Design philosophy of operating
systems (ll)

Hung-Wel Tseng

Outline

- Nucleus (cont.)
- The UNIX time-sharing operating system
- Mach: A New Kernel Foundation For UNIX Development

What the OS kernel should do?

The UNIX Time-Sharing System

Dennis M. Ritchie and Ken Thompson
Bell Laboratories

DENNIS RITCHIE & N|

KEN TH MPSON

<
4
a8}
——
O
2
—
e,
=
0,
>
=

Sust | \
E

PROGRAMMING
_ LANGUAGE

BRIAN W KERNIGHAN
DENNIS M RITCHIE

FROMTICE WLL S0P RS SIS

AWARD

1983

Why they built "UNIX"

- How many of following statements is/are the motivations of building
UNIX?

Reducing the cost of building machines with powerful OSes

Reducing the burden of maintaining the OS code

Reducing the size of the OS code

Supporting networks and multiprocessors

MOOW>E0E 0

A WODN-—-O0

20

Why they built “UNIX"

N 7
ﬁ

1 — IRS&tinct

- How many of following statements is/are the motivations of building
UNIX?

MOOW>E0E 0

A WODN-—-O0

Reducingt
Reducing t
Reducing t

ne cost of building machines with powerful OSes
ne burden of maintaining the OS code

ne size of the OS code

Supporting networks and multiprocessors

21

Why they built “UNIX"

- How many of following statements is/are the motivations of building

UNIX?
® Reducing the cost of building machines w
@ Reducing the burden of maintaining the O
® Reducing the size of the OS code
@ Supporting networks and multiprocessors

A. O

o
N

O !
N

> W

22

ith powerful OSes
S code

Perhaps the most important achievement of UNIX
i3 to demonstrate that a powerful operating system
for interzetive use need nol be expensive either in
equipment or in human effort: UNIx can run on hardware
costing as little as $40,000, and lcss than two man-
years were spent on the main system software. Yet

The stze of the new systeam 1s about one third greater
than the old. Since the new system is not only much
casicr to understand and to modify but also includes
many functional improvements, including multipro-
gramming and the ability to share reentrant code
among several user programs, we considerad this in-
crease in size quite acce ptable.

Why should we care about “UNIX"

11
I

A powerful operating system on “inexpensive” hardware (still

costs USD $40,000)

- An operating system promotes simplicity, elegance, and ease
''''''''' zZillow s Averse Sig Help
of use

They made it

X g $34,000 Ibds 2ba 1345 $20,000 2bds 2ba 1,080 soft

9360 N Blakstone Ave SPC 136, Fresno, CA93720 3138 W Dakota Ave SPC 195, Fresno, CA 93722
© Home for ale ® Home for sale

$35,000 20ds 1ba 20san $30,000 2bds 1ba 720 saft
%% 4549 E jensen Ave, Fresno, CA 93725 336 £ Alluvial Ave SPC 261, Fresno, CA 93720
® Home for ale ® Home for sale

What UNIX proposed

- Providing a file system
- File as the unifying abstraction in UNIX
- Remind what we mentioned before

24

Right amplification

:.Ir

DODO B0-

2 |w olalac =1 = "

M gldl3c nlw w

Wl w olalac] o P91

N H CUEREN 2w

X H oal i 1R A2 v v
¥ H o3|l

ce.. BAEL

AWONDD3

==
5 OU

£ ¢

31

Demo: setuid

- chmod u+s allows "others"” to execute the program as the
creator

- There exists a file "others"” cannot read

- Another program can dump the content

- Without setuid, others still cannot read the content
- With setuid, others can read that!

32

UNIX's interface of managing
processes

The basic process API of UNIX

e fork
e walt
e eXec
e X1t

fork()

e pid t fork();:
- Tork used to create processes (UNIX)

- What does fork () do?
- Creates a hew address space (for child)
. Copies parent’s address space to child'’s
- Points kernel resources to the parent’s resources (e.g. open files)
- Inserts child process into ready queue

- fork () returns twice
. Returns the child’s PID to the parent
- Returns “0" to the child

35

ex1t()

e vold exit(int status)

. ex1t frees resources and terminates the process

- Runs an functions registered with atexit

- Flush and close all open files/streams

- Releases allocated memory.

- Remove process from kernel data structures (e.g. gueues)
- status is passed to parent process

- By convention, O indicates “normal exit”

45

The cost of creating processes

- Measure process creation overhead using Imbench http://
www.bitmover.com/Imbench/

65

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

The cost of creating processes

- Measure process creation overhead using Imbench http://
www.bitmover.com/Imbench/

- Ona 3.2GHz intel Core i5-6500 Processor

- Process fork+exit; 53.5437 microseconds
- More than 16K cycles

66

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

Zombies, Orphans, and Adoption

- Zombie: process that exits but whose parent doesn't call wait
- Can't be killed normally
- Resources freed but pid remains in use

- Orphan: Process whose parent has exited before it has
- Orphans are adopted by init process, which calls wait periodically

67

Let's write our own shells

How to implement redirection in shell

- Say, we want to do ./a > b.txt

. fork

- The forked code opens b.txt

- The forked code dup the file descriptor

- The forked code assigns b.txt to stdin/stdout
- The forked code closes b.txt

- exec("./a", NULL)

71

How to implement redirection in shell

Say, we want to do ./a > b.txt Homework for you:
fork Think about the case when
The forked code opens b.txt your fork isequivalentto fork+exec()

The forked code dup the file descriptor to stdin/stdout
The forked code closes b.txt
exec("./a", NULL)

int pid, fd;
char cmd[2048], prompt = "myshell$"
while(gets(cmd) != NULL) {
if ((pid = fork()) ==0) {
fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);
dup2(fd,)z
close(fd);
execv(”./a",NULL);
}
else
printf(“%s ", prompt);
}

int pid, fd;
char cmd[2048], prompt = “myshell$"
while(gets(cmd) != NULL) {

+ ((pid = fork()) == 0) {

fd = open("b.txt", O_RDWR | O_CREAT, S_IRUSR |
S_IWUSR);

dup2(fd,);
close(fd);
execv(”./a",NULL);

}

else
orintf("%s ", prompt);

5

The shell can respond to next input

static data

walit()

e pid_t wait(int sxstat)

e p1d _t wailtpid(pid_t pid, 1int xstat, 1int
opts)

- walt /waltpid suspends process until a child process ends
- walt resumes when any child ends
- waltpid resumes with child with pid ends
- ex1t statusinfo 1is stored in *stat
- Returns pid of child that ended, or -1 on error

- Unix requires a corresponding wa1t for every fork

/3

What's in the kernel?

- How many of the following UNIX features/functions are implemented

In the kernel?
® 1/O device drivers
WP XCO0
@ Shell user-level
L el

@ File system
@ Virtual memory management prviege
A. O

kernel

Ul0o W
wlNn =

[m
I

74

Shell

- A user program provides an interactive Ul
- Interprets user command into OS functions

- Basic semantics:
command argument_1 argument_2 ...

- Advanced semantics

- Redirection
c >
e <

- Pipe
. |

- Multitasking
- &

/75

Clean abstraction

File system — will discuss in detail after midterm

Portable OS

- Written in high-level C programming language

The impact of UNIX

- The unshakable position of C programming language

We are still using it!

/6

Perhaps paradoxically, the success of Lmix is largely
due to the fact that it was not designed to meect any
predefinad objectives. The first version was written
when one of us (Thompson), dissatisfed with the
availible computer facilities, discovered a little-used
pPpP-7 and st out to create a more hospitable environ-
ment. This essenlizlly personal eilfort was sufficiently
successful to gain the interest of the remaining author
and others, and leter to justify the acquisition of the
poe-11,/20, specilically (0 support a text editing znd
formatting system. When in turn the 11,/20 was out-
grown, uNix had proved usetul enough 1o persuade
management to invest in the ppp-11/45. Our goals
throughout the effort, when articuleted at all, have
always concerned hemselves witli bullding a comlont-
able relationship with the machine and with exploring
icens and inventions In operating systems. We have
not been faced with the need to satisfy someone clse’s
rcquirements, and “or this freedom we are grateful

Mach: A New Kernel Foundation For UNIX
Development

Mike Accetta, Robert Baron , William Bolosky , David Golub , Richard Rashid , Avadis Tevanian,
Michael Young
Computer Science Department, Carnegie Mellon University

77

Why “Mach"?

- The hardware is changing

be built and future development of UNIX-like systems for new architectures

* MU|t|prOceSSOrS can continue. The computing environment for which Mach is targeted spans a

N k d . wide class of systems, providing basic support for large, general purpose mul-
* etwor e ComDUtlng tiprocessors, smaller multiprocessor networks and individual workstations (see
- The software
- The demand of extending an OS easily

- Repetitive but confusing mechanisms for similar stuffs

As the complexity of distributed environments and multiprocessor archi-
tectures increases, it becomes increasingly important to return to the original
UNIX model of consistent interfaces to system facilities. Moreover, there is a
clear need to allow the underlying system to be transparently extended to allow
user-state processes to provide services which in the past could only be fully
integrated into UNIX by adding code to the operating system kernel.

84

Interprocess communication

- UNIX provides a variety of mechanisms
- Pipes

- Pty's

- Signals

- Sockets

- No protection

- No consistency

- Location dependent

85

Ports/Messages

- Port is an abstraction of:

- Message queues

- Capability

- What do ports/messages promote?

- Location independence — everything is communicating with ports/
messages, ho matter where it is

86

Ports/Messages

Port Z N
. Capability of Z

Capability of A #Q0 | read, write

Program A

message = “something”;
d t Z, I . s

send(port Z, message) Message queues

0

Capability of B

I

Program B

recv(port Z, message)

class JBT {

int variable = 5;

public static void main(String args[]) {

JBT obj = new IJIBT();

obj.method(20):
obj.method();

}

void method(int variable) {
variable = 10:;
System.out.println("Value
System.out.println("Value

}

void method() {
int variable = 40:
System.out.println("Value
System.out.println("Value

}

of Instance variable
of Local variable :"

of Instance variable :" + this.variable)

of Local variable :"

:" + this.variable);

+ variable);

+ variable);

°
)

What is capability? — Hydra

- An access control list associated with an object

- Contains the following:
- A reference to an object
- Alist of accessrights

- Whenever an operation is attempted:

- The requester supplies a capabillity of referencing the requesting
object — like presenting the boarding pass

- The OS kernel examines the access rights
- Type-independant rights
- Type-dependent rights

89

Li)]

‘ < w |20 q :_‘5 0 - 4 [(xzle [|xs P xo [x/» % 0
' - -

- (< e =le ‘ wle il [<ie ule wle

“ | a6 (_ae | lale —aa [ae |_o@ [Jew o

= = =) . = = — =Y =)

‘ B BEICHE . v <o [|ala| [|«le T <o [|| | «le

; - s Vv e = R < 8 R

90

ECONOMY

LRI S IR IR I B IR

< < <i[an <o[cd/an
¥ 8 I B B K E

2

w3)

w
. 5t
oo B
- - 4

8 z
L -

- p—
aa .F
s =

Board the plane M .
| =
Business Class g, Business Class Cabin
Passenger
- ht amplificatiyn-"
Exit the plane g P 5 Economy Class Seat
Economy Class g (
_~— Passenger
Request a drink v Economy Class Cabin
Flight Attendant Galley - o -
- -
-ga 2990 oq

92

Tasks/processes

Task #1 Task #2 Task #3 Task #4
CPl
e CPU 5C e CPU oo
Memory

/0

/O

/O

Each process has its own unique virtual memory address
space, its own states of execution, i't's”own set of |/Os

static data

static data static data static data

heap

heap

heap

heap

a = 0x01234567 a = OxDEADBEEF

a = Ox87654321

a = Ox95273310

96

Threads

Task #1 Task #2

Thread #1 Thread #2 Thread #3 Thread #1 Thread #2 Thread #3

pc@ m—pc‘ < hal o el B

Each process has its own unique virtual memory address
space, its own states of execution,its.own set.of 1/Os
Each thread has its own PC, states of execution, but shares
memory address spaces, |/Os without threads withinthe -
same process

a = 0x01234567 e LML TR

97

Intel Sandy Bridge

. 21 S | uu-- |
Core|Core Core !

-{

3’

Q!?

!

l

ShareL3 $

Core|Core|Core|Core

Case study: Chrome v.s. Firefox

o @)

Wi\
.each of these is a process

806 ¥ 4 M Home of theMozill . * | @ Moalla Frefex Sur. .~ | +

Welcome to Chrome w o) (8- s Dhie s s |=

You're using a fast new browser. Mouse over the markers below for three quick tips.

each of these is a thread

e 7 K

Sti“ reed help’) Learn More

Memory usage?

~Stability?
Security?
Latency?

100

The cost of creating processes

- Measure process creation overhead using Imbench http://
www.bitmover.com/Imbench/

101

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

The cost of creating processes

- Measure process creation overhead using Imbench http://
www.bitmover.com/Imbench/

- Ona 3.2GHz intel Core i5-6500 Processor

- Process fork+exit; 53.5437 microseconds
- More than 16K cycles

102

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/

Types of Kernels

user
. . . mode dynamically
Monolithic Micro Modular loadable
kernel

modules

-
..

Server programs File Server §

Device Application .-*"
Drivers IPC

Application | Server |Device

Virtual File Systems, System IPC programs | Drivers

operating calls, IPC, File systems,
system scheduler, virtual memory,
device drivers, dispatcher. kernel Basic IPC, Virtual Memory, Basic IPC, Virtual Memory,
mode Scheduling Scheduling

Hardware

Hardware Hardware

Linux,

Original :
UNIX Hydra, Mach Windows,

MacOS

110

Why not microkernels?

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

D. Microkernels are not as competitive as monolithic kernels in
terms of application performance

E. Microkernels are less flexible than monolithic kernels

1M

, Ny
Why not microkernels?

1 — IRS&tinct

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

D. Microkernels are not as competitive as monolithic kernels in
terms of application performance

E. Microkernels are less flexible than monolithic kernels

112

Why not microkernels?

- Although Mach's design strongly influenced modern operating
systems, why most modern operating systems do not adopt
the design of microkernels?

A. Microkernels are more difficult to extend than monolithic kernels

B. Microkernels are more difficult to maintain than monolithic
kernels

C. Microkernels are less stable than monolithic kernels

E. Microkernels are less flexible than monolithic kernels

113

The impact of Mach

- Threads
- Extensible operating system kernel design

. Strongly influenced modern operating systems
- Windows NT/2000/XP/7/8/10
- MacQOS

14

Documentation Archive

g & developer.apple.com

Kernel Programming Cuide

¥ Tabhke of Contenis

About This Document
Keep Out

Kernel Architecturas
Overview

The Early Boot Frocess
Security Considerations
Performance Considerations
Kernel Programming Style
Mach Overview

Memory and Virtual Memory

Mach Scheduling and Thread

Interfaces

Bootstrap Contexts

1,0 Kit Overview

BSD Overview

File Systems Overview
Network Architecture
Boundary Crossings
Synchronization Primitives
Miscellancous Kernel
Services

Kernel Extension Overview

Building and Debugging
Kernels

Bibliography
Revision History
Glossary

Mach Overview

The fundamental services and primitives of the OS X kernel are based on Mach 3.0. Apple has mod fied and extercded Mach to better meet OS X functional and p

Mzch 3 0 was anginally conreived as a simple, extensihle, communications microkernel tis capable of running a< a stand-a one <ernel, with athar traditianal o
networking stacks rurring as user-mode servers.

Hawever, in OS5 X, Mach is 'inked with other kernel components into a single kernel address space. This is primarily for performance; it is much faster ta make a
messayges o1 do remole procedure calls (RPC) belween sepdrate tasks. This modular structure results in @ more robust and extensible system than a monolithic |
microkerrel.

Thus in OS X, Mach is not primarily a communication hub between clients and servers. Instead, its value consists of its abstractions, its extensibility, and its flax
* gbjact-based AP's with communication channels (for example, ports) as object references

« higny parallel execution, including preemptvely scheduled threads and support for SMP

« a flaxible scheduling framework, with sunoort for real-time usage

= a comglete set of JPC primitives, including messaging, RPC, synchronization, and notificaticn

» support for large virtual address spaces, shared memory regions, and memory objects backec by persistent store

« provan extensibility and portability, for examp e across instruction set architactures and in distributed environments

- security and resource management as a fundamental principle of design; all rescurces are virtualized

Mach Kernel Abstractions

Mach provides a small set of abstracticns that have been designed tc be both simp'e and powarful. Thase ara the main kernal abstractions:

e Tasks. The units of resource ownership, each task consists of a virtual address space. a port rigint narnespdce, and one or more threads. (Similar W0 a process.
o Threads. The units ¢f CPU execution within a task.

e Address space. In canjunction with memory managers, Mach implements the notion of a sparse virrua' address space and shared memory.

e Memory objects. The internal units of memory management. Memory chjects include named entries and regions; they are representations of potentizlly parsi
e FPorts. Secure, simplex commurication channels, accessible on'y via send and receive capabilities (known as port rights).

« JPC. Message queues, remote procedure calls, notifications, semaphores, and lock sets.

« Time. Clocks, timers, anc waiting. 115

Announcement

- Reading quizzes due next Tuesday

- Welcome new friends! — will drop a total of 6 reading quizzes for the quarter
- Attendance count as 4 reading quizzes

- We plan to have a total of 11 reading quizzes

- Office Hour links are inside Google Calendar events

. https://calendar.google.com/calendar/u/O/r?
cid=ucr.edu_b8ubdvkretn6kgbigunlc6bldg@group.calendar.google.com

- Different links from lecture ones
- We cannot share through any public channels so that we can better avoid Zoom bombing

- We will make both midterm and final exams online this quarter

- Avoid the uncertainty of COVID-19

- Avoid high-density in the classroom (only sits 60 and we have 59 for now) during
examines

116

https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com
https://calendar.google.com/calendar/u/0/r?cid=ucr.edu_b8u6dvkretn6kq6igunlc6bldg@group.calendar.google.com

Computer

Engineering

