
Virtual memory (III): System
Architecture and Design

Hung-Wei Tseng

• Swapping
• VAX/VMS Design
• Mach VM

11

Outline

Physical memory

0x000000000000

0xFFFFFFFFFFFF

Demand Paging + Swapping

12

Virtual memory

Code
Static Data

Data

Heap

Stack

CPU

(1) an instruction accesses virtual
address 0xDEADBEEF

page
table

(2) page fault! — exception

(3) running out of space on DRAM

(4) kick some page out and store it in the
secondary storage

(5) map the requesting page to the freed space

• Divide physical & virtual memory spaces into fix-sized units — pages
• Allocate a physical memory page whenever the virtual memory page

containing your data is absent
• In case if we are running out of physical memory —

• Reserve space on disks
• Disks are slow: the access time for HDDs is around 10 ms, the access time for SSDs

is around 30us - 1 ms
• Disks are orders of magnitude larger than main memory

• When you need to make rooms in the physical main memory, allocate a page
in the swap space and put the content of the evicted page there

• When you need to reference a page in the swap space, make a room in the
physical main memory and swap the disk space with the evicted page

13

The mechanism: demand paging + swapping

Latency Numbers Every Programmer Should Know
(2020 Version)

14

Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 3 ns
L2 cache reference 4 ns 14x L1 cache
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 us
Read 1 MB sequentially from memory 3,000 ns 3 us
Read 4K randomly from SSD* 16,000 ns 16 us
Read 1 MB sequentially from SSD* 49,000 ns 49 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from disk 825,000 ns 825 us
Disk seek 2,000,000 ns 2,000 us 2 ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000 ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Virtual Memory Management in the VAX/
VMS Operating System

H. M. Levy and P. H. Lipman
Digital Equipment Corporation

22

Virtual Memory Space for Process #1

What happens on a fork?

30

virtual
page #1

virtual
page #2

virtual
page #3

Virtual Memory Space for Process #2

fork()

virtual
page #1

virtual
page #2

virtual
page #3

• Copy the page content to different locations before the new process can start

copy

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

copy copy

Virtual Memory Space for Process #1

Copy-on-write

31

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

virtual
page #1

virtual
page #2

virtual
page #3

Virtual Memory Space for Process #2

fork()

virtual
page #1

virtual
page #2

virtual
page #3

write

• The modified bit of a writable page will be set when it’s loaded from the executable file
• The process eventually will have its own copy of that page

Demand zero

32

physical
page #1

physical
page #2

physical
page #3

physical
page #4

physical
page #5

physical
page #6

physical
page #7

Virtual Memory Space for Process #2virtual
page #1

virtual
page #2

virtual
page #3

write

• The linker does not embed the pages with all 0s in the compiled program
• When page fault occurs, allocate a physical page fills with zeros
• Set the modified bit so that the page can be written back

page
with “0”s

• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is
incorrect?

33

What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching

Physical Memory

Virtual Memory Space for Process A

• Each process has a maximum size of memory
• When the process exceeds the maximum size, replaces from its own set of memory

pages
• Control the paging behavior within each process

34

Local page replacement policy

Page for
Process

A

Page for
Process

A

Page for
Process

A

Page for
Process

B
Page for
Process

B

Page for
Process

C

Virtual
page #1

Virtual
page #2

Virtual
page #3

Page for
Process

C

Virtual
page #4

Virtual page #4 can only
go one of these if 3 is the
maximum memory size of

the process

swap
out

What’s the policy? FIFO! Low overhead!

• Read or write a cluster of pages that are both consecutive in
virtual memory and the disk

• Combining consecutive writes into single writes

36

Page clustering

Physical Memory

• Evicted pages will be put into one of the lists in DRAM
• Free list: clean pages
• Modified list: dirty pages — needs to copy data to the disk

• Page fault to any of the page in the lists will bring the page back
• Reduces the demand of accessing disks

38

Page caching to cover the performance loss

RS of Process B FreelistModified
List

PagePage PagePage

RS of Process A

Page Page Page PagePage Page

2 pages 2 pages4 pages 4 pages

page fault!

Page Page

page fault!

PagePage

page fault!

PagePage

Page caching

39

Process memory layout

41

P0 (Program) Region

P1 (Control) Region

System Region

Reserved

Code
Heap

Stack
Other data

System: software vectors, hardware data structures,
executive data, executive procedures, record

management, dynamic storage

The VAX/VMS allows the OS code to
access user-space memory

• Each segment has its own page table
• Entries between stack and heap boundaries do not need to be

allocated — reduce the size of page table

42

Why segmented layout?

P0 (Program) Region

P1 (Control) Region
Only need just enough

entries

• VAX is popular in universities and UNIX is later ported to VAX
— a popular OS research platform

• Affect the UNIX virtual memory design
• Affect the Windows virtual memory design

44

The impact of VAX/VMS

Other physical
memory

64-bit Linux process memory layout

45

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

Physical memory
reserved for kernel

Kernel logical address Kernel logical address

B B

A A

Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures
Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David Black,

William Bolosky, and Jonathan Chew
Carnegie-Mellon University, NeXT, University of Rochester

46

• Task: process in UNIX
• Thread: the basic scheduling identity
• Port: message queues protected by the kernel
• Message: data objects for inter-thread communication
• Memory object: data mapped into the address space of a task/

process

47

Mach abstractions

We mentioned previously

• Machine-independent virtual memory design by maintaining all
VM state in a machine-independent module

• Treat hardware page tables/TLBs as caches of machine-
independent information

48

What Mach VM proposed?

Overview of Mach’s VM

49

Memory object #1 Memory object #2 Memory object #3memory
objects

Virtual memory space of Task #1
virtual

address
space Virtual memory space of Task #2

vm_start,
vm_end,

memory object #,
protection,
inheritance,
*prev, *next

Page Page Page Page Page Page Page

Pager

address
map

accessing 0xDEADBEEF

offset in an memory
object

Resident
page
table

hash bucket
a memory object could be anything — a
file, a network buffer, remote network
memory, device buffer, or physical DRAM

• Pmap is just a cache of virtual to physical address mapping
• It accelerates address translation by caching the address

mapping, but not required
• As a result, it can be a small as several KBs

50

Where is pmap?

• MacOS X uses a “hybrid” kernel — BSD + Mach
• The kernel itself is BSD-based — modular, not microkernel-

based
• MacOS X’s virtual memory resembles the Mach VM design

• Why?

51

The impact of Mach VM

