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• VAX/VMS Design 
• Mach VM

11

Outline



Physical memory
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Demand Paging + Swapping
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Virtual memory
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• Divide physical & virtual memory spaces into fix-sized units — pages 
• Allocate a physical memory page whenever the virtual memory page 

containing your data is absent 
• In case if we are running out of physical memory — 

• Reserve space on disks 
• Disks are slow: the access time for HDDs is around 10 ms, the access time for SSDs 

is around 30us - 1 ms 
• Disks are orders of magnitude larger than main memory 

• When you need to make rooms in the physical main memory, allocate a page 
in the swap space and put the content of the evicted page there 

• When you need to reference a page in the swap space, make a room in the 
physical main memory and swap the disk space with the evicted page
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The mechanism: demand paging + swapping



Latency Numbers Every Programmer Should Know 
(2020 Version)
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Operations Latency (ns) Latency (us) Latency (ms)
L1 cache reference 0.5 ns ~ 1 CPU cycle
Branch mispredict 3 ns
L2 cache reference 4 ns 14x L1 cache
Mutex lock/unlock 17 ns
Send 2K bytes over network 44 ns
Main memory reference 100   ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 2,000 ns 2 us
Read 1 MB sequentially from memory 3,000  ns 3 us
Read 4K randomly from SSD* 16,000   ns 16 us
Read 1 MB sequentially from SSD* 49,000  ns 49 us
Round trip within same datacenter 500,000   ns 500 us
Read 1 MB sequentially from disk 825,000   ns 825 us
Disk seek 2,000,000   ns 2,000 us 2 ms 4x datacenter roundtrip
Send packet CA-Netherlands-CA 150,000,000   ns 150,000 us 150 ms

https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://colin-scott.github.io/personal_website/research/interactive_latency.html


Virtual Memory Management in the VAX/
VMS Operating System 

H. M. Levy and P. H. Lipman
Digital Equipment Corporation
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Virtual Memory Space for Process #1

What happens on a fork?
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Virtual Memory Space for Process #1

Copy-on-write
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• The modified bit of a writable page will be set when it’s loaded from the executable file 
• The process eventually will have its own copy of that page



Demand zero
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• The linker does not embed the pages with all 0s in the compiled program 
• When page fault occurs, allocate a physical page fills with zeros 
• Set the modified bit so that the page can be written back

page 
with “0”s



• Considering the optimization goals and the proposed VAX/
VMS mechanisms, which of the following combinations is 
incorrect?
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What VAX/VMS proposed to achieve these goals?

Goal Optimization
A Process startup cost W Demand-zero & copy-on-refernce
B Process performance interference X Process-local replacement
C Page table lookup overhead Y Page clustering
D Paging load on disks Z Page caching



Physical Memory

Virtual Memory Space for Process A

• Each process has a maximum size of memory 
• When the process exceeds the maximum size, replaces from its own set of memory 

pages 
• Control the paging behavior within each process
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Local page replacement policy
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What’s the policy? FIFO! Low overhead!



• Read or write a cluster of pages that are both consecutive in 
virtual memory and the disk 

• Combining consecutive writes into single writes
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Page clustering



Physical Memory

• Evicted pages will be put into one of the lists in DRAM 
• Free list: clean pages 
• Modified list: dirty pages — needs to copy data to the disk 

• Page fault to any of the page in the lists will bring the page back 
• Reduces the demand of accessing disks
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Page caching to cover the performance loss
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Page caching
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Process memory layout
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P0 (Program) Region

P1 (Control) Region

System Region

Reserved

Code 
Heap

Stack 
Other data

System: software vectors, hardware data structures, 
executive data, executive procedures, record 

management, dynamic storage

The VAX/VMS allows the OS code to 
access user-space memory



• Each segment has its own page table 
• Entries between stack and heap boundaries do not need to be 

allocated — reduce the size of page table

42

Why segmented layout?

P0 (Program) Region

P1 (Control) Region
Only need just enough 

entries



• VAX is popular in universities and UNIX is later ported to VAX 
— a popular OS research platform 

• Affect the UNIX virtual memory design 
• Affect the Windows virtual memory design
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The impact of VAX/VMS



Other physical 
memory

64-bit Linux process memory layout
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User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

User Mode Space

0

0xffff880000000000

Kernel Space (120TB)

0xffffffffffffffff

Physical memory 
reserved for kernel

Kernel logical address Kernel logical address

B B

A A



Machine-Independent Virtual Memory Management for 
Paged Uniprocessor and Multiprocessor Architectures 
Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David Black, 

William Bolosky, and Jonathan Chew
Carnegie-Mellon University, NeXT, University of Rochester
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• Task: process in UNIX 
• Thread: the basic scheduling identity  
• Port: message queues protected by the kernel 
• Message: data objects for inter-thread communication 
• Memory object: data mapped into the address space of a task/

process
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Mach abstractions

We mentioned previously



• Machine-independent virtual memory design by maintaining all 
VM state in a machine-independent module 

• Treat hardware page tables/TLBs as caches of machine-
independent information
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What Mach VM proposed?



Overview of Mach’s VM
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Memory object #1 Memory object #2 Memory object #3memory 
objects

Virtual memory space of Task #1
virtual 

address 
space Virtual memory space of Task #2

vm_start, 
vm_end, 

memory object #, 
protection,  
inheritance,  
*prev, *next

Page Page Page Page Page Page Page

Pager

address 
map

accessing 0xDEADBEEF

offset in an memory 
object

Resident 
page 
table

hash bucket
a memory object could be anything — a 
file, a network buffer, remote network 
memory, device buffer, or physical DRAM



• Pmap is just a cache of virtual to physical address mapping 
• It accelerates address translation by caching the address 

mapping, but not required 
• As a result, it can be a small as several KBs

50

Where is pmap?



• MacOS X uses a “hybrid” kernel — BSD + Mach 
• The kernel itself is BSD-based — modular, not microkernel-

based 
• MacOS X’s virtual memory resembles the Mach VM design 

• Why?
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The impact of Mach VM


