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Recap: Pipelining
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Recap: Pipelining
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add x1, x2, x3 
ld  x4, 0(x5) 
sub x6, x7, x8 
sub x9,x10,x11 
sd  x1, 0(x12) 
xor x13,x14,x15 
and x16,x17,x18 
add x19,x20,x21 
sub x22,x23,x24 
ld  x25, 4(x26) 
sd  x27, 0(x28)
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After this point, 
we are completing an 
instruction each cycle!

Cycles
Instruction = 1



• Structural hazards — resource conflicts cannot support 
simultaneous execution of instructions in the pipeline 

• Control hazards — the PC can be changed by an instruction in 
the pipeline 

• Data hazards — an instruction depending on a the result that’s 
not yet generated or propagated when the instruction needs 
that
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Recap: Three pipeline hazards



• Each instruction has to go through all 5 pipeline stages: IF, ID, EXE, MEM, WB in order 
— only valid if it’s single-issue, RISC-V 5-stage pipeline

• An instruction can enter the next pipeline stage in the next cycle if
• No other instruction is occupying the next stage 
• This instruction has completed its own work in the current stage 
• The next stage has all its inputs ready and it can retrieve those inputs 

• Fetch a new instruction only if
• We know the next PC to fetch 
• We can predict the next PC 
• Flush an instruction if the branch resolution says it’s mis-predicted. 

• Review your undergraduate architecture materials 
— http://cseweb.ucsd.edu/classes/su19_2/cse141-a/
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Recap: Tips of drawing a pipeline diagram

http://cseweb.ucsd.edu/classes/su19_2/cse141-a/


• Structural hazards 
• Stall 
• Modify hardware design 

• Control hazards 
• Stall 
• Static prediction 
• Dynamic prediction
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Recap: addressing hazards



• Local predictor — every branch instruction has its own state 
• 2-bit — each state is described using 2 bits 
• Change the state based on actual outcome 
• If we guess right — no penalty 
• If we guess wrong — flush (clear pipeline 
registers) for mis-predicted instructions 
that are currently in IF and ID stages and 
reset the PC
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Recap: 2-bit/Bimodal local predictor
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Recap: Global history (GH) predictor
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Recap: gshare predictor
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Recap: tournament Predictor
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0x400080 0x400068
0x401080 0x401100
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Recap: TAGE
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• Inputs (x’s) are from branch 
history and are -1 or +1 

•  n + 1 small integer weights 
(w’s) learned by on-line 
training 

•  Output (y) is dot product of 
x’s and w’s; predict taken if y  
0 

•  Training finds correlations 
between history and outcome
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Recap: Mapping Branch Prediction to NN (cont.)
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• Which of the following implementations will perform the best on modern pipeline 
processors? 

•
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Four implementations

inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B
inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     for (uint64_t i = 0; i < 16; i++)  
     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

D



Team scores
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6 10.5 7 6



• Branch prediction and performance (cont.) 
• Data hazards 
• Tomasulo’s algorithm
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Outline



• How many of the following statements explains the reason why B 
outperforms A with compiler optimizations 
! B has lower dynamic instruction count than A 
" B has significantly lower branch mis-prediction rate than A 
# B has significantly fewer branch instructions than A 
$ B can incur fewer data memory accesses  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is B better than A?

inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A
inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

Poll close in



• How many of the following statements explains the reason why B 
outperforms A with compiler optimizations 
! B has lower dynamic instruction count than A 
" B has significantly lower branch mis-prediction rate than A 
# B has significantly fewer branch instructions than A 
$ B can incur fewer data memory accesses  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is B better than A?

inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A
inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

Poll close in



Why is B better than A?
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inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A

inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
bne  x1, x0, LOOP
4*n instructions
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
bne  x1, x0, LOOP

and  x2, x1, 1 
shr  x4, x1, 1 
shr  x5, x1, 2 
shr  x6, x1, 3 
shr  x1, x1, 4 
and  x7, x4, 1 
and  x8, x5, 1 
and  x9, x6, 1 
add  x3, x3, x2 
add  x3, x3, x7 
add  x3, x3, x8 
add  x3, x3, x9 
bne  x1, x0, LOOP

Only one branch for four iterations in A
13*(n/4) = 3.25*n instructions



• How many of the following statements explains the reason why B 
outperforms A with compiler optimizations 
! B has lower dynamic instruction count than A 
" B has significantly lower branch mis-prediction rate than A 
# B has significantly fewer branch instructions than A 
$ B can incur fewer data memory accesses  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is B better than A?

inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A
inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B



• How many of the following statements explains the reason why B 
outperforms C with compiler optimizations 
! C has lower dynamic instruction count than B 
" C has significantly lower branch mis-prediction rate than B 
# C has significantly fewer branch instructions than B 
$ C can incur fewer data memory accesses  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is C better than B?

inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

Poll close in



• How many of the following statements explains the reason why B 
outperforms C with compiler optimizations 
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" C has significantly lower branch mis-prediction rate than B 
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Why is C better than B?

inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

Poll close in



• How many of the following statements explains the reason why B 
outperforms C with compiler optimizations 
! C has lower dynamic instruction count than B 
" C has significantly lower branch mis-prediction rate than B 
# C has significantly fewer branch instructions than B 
$ C can incur fewer data memory accesses  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is C better than B?

— C only needs one load, one add, one shift, the same amount of iterations

— the same number being predicted.— the same amount of branches
inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

— Probably not. In fact, the load may have negative 
effect without architectural supports



• How many of the following statements explains the main reason why 
B outperforms C with compiler optimizations 
! D has lower dynamic instruction count than C 
" D has significantly lower branch mis-prediction rate than C 
# D has significantly fewer branch instructions than C 
$ D can incur fewer memory accesses than C 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is D better than C?

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     for (uint64_t i = 0; i < 16; i++)  
     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

D

Poll close in



• How many of the following statements explains the main reason why 
B outperforms C with compiler optimizations 
! D has lower dynamic instruction count than C 
" D has significantly lower branch mis-prediction rate than C 
# D has significantly fewer branch instructions than C 
$ D can incur fewer memory accesses than C 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is D better than C?

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     for (uint64_t i = 0; i < 16; i++)  
     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

D

Poll close in



• How many of the following statements explains the main reason why 
B outperforms C with compiler optimizations 
! D has lower dynamic instruction count than C 
" D has significantly lower branch mis-prediction rate than C 
# D has significantly fewer branch instructions than C 
$ D can incur fewer memory accesses than C 
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Why is D better than C?

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     for (uint64_t i = 0; i < 16; i++)  
     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

D

— Compiler can do loop unrolling — no branches

— Could be

— maybe eliminated through loop unrolling…
— about the same



All branches are gone with loop unrolling
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inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     return c; 
}



• Because popcount is important, both intel and AMD added a 
POPCNT instruction in their processors with SSE4.2 and 
SSE4a 

• In C/C++, you may use the intrinsic “_mm_popcnt_u64” to get 
# of “1”s in an unsigned 64-bit number 
• You need to compile the program with  -m64 -msse4.2 flags to 
enable these new features

27

Hardware acceleration

#include <smmintrin.h> 
inline int popcount(uint64_t x) { 
     int c = _mm_popcnt_u64(x); 
     return c; 
}



Data hazards

28



• An instruction currently in the pipeline cannot receive the 
“logically” correct value for execution 

• Data dependencies 
• The output of an instruction is the input of a later instruction 
• May result in data hazard if the later instruction that consumes the 
result is still in the pipeline

29

Data hazards



Example: vector scaling

30

i = 0; 
do { 
    vector[i] += scale; 
} while ( ++i < size )

shl   X5,X11, 3 
add   X5, X5, X10 
ld    X6, 0(X10) 
add   X7, X6, X12 
sd    X7, 0(X10) 
addi X10,X10, 8 
bne  X10, X5, LOOP  

LOOP:



• How many pairs of data dependences are there in the following RISC-V instructions? 

ld    X6, 0(X10) 
add   X7, X6, X12 
sd    X7, 0(X10) 
addi X10,X10, 8 
bne  X10, X5, LOOP

A. 1 
B. 2 
C. 3 
D. 4 
E. 5

31

How many dependencies do we have?Poll close in



• How many pairs of data dependences are there in the following RISC-V instructions? 

ld    X6, 0(X10) 
add   X7, X6, X12 
sd    X7, 0(X10) 
addi X10,X10, 8 
bne  X10, X5, LOOP

A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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How many dependencies do we have?Poll close in



• How many pairs of data dependences are there in the following RISC-V instructions? 

ld    X6, 0(X10) 
add   X7, X6, X12 
sd    X7, 0(X10) 
addi X10,X10, 8 
bne  X10, X5, LOOP

A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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How many dependencies do we have?



• Whenever the input is not ready when the consumer is 
decoding, just stall — the consumer stays at ID.

34

Solution 1: Let’s try “stall” again



• How many pairs of instructions in the following RISC-V instructions will results in data 
hazards/stalls in a basic 5-stage RISC-V pipeline? 

ld   X6,0(X10) 
add  X7,X6, X12 
sd   X7,0(X10) 
addi X10,X10, 8 
bne  X10,X5, LOOP

A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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How many of data hazards?Poll close in



• How many pairs of instructions in the following RISC-V instructions will results in data 
hazards/stalls in a basic 5-stage RISC-V pipeline? 

ld   X6,0(X10) 
add  X7,X6, X12 
sd   X7,0(X10) 
addi X10,X10, 8 
bne  X10,X5, LOOP

A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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How many of data hazards?Poll close in



• How many pairs of instructions in the following RISC-V instructions will results in data 
hazards/stalls in a basic 5-stage RISC-V pipeline? 

ld   X6,0(X10) 
add  X7,X6, X12 
sd   X7,0(X10) 
addi X10,X10, 8 
bne  X10,X5, LOOP

A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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How many of data hazards?

IF ID
IF

EX
ID
IF ID

WB

IF
EX

IF
ID

MEM

ID
EX

EX

WB

ID
MEM

MEM

MEM
ID
IF

WB
ID
IF

EX

IF
ID

MEM

IF
ID

ID
WB



• Project is up — check the website 
• Assignment #4 is up — start EARLY!!! 
• Office Hours on Zoom (the office hour link, not the lecture one) 

• Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p 
• Quan Fan: F 1p-3p 

• Regarding projected grades 
• Based on your “weighted total” column in iLearn — we only have 50% offered so far, that’s why the max is only 48 
now 

• Our final grading is based on “relative ranking” and scale may change
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Announcement
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