
Data Hazards & Dynamic
Instruction Scheduling (I)

Hung-Wei Tseng

Recap: Pipelining

2

Recap: Pipelining

3

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)
xor x13,x14,x15
and x16,x17,x18
add x19,x20,x21
sub x22,x23,x24
ld x25, 4(x26)
sd x27, 0(x28)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM WB
EX MEM WB
ID EX MEM

t

After this point,
we are completing an
instruction each cycle!

Cycles
Instruction = 1

• Structural hazards — resource conflicts cannot support
simultaneous execution of instructions in the pipeline

• Control hazards — the PC can be changed by an instruction in
the pipeline

• Data hazards — an instruction depending on a the result that’s
not yet generated or propagated when the instruction needs
that

4

Recap: Three pipeline hazards

• Each instruction has to go through all 5 pipeline stages: IF, ID, EXE, MEM, WB in order
— only valid if it’s single-issue, RISC-V 5-stage pipeline

• An instruction can enter the next pipeline stage in the next cycle if
• No other instruction is occupying the next stage
• This instruction has completed its own work in the current stage
• The next stage has all its inputs ready and it can retrieve those inputs

• Fetch a new instruction only if
• We know the next PC to fetch
• We can predict the next PC
• Flush an instruction if the branch resolution says it’s mis-predicted.

• Review your undergraduate architecture materials
— http://cseweb.ucsd.edu/classes/su19_2/cse141-a/

5

Recap: Tips of drawing a pipeline diagram

http://cseweb.ucsd.edu/classes/su19_2/cse141-a/

• Structural hazards
• Stall
• Modify hardware design

• Control hazards
• Stall
• Static prediction
• Dynamic prediction

6

Recap: addressing hazards

• Local predictor — every branch instruction has its own state
• 2-bit — each state is described using 2 bits
• Change the state based on actual outcome
• If we guess right — no penalty
• If we guess wrong — flush (clear pipeline
registers) for mis-predicted instructions
that are currently in IF and ID stages and
reset the PC

7

Recap: 2-bit/Bimodal local predictor

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC target PC St
ate

Strong
Not Taken
00 (0)

Weak
Not Taken

01 (1)

Strong
Taken
11 (3)

Weak
Taken
10 (2)Taken Taken

Taken
Taken

Not taken
Not taken

Not taken

Not taken

Predict Taken

Recap: Global history (GH) predictor

8

PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Taken

=(NT, T,NT,NT)

Recap: gshare predictor

9

PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 pa

tte
rn 00

01
10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Not Taken

=(NT, T,NT,NT)

⊕ 1100

0100

1000

0x400048 0x400032 1
0x400080 0x400068 1
0x401080 0x401100 1
0x4000F8 0x400100 0

branch PC target PC St
ate

Recap: tournament Predictor

10

PC

4
MU
X

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

0x400048 1000
0x400080 0110
0x401080 1010
0x4000F8 0110

branch PC local history

Local
History
Predictor

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Taken

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

Recap: TAGE

11

PC

4
MU
X

Branch Target Buffer

………………000001110100

“Very” Long
Global History
Register L(N) — the last m-bits of

history used for table N

pred tag u

h[0:L(1)]⊕
001
010
010
000
000
101
010
001

St
ate

pred tag u

h[0:L(2)]⊕

=?
=?

pred tag u

h[0:L(3)]⊕

=?

prediction (using the
longest match)

• Inputs (x’s) are from branch
history and are -1 or +1

• n + 1 small integer weights
(w’s) learned by on-line
training

• Output (y) is dot product of
x’s and w’s; predict taken if y
0

• Training finds correlations
between history and outcome

12

Recap: Mapping Branch Prediction to NN (cont.)

y

x0

x1

x2

xn

w0

w1
w2

wn

y = w0 + ∑n
i=1 xiwi

• Which of the following implementations will perform the best on modern pipeline
processors?

•

13

Four implementations

inline int popcount(uint64_t x){
 int c=0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

A

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 while(x) {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

C

inline int popcount(uint64_t x) {
 int c = 0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B
inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 for (uint64_t i = 0; i < 16; i++)
 {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

D

Team scores

14

6 10.5 7 6

• Branch prediction and performance (cont.)
• Data hazards
• Tomasulo’s algorithm

15

Outline

• How many of the following statements explains the reason why B
outperforms A with compiler optimizations
! B has lower dynamic instruction count than A
" B has significantly lower branch mis-prediction rate than A
B has significantly fewer branch instructions than A
$ B can incur fewer data memory accesses
A. 0
B. 1
C. 2
D. 3
E. 4

16

Why is B better than A?

inline int popcount(uint64_t x){
 int c=0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

A
inline int popcount(uint64_t x) {
 int c = 0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

Poll close in

• How many of the following statements explains the reason why B
outperforms A with compiler optimizations
! B has lower dynamic instruction count than A
" B has significantly lower branch mis-prediction rate than A
B has significantly fewer branch instructions than A
$ B can incur fewer data memory accesses
A. 0
B. 1
C. 2
D. 3
E. 4

17

Why is B better than A?

inline int popcount(uint64_t x){
 int c=0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

A
inline int popcount(uint64_t x) {
 int c = 0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

Poll close in

Why is B better than A?

18

inline int popcount(uint64_t x){
 int c=0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

A

inline int popcount(uint64_t x) {
 int c = 0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

and x2, x1, 1
add x3, x3, x2
shr x1, x1, 1
bne x1, x0, LOOP
4*n instructions
and x2, x1, 1
add x3, x3, x2
shr x1, x1, 1
and x2, x1, 1
add x3, x3, x2
shr x1, x1, 1
and x2, x1, 1
add x3, x3, x2
shr x1, x1, 1
and x2, x1, 1
add x3, x3, x2
shr x1, x1, 1
bne x1, x0, LOOP

and x2, x1, 1
shr x4, x1, 1
shr x5, x1, 2
shr x6, x1, 3
shr x1, x1, 4
and x7, x4, 1
and x8, x5, 1
and x9, x6, 1
add x3, x3, x2
add x3, x3, x7
add x3, x3, x8
add x3, x3, x9
bne x1, x0, LOOP

Only one branch for four iterations in A
13*(n/4) = 3.25*n instructions

• How many of the following statements explains the reason why B
outperforms A with compiler optimizations
! B has lower dynamic instruction count than A
" B has significantly lower branch mis-prediction rate than A
B has significantly fewer branch instructions than A
$ B can incur fewer data memory accesses
A. 0
B. 1
C. 2
D. 3
E. 4

19

Why is B better than A?

inline int popcount(uint64_t x){
 int c=0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

A
inline int popcount(uint64_t x) {
 int c = 0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

• How many of the following statements explains the reason why B
outperforms C with compiler optimizations
! C has lower dynamic instruction count than B
" C has significantly lower branch mis-prediction rate than B
C has significantly fewer branch instructions than B
$ C can incur fewer data memory accesses
A. 0
B. 1
C. 2
D. 3
E. 4

20

Why is C better than B?

inline int popcount(uint64_t x) {
 int c = 0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 while(x) {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

C

Poll close in

• How many of the following statements explains the reason why B
outperforms C with compiler optimizations
! C has lower dynamic instruction count than B
" C has significantly lower branch mis-prediction rate than B
C has significantly fewer branch instructions than B
$ C can incur fewer data memory accesses
A. 0
B. 1
C. 2
D. 3
E. 4

21

Why is C better than B?

inline int popcount(uint64_t x) {
 int c = 0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 while(x) {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

C

Poll close in

• How many of the following statements explains the reason why B
outperforms C with compiler optimizations
! C has lower dynamic instruction count than B
" C has significantly lower branch mis-prediction rate than B
C has significantly fewer branch instructions than B
$ C can incur fewer data memory accesses
A. 0
B. 1
C. 2
D. 3
E. 4

22

Why is C better than B?

— C only needs one load, one add, one shift, the same amount of iterations

— the same number being predicted.— the same amount of branches
inline int popcount(uint64_t x) {
 int c = 0;
 while(x) {
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

B

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 while(x) {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

C

— Probably not. In fact, the load may have negative
effect without architectural supports

• How many of the following statements explains the main reason why
B outperforms C with compiler optimizations
! D has lower dynamic instruction count than C
" D has significantly lower branch mis-prediction rate than C
D has significantly fewer branch instructions than C
$ D can incur fewer memory accesses than C
A. 0
B. 1
C. 2
D. 3
E. 4

23

Why is D better than C?

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 while(x) {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

C

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 for (uint64_t i = 0; i < 16; i++)
 {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

D

Poll close in

• How many of the following statements explains the main reason why
B outperforms C with compiler optimizations
! D has lower dynamic instruction count than C
" D has significantly lower branch mis-prediction rate than C
D has significantly fewer branch instructions than C
$ D can incur fewer memory accesses than C
A. 0
B. 1
C. 2
D. 3
E. 4

24

Why is D better than C?

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 while(x) {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

C

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 for (uint64_t i = 0; i < 16; i++)
 {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

D

Poll close in

• How many of the following statements explains the main reason why
B outperforms C with compiler optimizations
! D has lower dynamic instruction count than C
" D has significantly lower branch mis-prediction rate than C
D has significantly fewer branch instructions than C
$ D can incur fewer memory accesses than C
A. 0
B. 1
C. 2
D. 3
E. 4

25

Why is D better than C?

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 while(x) {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

C

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 for (uint64_t i = 0; i < 16; i++)
 {
 c += table[(x & 0xF)];
 x = x >> 4;
 }
 return c;
}

D

— Compiler can do loop unrolling — no branches

— Could be

— maybe eliminated through loop unrolling…
— about the same

All branches are gone with loop unrolling

26

inline int popcount(uint64_t x) {
 int c = 0;
 int table[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 c += table[(x & 0xF)];
 x = x >> 4;
 return c;
}

• Because popcount is important, both intel and AMD added a
POPCNT instruction in their processors with SSE4.2 and
SSE4a

• In C/C++, you may use the intrinsic “_mm_popcnt_u64” to get
of “1”s in an unsigned 64-bit number
• You need to compile the program with -m64 -msse4.2 flags to
enable these new features

27

Hardware acceleration

#include <smmintrin.h>
inline int popcount(uint64_t x) {
 int c = _mm_popcnt_u64(x);
 return c;
}

Data hazards

28

• An instruction currently in the pipeline cannot receive the
“logically” correct value for execution

• Data dependencies
• The output of an instruction is the input of a later instruction
• May result in data hazard if the later instruction that consumes the
result is still in the pipeline

29

Data hazards

Example: vector scaling

30

i = 0;
do {
 vector[i] += scale;
} while (++i < size)

shl X5,X11, 3
add X5, X5, X10
ld X6, 0(X10)
add X7, X6, X12
sd X7, 0(X10)
addi X10,X10, 8
bne X10, X5, LOOP

LOOP:

• How many pairs of data dependences are there in the following RISC-V instructions?

ld X6, 0(X10)
add X7, X6, X12
sd X7, 0(X10)
addi X10,X10, 8
bne X10, X5, LOOP

A. 1
B. 2
C. 3
D. 4
E. 5

31

How many dependencies do we have?Poll close in

• How many pairs of data dependences are there in the following RISC-V instructions?

ld X6, 0(X10)
add X7, X6, X12
sd X7, 0(X10)
addi X10,X10, 8
bne X10, X5, LOOP

A. 1
B. 2
C. 3
D. 4
E. 5

32

How many dependencies do we have?Poll close in

• How many pairs of data dependences are there in the following RISC-V instructions?

ld X6, 0(X10)
add X7, X6, X12
sd X7, 0(X10)
addi X10,X10, 8
bne X10, X5, LOOP

A. 1
B. 2
C. 3
D. 4
E. 5

33

How many dependencies do we have?

• Whenever the input is not ready when the consumer is
decoding, just stall — the consumer stays at ID.

34

Solution 1: Let’s try “stall” again

• How many pairs of instructions in the following RISC-V instructions will results in data
hazards/stalls in a basic 5-stage RISC-V pipeline?

ld X6,0(X10)
add X7,X6, X12
sd X7,0(X10)
addi X10,X10, 8
bne X10,X5, LOOP

A. 1
B. 2
C. 3
D. 4
E. 5

35

How many of data hazards?Poll close in

• How many pairs of instructions in the following RISC-V instructions will results in data
hazards/stalls in a basic 5-stage RISC-V pipeline?

ld X6,0(X10)
add X7,X6, X12
sd X7,0(X10)
addi X10,X10, 8
bne X10,X5, LOOP

A. 1
B. 2
C. 3
D. 4
E. 5

36

How many of data hazards?Poll close in

• How many pairs of instructions in the following RISC-V instructions will results in data
hazards/stalls in a basic 5-stage RISC-V pipeline?

ld X6,0(X10)
add X7,X6, X12
sd X7,0(X10)
addi X10,X10, 8
bne X10,X5, LOOP

A. 1
B. 2
C. 3
D. 4
E. 5

37

How many of data hazards?

IF ID
IF

EX
ID
IF ID

WB

IF
EX

IF
ID

MEM

ID
EX

EX

WB

ID
MEM

MEM

MEM
ID
IF

WB
ID
IF

EX

IF
ID

MEM

IF
ID

ID
WB

• Project is up — check the website
• Assignment #4 is up — start EARLY!!!
• Office Hours on Zoom (the office hour link, not the lecture one)

• Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p
• Quan Fan: F 1p-3p

• Regarding projected grades
• Based on your “weighted total” column in iLearn — we only have 50% offered so far, that’s why the max is only 48
now

• Our final grading is based on “relative ranking” and scale may change

183

Announcement

Current “Weighted Total” in iLearn and “Projected” Letter Grades

0
10
20
30
40
50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

A+ A A- B+ B B-

184
ͺͻͥ

Computer
Science &
Engineering

203

