about the case when
your fork is equivalent to fork+exec()

• pid_t wait(int *stat)
• pid_t waitpid(pid_t pid, int *stat, int
opts)

• wait / waitpid suspends process until a child process ends
• wait resumes when any child ends
• waitpid resumes with child with pid ends
• exit status info 1 is stored in *stat
• Returns pid of child that ended, or -1 on error

• Unix requires a corresponding wait for every fork

73

wait()

• How many of the following UNIX features/functions are implemented
in the kernel?
! I/O device drivers
" File system
Shell
$ Virtual memory management
A. 0
B. 1
C. 2
D. 3
E. 4

74

What’s in the kernel?

user-level

kernel

shell

Kernel

privilege
boundary

• A user program provides an interactive UI
• Interprets user command into OS functions
• Basic semantics:

command argument_1 argument_2 …
• Advanced semantics

• Redirection
• >
• <

• Pipe
• I

• Multitasking
• &

75

Shell

• Clean abstraction
• File system — will discuss in detail after midterm
• Portable OS

• Written in high-level C programming language
• The unshakable position of C programming language

• We are still using it!

76

The impact of UNIX

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta , Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian ,
Michael Young

Computer Science Department, Carnegie Mellon University

77

• The hardware is changing
• Multiprocessors
• Networked computing

• The software
• The demand of extending an OS easily
• Repetitive but confusing mechanisms for similar stuffs

84

Why “Mach”?

• UNIX provides a variety of mechanisms
• Pipes
• Pty’s
• Signals
• Sockets

• No protection
• No consistency
• Location dependent

85

Interprocess communication

• Port is an abstraction of:
• Message queues
• Capability

• What do ports/messages promote?
• Location independence — everything is communicating with ports/

messages, no matter where it is

86

Ports/Messages

Ports/Messages

87

Program A
message = “something”;
send(port Z, message);

Port Z send

Port B recv
Object C read, write
Object D read

Capability of A

Port Z

Program B

recv(port Z, message);

0
1
2
3
4

Message queues

MQ0 read, write

Capability of Z

Port Z recv
Port B send

Object C read, write
Object D read

Capability of B

88

class JBT {

 int variable = 5;

 public static void main(String args[]) {
 JBT obj = new JBT();

 obj.method(20);
 obj.method();
 }

 void method(int variable) {
 variable = 10;
 System.out.println("Value of Instance variable :" + this.variable);
 System.out.println("Value of Local variable :" + variable);
 }

 void method() {
 int variable = 40;
 System.out.println("Value of Instance variable :" + this.variable);
 System.out.println("Value of Local variable :" + variable);
 }
}

• An access control list associated with an object
• Contains the following:

• A reference to an object
• A list of access rights

• Whenever an operation is attempted:
• The requester supplies a capability of referencing the requesting

object — like presenting the boarding pass
• The OS kernel examines the access rights

• Type-independant rights
• Type-dependent rights

89

What is capability? — Hydra

90

• You can only enjoy the ground services
(objects) that your booking class provides

• You can only access the facilities
(objects) on the airplane according to the
booking class

91

Capability v.s. boarding pass

Capability in a plane

92

Economy Class
Passenger

Business Class
Passenger

Business Class Seat

Business Class Cabin

Economy Class Seat

Economy Class Cabin

Galley

IFE

Flight Attendant

Sit

Request a drink

Exit the plane

Board the plane

Watch

Access

Right amplification

Tasks/processes

96

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #1

PC

a = 0x01234567

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #2

PC

a = 0xDEADBEEF

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #3

PC

a = 0x87654321

Virtual memoryheap

code

static data

code

stack

CPU
Memory

I/O

Task #4

PC

a = 0x95273310

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Threads

97

Virtual memoryheap

code

static data

code

stack

Task #1

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Virtual memoryheap

code

static data

code

stack

Task #2

a = 0x01234567

CPUPC
Thread #1

CPUPC
Thread #2

CPU PC
Thread #3

Each process has its own unique virtual memory address
space, its own states of execution, its own set of I/Os

Each thread has its own PC, states of execution, but shares
memory address spaces, I/Os without threads within the

same process

Intel Sandy Bridge

98

Core Core Core Core

Core Core Core Core

Share L3 $

Case study: Chrome v.s. Firefox

100

each of these is a process

each of these is a thread

Memory usage?
Stability?
Security?
Latency?

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

101

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

• Measure process creation overhead using lmbench http://
www.bitmover.com/lmbench/

• On a 3.2GHz intel Core i5-6500 Processor
• Process fork+exit: 53.5437 microseconds
• More than 16K cycles

102

The cost of creating processes

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

110

Types of Kernels

Virtual File Systems, System
calls, IPC, File systems,

scheduler, virtual memory,
device drivers, dispatcher. Basic IPC, Virtual Memory,

Scheduling

Application
IPC

Server
programs

Device
Drivers

File
Server

Applications

Application
IPC

Server programs

Device
Drivers

File Server

kernel
mode

kernel
mode

operating
system

dynamically
loadable

kernel
modules

Monolithic Micro Modular

Hydra, MachOriginal
UNIX

Linux,
Windows,

MacOS

user
mode

user
mode

HardwareHardware Hardware

Applications Applications

Basic IPC, Virtual Memory,
Scheduling

user
mode

111

Why not microkernels?
• Although Mach’s design strongly influenced modern operating

systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

Poll close in

112

Why not microkernels?
• Although Mach’s design strongly influenced modern operating

systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

Poll close in

• Although Mach’s design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels
B. Microkernels are more difficult to maintain than monolithic

kernels
C. Microkernels are less stable than monolithic kernels
D. Microkernels are not as competitive as monolithic kernels in

terms of application performance
E. Microkernels are less flexible than monolithic kernels

113

Why not microkernels?

Context switches!

• Threads
• Extensible operating system kernel design
• Strongly influenced modern operating systems

• Windows NT/2000/XP/7/8/10
• MacOS

114

The impact of Mach

115

• Reading quizzes due next Tuesday
• Welcome new friends! — will drop a total of 6 reading quizzes for the quarter
• Attendance count as 4 reading quizzes
• We plan to have a total of 11 reading quizzes

• Office Hour links are inside Google Calendar events
• https://calendar.google.com/calendar/u/0/r?

cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
• Different links from lecture ones
• We cannot share through any public channels so that we can better avoid Zoom bombing

• We will make both midterm and final exams online this quarter
• Avoid the uncertainty of COVID-19
• Avoid high-density in the classroom (only sits 60 and we have 59 for now) during

examines

116

Announcement

https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

ͺͻͥ

Computer
Science &
Engineering

202

