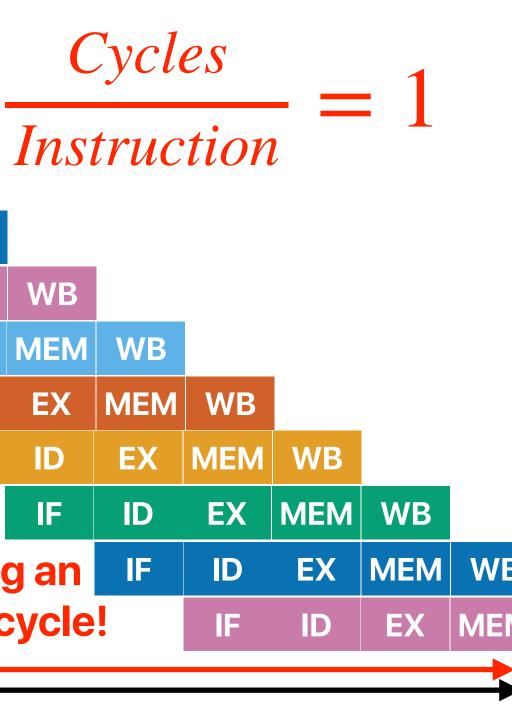

Data Hazards & Dynamic Instruction Scheduling (I)

Hung-Wei Tseng


Recap: Pipelining

Recap: Pipelining

add x1, x2, x3 ld x4, 0(x5) sub x6, x7, x8 sub x9, x10, x11 sd x1, 0(x12) xor x13, x14, x15 and x16, x17, x18 add x19, x20, x21 sub x22, x23, x24 ld x25, 4(x26) sd x27, 0(x28)

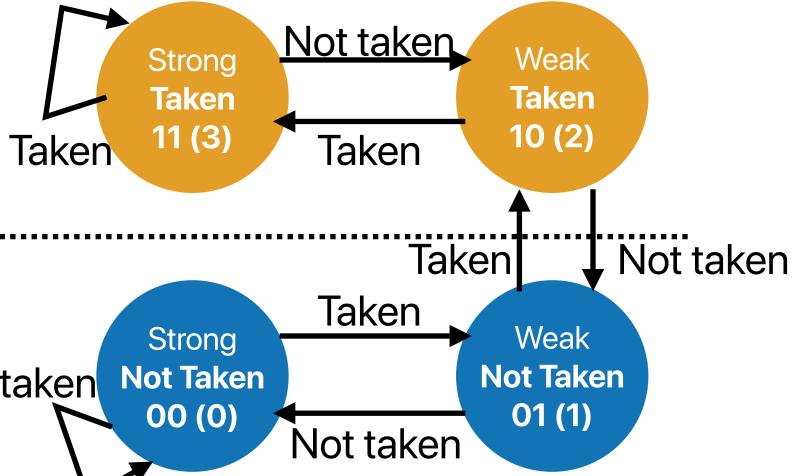
F	ID	EX	MEM	WB				
	IF	ID	EX	MEM	WB			
		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	
					IF	ID	EX	
						IF	ID	
							IF	
				After this point, we are completin instruction each				

Recap: Three pipeline hazards

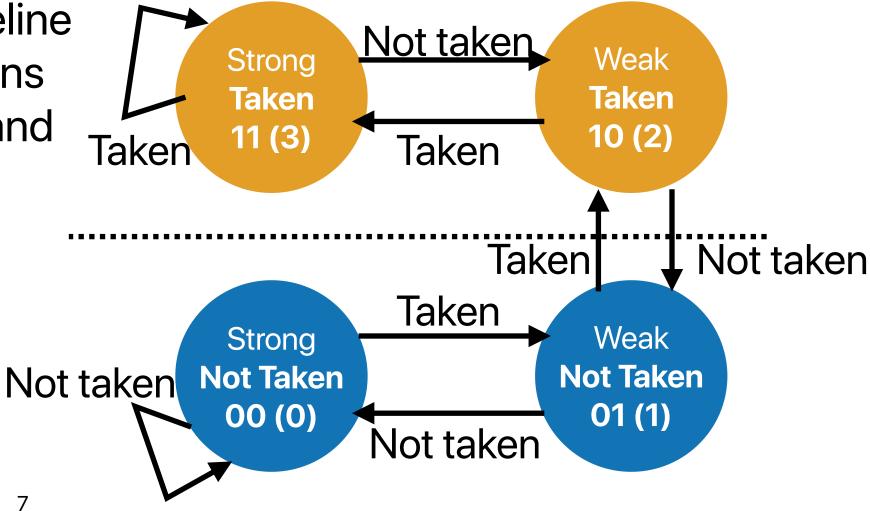
- Structural hazards resource conflicts cannot support simultaneous execution of instructions in the pipeline
- Control hazards the PC can be changed by an instruction in the pipeline
- Data hazards an instruction depending on a the result that's not yet generated or propagated when the instruction needs that

Recap: Tips of drawing a pipeline diagram

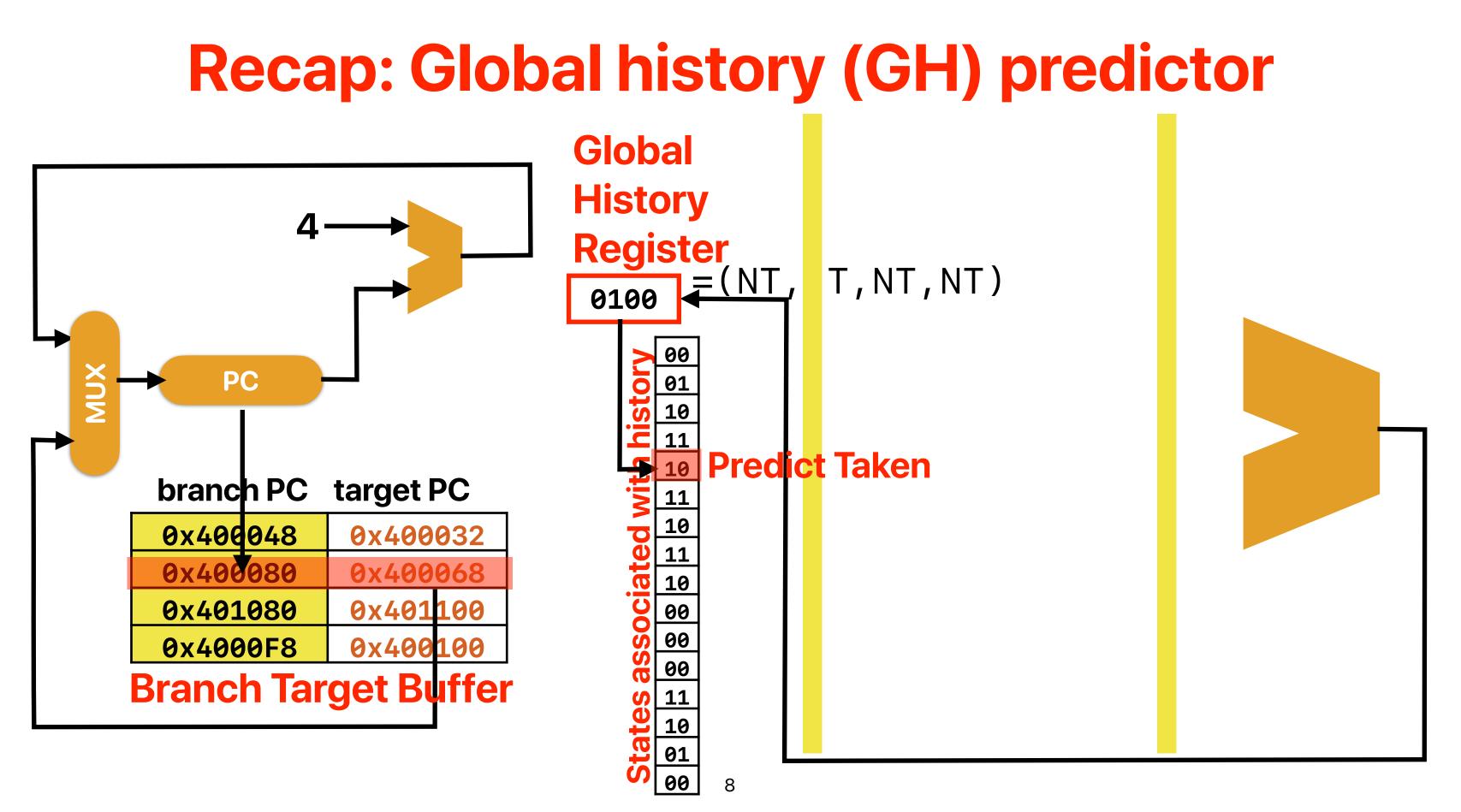
- Each instruction has to go through all 5 pipeline stages: IF, ID, EXE, MEM, WB in order - only valid if it's single-issue, RISC-V 5-stage pipeline
- An instruction can enter the next pipeline stage in the next cycle if
 - No other instruction is occupying the next stage
 - This instruction has completed its own work in the current stage
 - The next stage has all its inputs ready and it can retrieve those inputs
- Fetch a new instruction only if
 - We know the next PC to fetch
 - We can predict the next PC
 - Flush an instruction if the branch resolution says it's mis-predicted.
- Review your undergraduate architecture materials

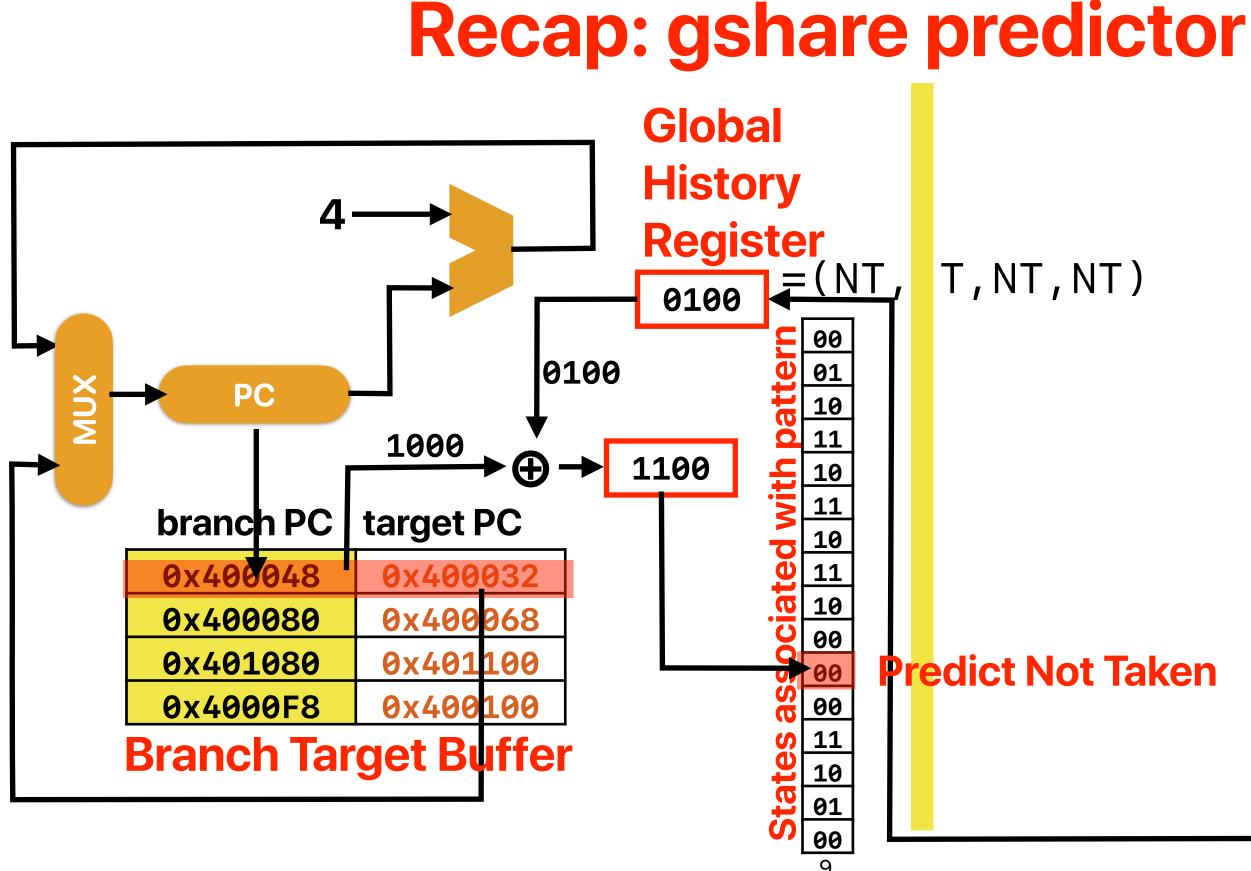

Recap: addressing hazards

- Structural hazards
 - Stall
 - Modify hardware design
- Control hazards
 - Stall
 - Static prediction
 - Dynamic prediction

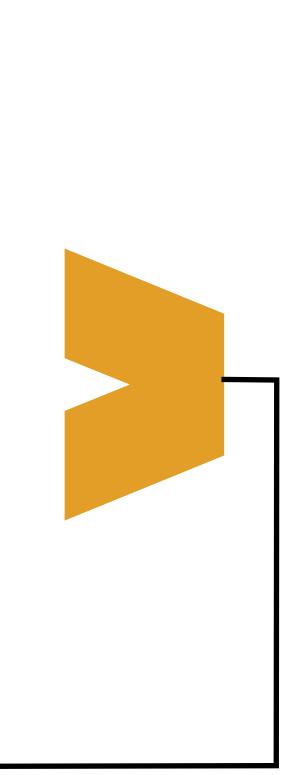


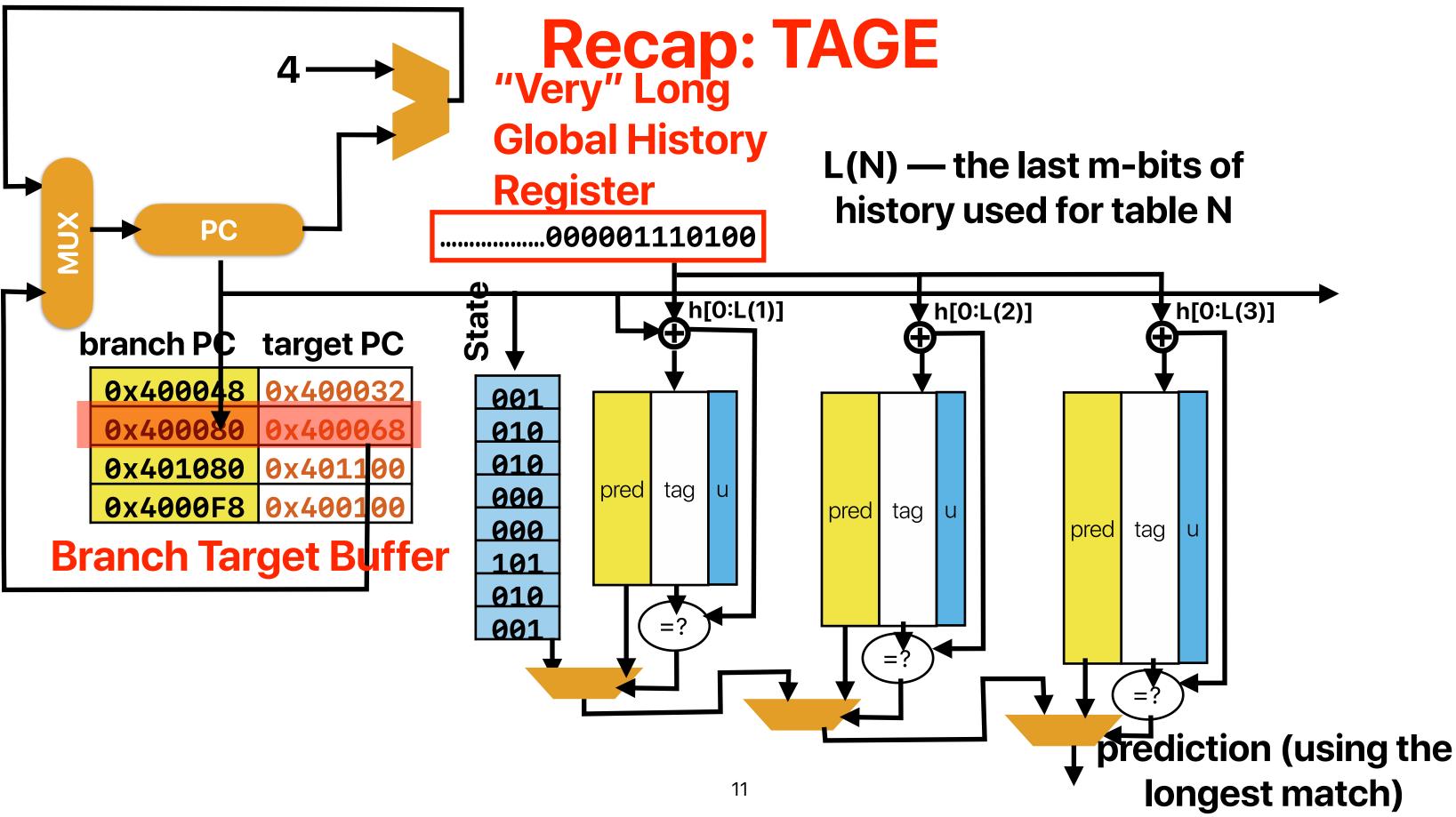
Recap: 2-bit/Bimodal local predictor


- Local predictor every branch instruction has its own state
- 2-bit each state is described using 2 bits
- Change the state based on actual outcome
- If we guess right no penalty
- If we guess wrong flush (clear pipeline registers) for mis-predicted instructions that are currently in IF and ID stages and reset the PC **(**)



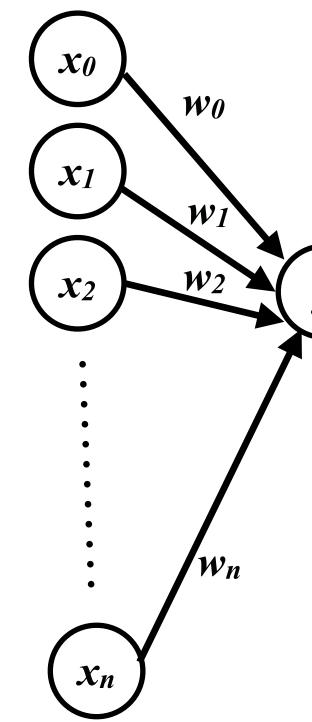
	branch PC	target PC	State
	0x400048	0x400032	10
Predict Taken	0x400080	0x400068	11
	0x401080	0x401100	00
	0x4000F8	0x400100	01





00

ictor	•				
Loc	al				
History					
Predictor					
anch PC	local histo	ry			
x400048	1000	2			
x400080	0110	to			


401080	1010
4000F8	0110

Predict Taken

Recap: Mapping Branch Prediction to NN (cont.)

- Inputs (x's) are from branch history and are -1 or +1
- n + 1 small integer weights (w's) learned by on-line training
- Output (y) is dot product of x's and w's; predict taken if y
 0
- Training finds correlations between history and outcome

$y = w_0 + \sum_{i=1}^n x_i w_i$

Four implementations

• Which of the following implementations will perform the best on modern pipeline processors? inline int popcount(uint64_t x) {

```
int c = 0;
   inline int popcount(uint64_t x){
                                                   while(x)
                                                               {
     int c=0;
                                                     c += x \& 1;
     while(x) {
                                                     x = x >> 1;
           c += x \& 1;
                                                     c += x & 1;
           x = x >> 1;
                                                     x = x >> 1;
        }
                                            \mathbf{m}
                                                     c += x & 1;
       return c;
                                                     x = x >> 1;
   }
                                                     c += x \& 1;
                                                     x = x >> 1;
                                                                      in
   inline int popcount(uint64_t x) {
         int c = 0;
                                                   return c;
         int table [16] = \{0, 1, 1, 2, 1, 
                                               }
   2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4;
         while(x)
\mathbf{O}
                                                                   c += table[(x \& 0xF)];
             x = x >> 4;
         }
         return c;
   }
                                                                        }
                                                       13
```


fe int popcount(uint64_t x) { int c = 0;int table $[16] = \{0, 1, 1, 2, 1,$ 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4; for (uint64_t i = 0; i < 16; i++) c += table[(x & 0xF)];x = x >> 4;

Team scores

6	10.5	7

- Branch prediction and performance (cont.)
- Data hazards
- Tomasulo's algorithm

- How many of the following statements explains the reason why B outperforms A with compiler optimizations
 - ① B has lower dynamic instruction count than A
 - B has significantly lower branch mis-prediction rate than A (2)
 - ③ B has significantly fewer branch instructions than A
 - ④ B can incur fewer data memory accesses

A. 0 B. 1

C. 2

D. 3

E. 4

A	<pre>inline int popcount(uint64_t x){ int c=0; while(x) { c += x & 1; x = x >> 1; } return c; }</pre>
---	---

inline int popcount(uint64_t x) { int c = 0; while(x) c += x & 1; x = x >> 1;c += x & 1; x = x >> 1; \mathbf{m} c += x & 1;x = x >> 1;c += x & 1;x = x >> 1;

return c;

}

17

- How many of the following statements explains the reason why B outperforms A with compiler optimizations
 - ① B has lower dynamic instruction count than A
 - ② B has significantly lower branch mis-prediction rate than A
 - ③ B has significantly fewer branch instructions than A
 - ④ B can incur fewer data memory accesses

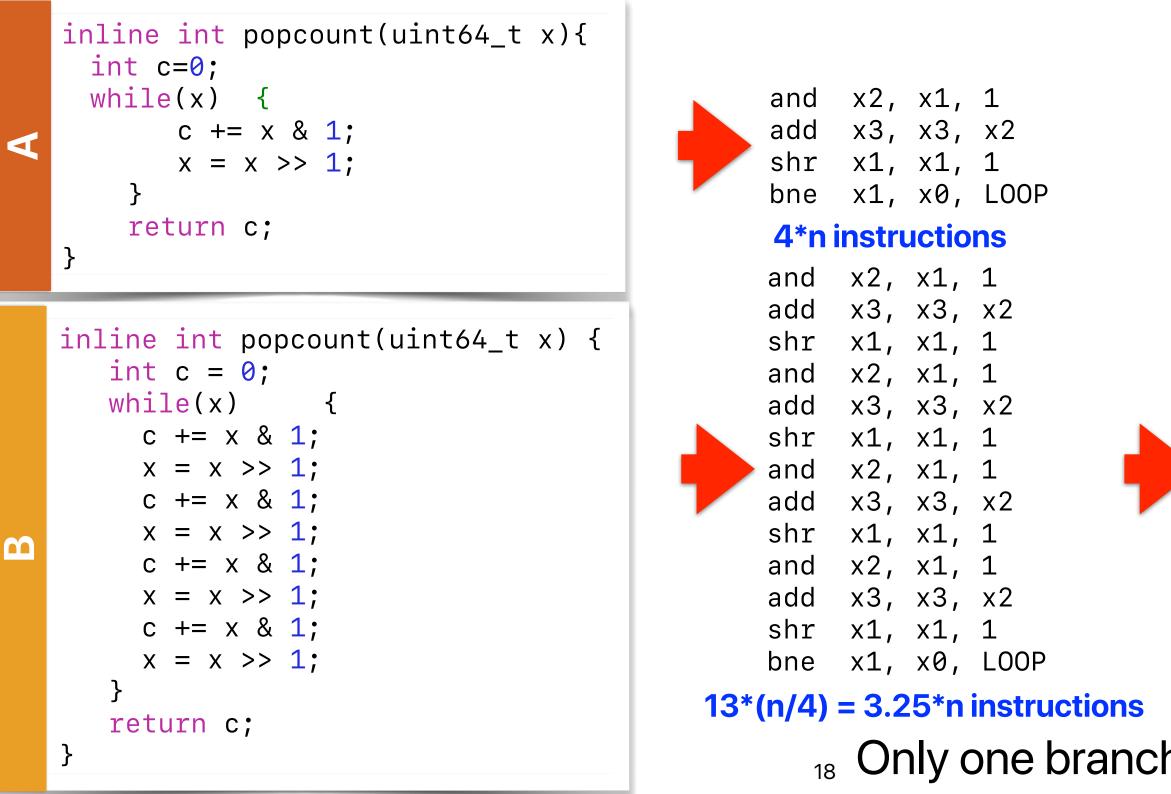
A. 0 B. 1

C. 2

D. 3

E. 4

inline int popcount(uint64_t x){ int c=0; while(x) c += x & 1;1 x = x >> 1;return c; }


}

 \mathbf{m}


```
inline int popcount(uint64_t x) {
   int c = 0;
   while(x)
     c += x & 1;
     x = x >> 1;
     c += x & 1;
     x = x >> 1;
     c += x \& 1;
     x = x >> 1;
     c += x \& 1;
     x = x >> 1;
```


and x2, x1, 1 shr x4, x1, 1 shr x5, x1, 2 shr x6, x1, 3 shr x1, x1, 4 and x7, x4, 1 and x8, x5, 1 and x9, x6, 1 add x3, x3, x2 add x3, x3, x7 add x3, x3, x8 add x3, x3, x9 bne x1, x0, LOOP

¹⁸ Only one branch for four iterations in A

- How many of the following statements explains the reason why B outperforms A with compiler optimizations
 - B has lower dynamic instruction count than A
 - ② B has significantly lower branch mis-prediction rate than A
 - B has significantly fewer branch instructions than A
 - ④ B can incur fewer data memory accesses

A. 0 B. 1

C. 2

D. 3

E. 4

inline int popcount(uint64_t x){ int c=0; while(x) $\{$ c += x & 1;x = x >> 1;return c; }

}

m


```
inline int popcount(uint64_t x) {
   int c = 0;
   while(x)
     c += x \& 1;
     x = x >> 1;
     c += x & 1;
     x = x >> 1;
     c += x & 1;
     x = x >> 1;
     c += x \& 1;
     x = x >> 1;
```

- How many of the following statements explains the reason why B outperforms C with compiler optimizations
 - ① C has lower dynamic instruction count than B
 - ² C has significantly lower branch mis-prediction rate than B
 - ③ C has significantly fewer branch instructions than B
 - ④ C can incur fewer data memory accesses

A. 0 B. 1 C. 2 D. 3 E. 4

```
inline int popcount(uint64_t x) {
         int c = 0;
         int table [16] = \{0, 1, 1, 2, 1, 
   2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
                                               m
         while(x)
\mathbf{O}
             c += table[(x \& 0xF)];
             x = x >> 4;
         }
         return c;
   }
                                                   }
```



```
inline int popcount(uint64_t x) {
   int c = 0;
   while(x)
     c += x \& 1;
     x = x >> 1;
     c += x & 1;
     x = x >> 1;
     c += x & 1;
    x = x >> 1;
     c += x \& 1;
     x = x >> 1;
```

- How many of the following statements explains the reason why B outperforms C with compiler optimizations
 - ① C has lower dynamic instruction count than B
 - ² C has significantly lower branch mis-prediction rate than B
 - ③ C has significantly fewer branch instructions than B
 - ④ C can incur fewer data memory accesses

A. 0 B. 1 C. 2 D. 3 E. 4

```
inline int popcount(uint64_t x) {
         int c = 0;
         int table [16] = \{0, 1, 1, 2, 1, 
   2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4;
                                               m
         while(x)
\mathbf{O}
             c += table[(x \& 0xF)];
             x = x >> 4;
         }
         return c;
   }
                                                   }
```



```
inline int popcount(uint64_t x) {
   int c = 0;
   while(x)
     c += x \& 1;
     x = x >> 1;
     c += x & 1;
     x = x >> 1;
     c += x & 1;
     x = x >> 1;
     c += x \& 1;
     x = x >> 1;
```

- How many of the following statements explains the reason why B outperforms C with compiler optimizations
 - C has lower dynamic instruction count than B
 C only needs one load, one add, one shift, the same amount of iterations
 - ② C has significantly lower branch mis-prediction rate than B
 - 3 C has significantly fewer branch instructions than B the same amount of branches
 - 4 C can incur fewer data memory accesses Probably not. In fact, the load may have negative

A. 0 B. 1 C. 2 D. 3 E. 4

```
effect without architectural supports
   inline int popcount(uint64_t x) {
         int c = 0;
         int table [16] = \{0, 1, 1, 2, 1, 
   2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4;
                                                 m
         while(x)
\mathbf{O}
             c += table[(x \& 0xF)];
             x = x >> 4;
         }
         return c;
   }
```

}


```
inline int popcount(uint64_t x) {
   int c = 0;
   while(x)
     c += x \& 1;
     x = x >> 1;
     c += x \& 1;
     x = x >> 1;
     c += x \& 1;
     x = x >> 1;
     c += x & 1;
     x = x >> 1;
```

- How many of the following statements explains the main reason why B outperforms C with compiler optimizations
 - ① D has lower dynamic instruction count than C
 - ② D has significantly lower branch mis-prediction rate than C
 - D has significantly fewer branch instructions than C (3)
 - ④ D can incur fewer memory accesses than C

A. 0 B. 1 C. 2 D. 3 E. 4

	23	-	
C	<pre>int table[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; while(x) { c += table[(x & 0xF)]; x = x >> 4; } return c; }</pre>		2, 2, 3, 1 for ({ c x } retur }
	<pre>inline int popcount(uint64_t x) { int c = 0; int table[16] = {0 1 1 2 1</pre>		inline int int c int t
	-		

t popcount(uint64_t x) { c = 0; table[16] = {0, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 4; (uint64_t i = 0; i < 16; i++) += table[(x & $0 \times F$)]; = x >> 4;

rn c;

- How many of the following statements explains the main reason why B outperforms C with compiler optimizations
 - ① D has lower dynamic instruction count than C
 - ② D has significantly lower branch mis-prediction rate than C
 - ③ D has significantly fewer branch instructions than C
 - ④ D can incur fewer memory accesses than C

A. 0 B. 1 C. 2 D. 3 E. 4

24		
<pre>inline int popcount(uint64_t x) { int c = 0; int table[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; while(x) { c += table[(x & 0xF)]; x = x >> 4; } return c; }</pre>	۵	<pre>ne int int c int t 3, 1 for ({</pre>
_		

t popcount(uint64_t x) { = 0; table[16] = {0, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 4; (uint64_t i = 0; i < 16; i++) += table[(x & $0 \times F$)]; = x >> 4;

rn c;

- How many of the following statements explains the main reason why B outperforms C with compiler optimizations
 - Ø D has lower dynamic instruction count than C
 - Ø D has significantly lower branch mis-prediction rate than C
 - Ø D has significantly fewer branch instructions than C
 - ④ D can incur fewer memory accesses than C

inline int popcount(uint64_t x) { A. 0 inline int popcount(uint64_t x) { int c = 0;int c = 0;B. 1 int table $[16] = \{0, 1, 1, 2, 1,$ 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4; 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4; C. 2 while(x) c += table[(x & 0xF)]; $c += table[(x \& 0 \times F)];$ D. 3 x = x >> 4;x = x >> 4;E. 4 return c; return c; } } 25

- Compiler can do loop unrolling - no branches – Could be maybe eliminated through loop unrolling...

int table $[16] = \{0, 1, 1, 2, 1,$ for (uint64_t i = 0; i < 16; i++)</pre>

All branches are gone with loop unrolling

```
inline int popcount(uint64_t x) {
     int c = 0;
     int table[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
          c += table[(x \& 0xF)];
          x = x >> 4;
     return c;
                                  26
}
```


Hardware acceleration

- Because popcount is important, both intel and AMD added a POPCNT instruction in their processors with SSE4.2 and SSE4a
- In C/C++, you may use the intrinsic "_mm_popcnt_u64" to get # of "1"s in an unsigned 64-bit number
 - You need to compile the program with -m64 -msse4.2 flags to enable these new features

#include <smmintrin.h> inline int popcount(uint64_t x) { int $c = _mm_popcnt_u64(x);$ return c;

Data hazards

Data hazards

- An instruction currently in the pipeline cannot receive the "logically" correct value for execution
- Data dependencies
 - The output of an instruction is the input of a later instruction
 - May result in data hazard if the later instruction that consumes the result is still in the pipeline

Example: vector scaling

i = 0;do { vector[i] += scale; } while (++i < size)</pre>

shl X5,X11, 3 add X5, X5, X10 LOOP: ld X6, 0(X10) add X7, X6, X12 sd X7, 0(X10) addi X10,X10, 8 bne X10, X5, LOOP

Poll close in 1:30

How many dependencies do we have?

How many pairs of data dependences are there in the following RISC-V instructions?

ld	Χ6,	0(X1	10)
add	X7,	X6,	X12
sd	X7,	0(X1	10)
addi	X10,	X10,	8
bne	X10,	X5,	LOOP

- B. 2
- C. 3

D. 4

E. 5

Poll close in 1:30

How many dependencies do we hav

• How many pairs of data dependences are there in the following RISC-V instructions?

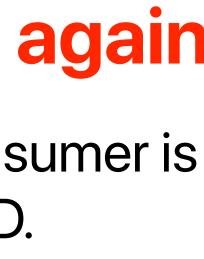
ld	Х6,	0(X1	10)
add	Χ7,	X6,	X12
sd	Χ7,	0(X1	10)
addi	X10,	X10,	8
bne	X10,	X5,	LOOP

- B. 2
- C. 3

D. 4

E. 5

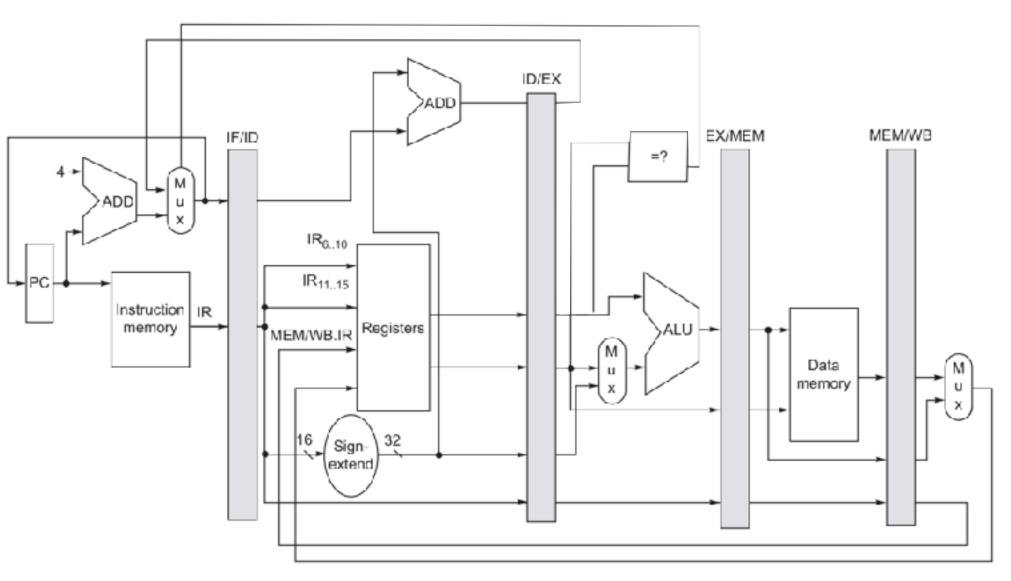
How many dependencies do we have?


How many pairs of data dependences are there in the following RISC-V instructions?

ld X6, 0(X10) add X7, X6, X12 sd X7, 0(X10) addi X10,X10, 8 bne X10, X5, LOOP

Solution 1: Let's try "stall" again

 Whenever the input is not ready when the consumer is decoding, just stall — the consumer stays at ID.

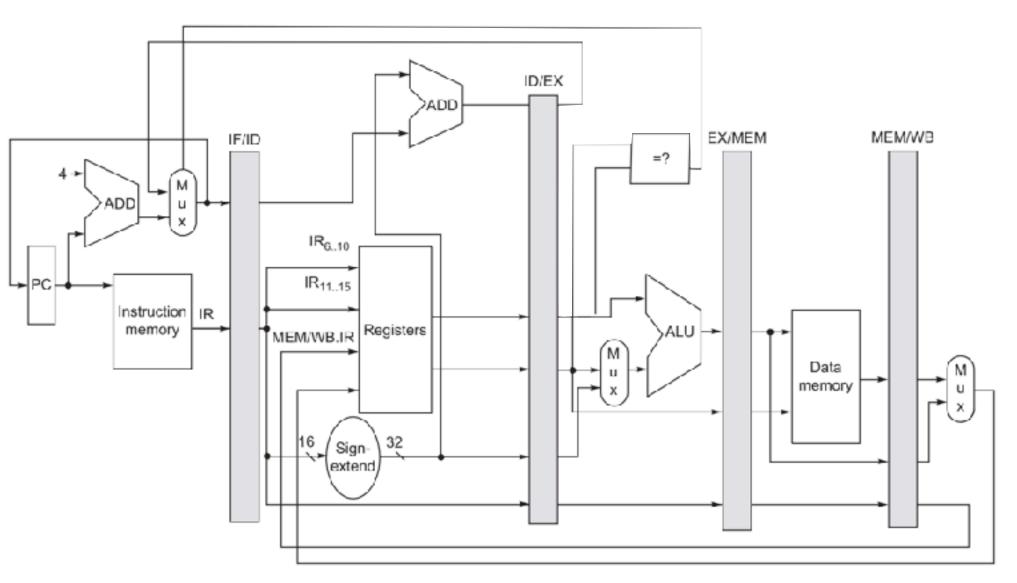


Poll close in 1:30

How many of data hazards?

- How many pairs of instructions in the following RISC-V instructions will results in data hazards/stalls in a basic 5-stage RISC-V pipeline?
 - X6,0(X10) ld X7,X6, X12 add sd X7,0(X10) addi X10,X10, 8 X10,X5, LOOP bne
 - A. 1
 - B. 2
 - C. 3
 - D. 4

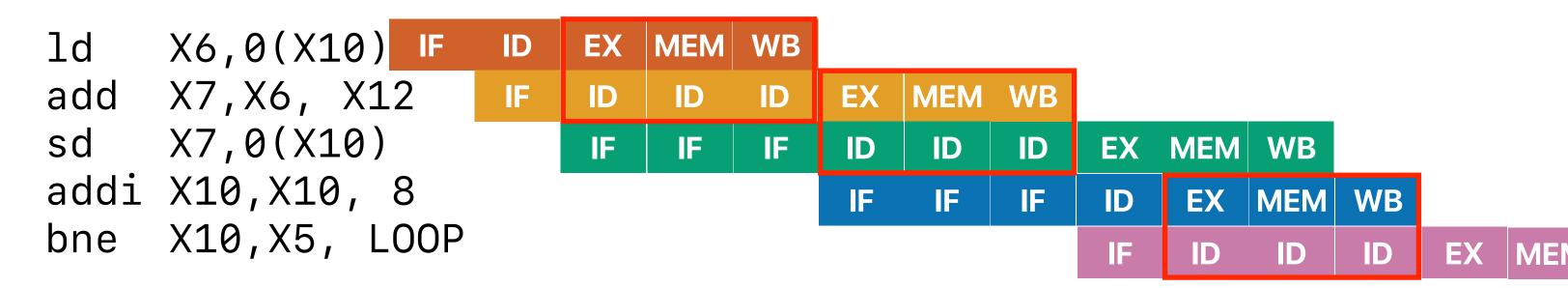
E. 5



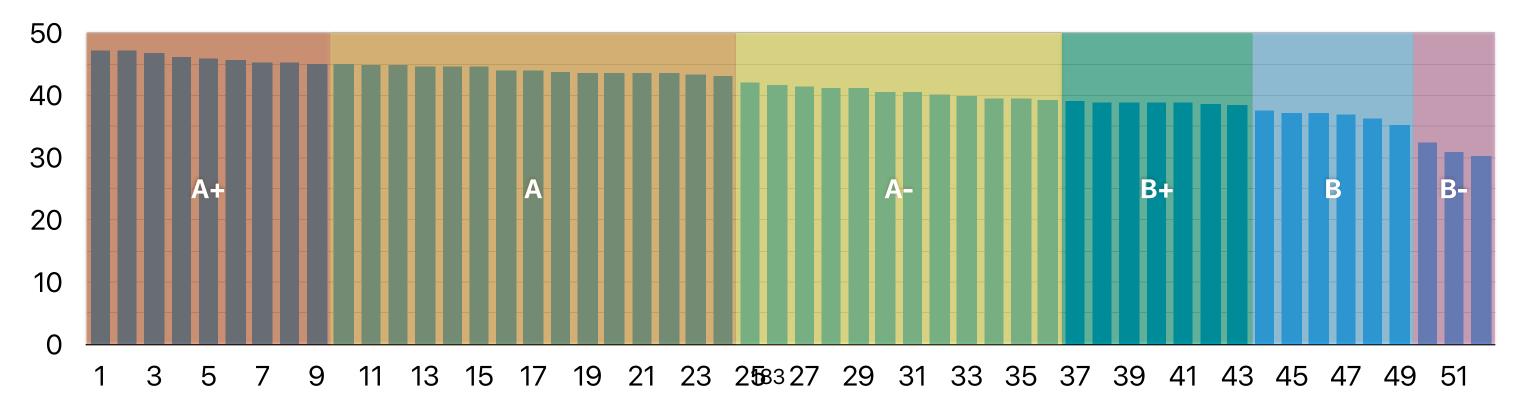
Poll close in 1:30

How many of data hazards?

- How many pairs of instructions in the following RISC-V instructions will results in data hazards/stalls in a basic 5-stage RISC-V pipeline?
 - X6,0(X10) ld X7,X6, X12 add X7,0(X10) sd addi X10,X10, 8 X10,X5, LOOP bne
 - A. 1
 - B. 2
 - C. 3
 - D. 4


E. 5

How many of data hazards?


• How many pairs of instructions in the following RISC-V instructions will results in data hazards/stalls in a basic 5-stage RISC-V pipeline?

Announcement

- Project is up check the website
- Assignment #4 is up start EARLY!!!
- Office Hours on Zoom (the office hour link, not the lecture one)
 - Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p
 - Quan Fan: F 1p-3p
- Regarding projected grades
 - Based on your "weighted total" column in iLearn we only have 50% offered so far, that's why the max is only 48 now
 - Our final grading is based on "relative ranking" and scale may change •

Current "Weighted Total" in iLearn and "Projected" Letter Grades

Computer Science & Engineering

