Speculative Execution &
Multithreaded Processor
Architectures

Hung-Wei Tseng

Recap: addressing hazards

- Structural hazards

. Stall

- Modify hardware design
. Control hazards

- Stall

. Static prediction

- Dynamic prediction
- Data hazards

- Stall

- Data forwarding

- Dynamic Scheduling

What do you need to execution an instruction?

- Whenever the instruction is decoded — put decoded
Instruction somewhere

- Whenever the inputs are ready — all data dependencies are
resolved

- Whenever the target functional unit is available

4

- This instruction has completed its own work in the current stage
- No other instruction is occupying the next stage
- The next stage has all its inputs ready

3

Tomasulo in motion

® 1d X6,0(X10) MEM | WB
® add X7,X6,X12 INT | WB
® sd X7,0(X10) n 1 [MEM | wB
® addi X10,X190,8 WB
® bne X10,X5,LO0P | | BR | wB
© 1d X6,0(x10) nmmnmm
Zjd i;gfxi;? no reservation station for add! B “ o ﬁ_ —
® addi X10,X19,8 lakes 15 CVCIeS o E INT | WB
10 _bpne X10,X5,L00F ' 1e alli 1cti |

INST Vj VK f \ ot # N S T

8 INT?2 9
W

br [X5] INT1 10

Overview of a processor supporting regis
Fetch/decode instruction

©
- i P
Renaming Unresolved fehgﬁgf; =L
i Branch p3 [
logic X2 P4

.v—. . Register - Physical
- — mapping table\p”'NR‘i‘l'sters
- Instruction — i |
I Queue =

Address Integer Floating- Floating- :Branzch

Resolution ALU Point Adder Point Mul/Div

5488 S
— Load — — Store

— Queue - — Queue -
Address

© © ® O @ © ® © & O

Rec |ster renaming in motion

1d X6,0(X10) R AR | LSQ | MEM | WB

add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0OO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5, LOOP

Renamed instruction

Takes 12 cycles to AR LS
issue all instructions

Physical Register Valid Value Inuse Valid Value Inuse
1 1 1 1

P1
P5
P3

1
2
3
4
5
6
7
8
9

sd P5, O(P3)

-
o

Overview of a processor supporting regis
Fetch/decode instruction

. . Renaming | Unresolved fehgyii‘e’f; as=
What if we widenthe |ogic Branch [, Ei |
pipeline to fetch/issue] Register - Physical
two instructions at the — - mapping table Wsters
same time? 1struction — i |
£ Queue =
]
Address Integer Floating- Floating- IBraanh
Resolution ALU Point Adder Point Mul/Div
Sy&8 2
— Load — — Store

— Queue - — Queue -
Address

Recap: Super Scalar Pipeline

; ALU =
nstruction T "co'ste" BIN 1ssue/ ‘A MmuL/piv EEER MUL/DIV

Decode renaming wag schedule 8| (: 2
logic :

Address 3N Address
Resolution Queue

Fetfch Issue
wign | e

Branch

predictor

Front-end Back-end

Superscalar

. Since we have more functional units now, we should fetch/
decode more instructions each cycle so that we can have more
Instructions to issue!

. Super-scalar: fetch/decode/issue more than one instruction
each cycle

- Fetch width: how many instructions can the processor fetch/
decode each cycle

- Issue width: how many instructions can the processor issue each
cycle

What about “lin list”

ll
|mml X7 is
Static instructions Dynamic instructions (9 8 changed
by (8
L00P: 1d X160, 8(X10) © 14 510 A(YI0] [wesffsios | bV (8)
addi X7, X7. 1 ® ILP is low because of data mﬁ already!!!
bne X10, X0, LOOP @ dependencies | B At e
® 1d X10, 8(X10) - fWastefislots
® addi X7, X7’ T =Ry ooy OO R
® bne X10, X0, LOOP 6 7
@ 1d Xl@’ 8(X1@) What if (6) is
® addi X7, X7, 1 . .
® bne X10, X0, LOOP mis-predicted -.--.--..... ...

10

Team scores

15.5 11 9

1

Outline

- The Concept of Speculative Execution and Reorder Buffer
- Simultaneous Multithreading
. Chip Multiprocessor

12

In which pipeline stage can we change PCs?

- How many of the following pipeline stages can an instruction change the
program counter?

IF

ID

EXE

MEM

® O

MO OW>»EO

oO WO -

13

In which pipeline stage can we change

L
- ¥,
1 —Mnct

- How many of the following pipeline stages can an instruction change the
program counter?

IF

ID

EXE

MEM

® O

MmMOOW>»e6E E

oO WO -

14

In which pipeline stage can we change PCs?

- How many of the following pipeline stages can an instruction change the

program counter?
® | —bage fault, illegal address

@ |D — unknown instruction
® EXE —divide by zero, overflow, underflow, branch mis-prediction
@ MEM _ page fault, illegal address

B. 2 If you have no idea what's an "“exception” and why it's
C 3 changing the PC — you need to take CS202!

15

© © ® O @ © ® © & O

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0O0P
1d X6,0(X10)
add X7,X6,X12 R
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5, LOOP

Renamed instruction

mmlm@

What if exception
X10is already changed occurs here?

I I INT

I

| AQ mmmm
i

| mm

Physical Register i Valid Value Inuse

16

Speculative Execution

- The PC can potentially change any time during execution
- Exceptions

- Branches

- Any execution of an instruction before a prior instruction finishes is
considered as speculative execution

- Because it's speculative, we need to preserve the capabillity to restore to
the states before it's executed

- Flush incorrectly fetched instructions
- Restore updated register values

- Fetch the right instructions (correct branch target, exception handler)

17

Reorder Buffer (ROB)

Reorder buffer/Commit stage

- Reorder buffer — a buffer keep track of the program order of
Instructions

- Can be combined with 1Q or physical registers — make either as a
circular queue

- Commit stage — should the outcome of an instruction be
realized

- Aninstruction can only leave the pipeline if all it's previous are
committed

- If any prior instruction failed to commit, the instruction should yield
it's ROB entry, restore all it's architectural changes

19

Pipeline SuperScaIar/OoO/ROB

Register [E
renaming grasg
logic

Instruction B

RoB/ E
Commit [

Decode

; ALU ,
Issue/ q MUL/DIV MUL/DIV
Schedule M| (: 2

Address 3N Address
Resolution Queue

Fetfch Issue
Width . Width

Branch

predictor

Front-end Back-end

© © ® O @ © ® © & O

2-1ssue RR processor in motion

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0OO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5, LOOP

Renamed instruction Physical Register Valid Value Inuse Valid Value Inuse
1d P1, 0(X10)
add P2, P1, X12

1
2
3
4
5
6
7
8
9

21

-
o

© © ® O @ © ® © & O

2-I1SSU
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0OO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5, LOOP

RR processor in motion

Physical Register Valid Value Inuse Valid Value Inuse

Renamed instruction
1d P1, 0(X10) ‘ head
add P2, P1, X12
sd P2, 0(X10)
addi P3, x10, 8 < tail

-

1
2
3
4
5
6
7
8
9

22

-
o

© © ® O @ © ® © & O

1d
add
sd
addi
bne
1d
add
sd
addi
bne

1
2
3
4
5
6
7
8
9

-
o

X6,0(X10)
X7 ,X6,X12
X7,0(X10)
X10,X10,8
X10, X5, LOOP
X6,0(X10)
X7 ,X6,X12
X7,0(X10)
X10,X10,8
X10, X5, LOOP

Renamed instruction
P1, 0(X10)
P2, P1, X12
P2, 0(X10)
P3, X10, 8
P3, X5, LOOP
P4,

processor in motion

Physical Register Valid Value Inuse

23

Valid Value Inuse

© © ® O @ © ® © & O

1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

1
2
3
4
5
6
7
8
9

-
o

X6,0(X10)
d X7,X6,X12
X7,0(X10)
di X10,X10,8

e X10,X5,LO00P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO00P

Renamed instruction

1d
add
sd
addi
bne
1d
add
sd

P1,
P2,
P2,
P3,
P3,
P4,
P5,
P5,

0(X10)
P1, X12
0(X10)
X10, 8
X5, LOOP
0(P3)
P1, X12
o(P3)

4 head

4 tail

Physical Register

24

rocessor in motion

Valid Value Inuse

Valid Value Inuse

© © ® O @ © ® © & O

1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

© 0O NO O~ WDN =

10

X6,0(X10)
d X7,X6,X12
X7,0(X10)
di X10,X10,8

e X10,X5,LO00P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO00P

Renamed instruction

add
sd
addi
bne
1d
add
sd
addi
bne

P2,
P2,
P3,
P3,
P4,
P5,
P5,
P6,
P6,

0(X10)
P1, X12
0(X10)
X10, 8
X5, LOOP
0(P3)
P1, X12
o(P3)
P3, 8
0(X10)

4 tail

I
C
i
i

Physical Register

25

rocessor in motion

Valid Value Inuse

Valid Value Inuse

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0OO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
X10, X5, LOOP

Renamed instruction Physical Register Valid Value Inuse Valid Value Inuse
0(x10)
add P2, P1, X12
sd P2, 0(X10)
addi P3, X10, 8
bne P3, X5, LOOP
1d P4, 0(P3)
add P5, P1, X12
sd P5, 0(P3)
addi Pé6, P3, 8
bne P6, 0(X10)

© © ® O @ © ® © & O

©O 0O NO O A~ WNDN=

4 tail 20

10

© © ® O @ © ® © & O

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0OO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5, LOOP

Renamed instruction

P1, X12 ‘ head
0(X10)
addi P3, X190, 8
bne P3, X5, LOOP
1d P4, 0(P3)
add P5, P1, X12
sd P5, 0(P3)
addi P6, P3, 8
bne P6, 0(X10)

Physical Register Valid Value Inuse Valid Value Inuse

©O 0O NO O A~ WNDN=

4 tail 27

10

© © ® O @ © ® © & O

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0OO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5, LOOP

Renamed instruction

P1, X12 ‘ head
0(X10)
addi P3, X190, 8
bne P3, X5, LOOP
1d P4, 0(P3)
add P5, P1, X12
sd P5, 0(P3)
addi P6, P3, 8
bne P6, 0(X10)

Physical Register Valid Value Inuse Valid Value Inuse

©O 0O NO O A~ WNDN=

4 tail 28

10

© © ® O @ © ® © & O

1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

©O 0O NO O A~ WNDN=

10

X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO00P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO00P

Renamed instruction

sd
addi
bne
1d
add
sd
addi
bne

P2,
P3,
P3,
P4,
P5,
P5,
P6,
P6,

0(X10)
X10, 8
X5, LOOP
0(P3)
P1, X12
o(P3)
P3, 8
0(X10)

4 head

4 tail

Physical Register

29

Valid Value Inuse

© © ® O @ © ® © & O

1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

©O 0O NO O A~ WNDN=

10

X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO00P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO00P

Renamed instruction

sd
addi
bne
1d
add
sd
addi
bne

P2,
P3,
P3,
P4,
P5,
P5,
P6,
P6,

0(X10)
X10, 8
X5, LOOP
0(P3)
P1, X12
o(P3)
P3, 8
0(X10)

4 head

4 tail

Physical Register

30

Valid Value Inuse

© © ® O @ © ® © & O

1d
ad
sd
ad
bn
1d
ad
sd
ad
bn

©O 0O NO O A~ WNDN=

10

X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO00P
X6,0(X10)

d X7,X6,X12
X7,0(X10)

di X10,X10,8

e X10,X5,LO00P

Renamed instruction

sd
addi
bne
1d
add
sd
addi
bne

P2,
P3,
P3,
P4,
P5,
P5,
P6,
P6,

0(X10)
X10, 8
X5, LOOP
0(P3)
P1, X12
o(P3)
P3, 8
0(X10)

4 head

4 tail

Physical Register

31

Valid Value Inuse

© © ® O @ © ® © & O

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0O0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5, LOOP

Renamed instruction Physical Register Valid Value Inuse

- =

I

sd P5, 0(P3)
addi P6, P3, 8
bne P6, 0(X10)

©O 0O NO O A~ WNDN=

-
o

© © ® O @ © ® © & O

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0OO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5, LOOP

Renamed instruction Physical Register

2 - 5

I S

3 sd P5, 0(P3)
M addi Pé6, P3, 8
([VJ8 bne P6, 0(X10)

© © ® O @ © ® © & O

1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5,L0OO0P
1d X6,0(X10)
add X7,X6,X12
sd X7,0(X10)
add1i X10,X10,8
bne X10,X5, LOOP

Renamed instruction Physical Register

2 - 5

I S

3 sd P5, 0(P3)
M addi Pé6, P3, 8
([VJ8 bne P6, 0(X10)

© © ® O @ © ® © & O

1d
add
sd
addi
bne
1d
add
sd
addi
bne

©O 0O NO O A~ WNDN=

10

X6,0(X10)
X7 ,X6,X12
X7,0(X10)
X10,X10,8
X10, X5, LOOP
X6,0(X10)
X7 ,X6,X12
X7,0(X10)
X10,X10,8
X10, X5, LOOP

Renamed instruction

2 - 5

Physical Register

35

How good is SS/000/ROB with this code?

- Consider the following dynamic instructions

® 1d X1, 0(X10)
addi X10, X190, 8
add X20, X200, X1
bne X106, X2, LOOP
1d X1, 0(X10)
addi X10, X10, 8
add X20, X200, X1
® bne X106, X2, LOOP

Assume a superscalar processor with issue width as 2 & unlimited physical registers that can fetch up to 2
instructions per cycle, 3 cycles to execute a memory instruction how many cycles it takes to issue all
instructions?

A

Q ® © ® ® ©

mooOw
© N oW

36

How good is SS/000/ROB with this cc

- Consider the following dynamic instructions
X1, 0(X10)

X10, X10, 8
X20, X20, X1

O]

Q ® © ® ® ©

Assume a superscalar processor with issue width as 2 & unlimited physical registers that can fetch up to 2
instructions per cycle, 3 cycles to execute a memory instruction how many cycles it takes to issue all

1d
addi
add
bne
1d
addi
add
bne

X10, X2,

LOOP

X1, 0(X10)
X10, X10, 8
X20, X20, X1

X10, X2,

instructions?

A.

mooOw
© N oW

1

LOOP

37

How good is SS/OoO/ROB with this code’?

- Consider the following dynamic instructions

® 1d X1, 0(X10)
addi X10, X190, 8
add X20, X200, X1
bne X10, X2, LOOP
1d X1, 0(X10)
addi X10, X10, 8
add X20, X200, X1
® bne X10, X2, LOOP

Assume a superscalar processor with issue width as 2 & unlimited physical registers that can fet¢h up to 2 e
instructions per cycle, 3 cycles to execute a memory instruction how many cycles it takes to igsug all
instructions?

A

Q ®©@ ©® ® ©® ®

O W

‘i‘l

.3
. 5
./
. 9

m

38

A feature of speculative execution

Putting it all together

- How many of the following would happen given the modern processor
microarchitecture?

® The branch predictor will predict not taken for branch A
®@ The cache may contain the content of array2[arrayl[16] *x 512];

® temp can potentially become the value of array2[arrayl[16] x
5121;

@ The program will raise an exception

/\ () unsigned int arrayl_size = 16;

uint8_t arrayili160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 260};
uint8_t array2[256 *x 5121];

vold bar(size_t x) {
if (x < arrayl_size) { // Branch A: Taken if the statement is not going to be executed.
temp &= array2[arrayl[x] x 5121];
b
b

void foo(size_t x) {
int 1 = 0, j=0;
for(j=0;3j<10000; j++)
bar(rand()%17);

40

moow
A wp>N-

Putting it all together

- How many of the following would happen given the modern processor
microarchitecture?

® The branch predictor will predict not taken for branch A
®@ The cache may contain the content of array2[arrayl[16] *x 512];

® temp can potentially become the value of array2[arrayl[16] x
5121;

@ The program will raise an exception

/\ () unsigned int arrayl_size = 16;

uint8_t arrayil[160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 260};
uint8_t array2[256 *x 5121];

void bar(size_t x) {
if (x < arrayl_size) { // Branch A: Taken if the statement is not going to be executed.
temp &= array2[arrayl[x] x 5121];
b
¥

void foo(size_t x) {
int 1 = 0, j=0;
for(j=0;3j<10000; j++)
bar(rand()%17);

41

moow
A wp>N-

Putting it all together

- How many of the following would happen given the modern processor
microarchitecture?

¢ The branch predictor will predict not taken for branch A —verylikely |
d The cache may contain the contentof array2[arrayl[16] 512°7¥"Y

. — where the security issues come from
® temp can potentially become the value of array2[arrayl[16] x
5 1 2] ’- — not really, as x < array1_size

{The program will raise an exception

— maybe? unsigned int arrayl_size = 16;

uint8_t arrayili160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 260};
uint8_t array2[256 *x 5121];

o >

m Oo|w .
A WOIN|— O

vold bar(size_t x) {
if (x < arrayl_size) { // Branch A: Taken if the statement is not going to be executed.
temp &= array2[arrayl[x] x 5121];
b
b

void foo(size_t x) {
int 1 = 0, j=0;
for(j=0;3j<10000; j++)
bar(rand()%17);

m O

42

Spectre and meltdown

What happen when mis-speculation detected

- Exceptions and incorrect branch prediction can cause
“rollback” of transient instructions

- Old register states are preserved, can be restored
- Memory writes are buffered, can be discarded
- Cache modifications are not restored!

44

Speculative execution on the following code

- Execution without speculation is safe it (x < azzayi size)
- CPU will never read array1[x] for any x = array1_size y = array2[arrayllx] x 2561;

- Execution with speculation can be exploited
- Attacker sets up some conditions
- train branch predictor to assume ‘if’ is likely true
- make array1_size and array2[] uncached
- Invokes code with out-of-bounds x such that array1[x] is a secret

- Processor recognizes its error when array’l_size arrives, restores its architectural
state, and proceeds with ‘if’ false

- Attacker detects cache change (e.g. basic FLUSH+RELOAD or EVICT+RELOAD)
- E.g. nextread to array2[i*256] will be fast i=array[x] since this got cached

45

Poll close in 1:30

How good is SS/000/ROB with this code?

- Consider the following dynamic instructions

® 1d X1, 0(X10)

® addi X10, X10, 8
® add X20, X20, X1
® bne X100, X2, LOOP

Assume a superscalar processor with issue width as 2 & unlimited physical registers
that can fetch up to 4 instructions per cycle, 3 cycles to execute a memory instruction
and the loop will execute for 10,000 times, what's the average CPI?

A. 0.5

B. 0.75
C. 1

D. 1.25
E. 1.5

46

Poll close in 1:30) . . \#
How good is SS/000/ROB with this c

- Consider the following dynamic instructions

® 1d X1, 0(X10)

® addi X10, X10, 8
® add X20, X20, X1
® bne X100, X2, LOOP

Assume a superscalar processor with issue width as 2 & unlimited physical registers
that can fetch up to 4 instructions per cycle, 3 cycles to execute a memory instruction
and the loop will execute for 10,000 times, what's the average CPI?

A. 0.5

B. 0.75
C. 1

D. 1.25
E. 1.5

47

How good is SS/000/ROB w

- Consider the following dynamic instructions

® 1d X1, 0(X10)

® addi X10, X10, 8
® add X20, X20, X1
® bne X10, X2, LOOP

Assume a superscalar processor with issue width as 2 & u :
that can fetch up to 4 instructions per cycle, 3 cycles to exe = @ @
and the loop will execute for 10,000 times, what's the avere :,

® 1d
A 05 ® addi
® add
B. 0.75 o> bne
® 1d
C° 1 ® addi
©) add
D. 1.25 e
® 1d
E. 1.5 addl
4D add
@ bne

X1, 0(X10)
X106, X10, 8
X20, X20, X1
X160, X2, LOOP
X1, 0(X10)
X106, X10, 8
X20, X20, X1
X106, X2, LOOP
X1, 0(X10)
X106, X10, 8
X20, X20, X1
X109, X2, LOOP 48

a@@
(15) (16

3 cycles for every 4
instructions

- 15

What about “lin list”

lll

[esgsos] ()

0 [[wechgoms I ..

Static instructions Dynamic instructions § (9

o0P: 19 x10, 8(xt0) © tr sio ooy SRS wefoos]
addi X7, X7, 1 is low because of data Ty (17

bne X10, X0, LOOP dependencies | Sy At sl PO
1d X10, 8(X10) - fVastedsiots

addi X7, X7, 1
bne X10, X0, LOOP
1d X106, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP

ONONONONONONONONO

49

Demo: ILP within a program

- perf is a tool that captures performance counters of your
processors and can generate results like branch mis-prediction
rate, cache miss rates and ILP.

50

Simultaneous multithreading

Simultaneous multithreading

- The processor can schedule instructions from different
threads/processes/programs

- Fetch instructions from different threads/processes to fill the
not utilized part of pipeline

- Exploit "thread level parallelism” (TLP) to solve the problem of
iInsufficient ILP in a single thread

- You need to create an illusion of multiple processors for OSs

52

ONONONONONBONONONOC

Simultaneous multithreading

1d X10, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP

1d X1, 9(X10)
addi X10, X10, 8
add X20, X20, X1
bne X10, X2, LOOP
1d X1, 0(X19)
addi X10, X10, 8
add X20, X20, X1
bne X100, X2, LOOP
1d X1, 0(X19)
addi X190, X10, 8
add X20, X20, X1
bne X10, X2, LOOP

Q
-
Q
-
O
o
R,
]
Q
-
-
ajd
(/p)
=

Architectural support for simultaneous multithreading

- To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?

® Program counter

@ Register mapping tables

® Physical registers

@ ALUs

® Data cache

® Reorder buffer/Instruction Queue
A. 2

moow

3
.4
5
6

54

Architectural support for simultaneous multithreg

AR
— RSt

- To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?

® Program counter

@ Register mapping tables

® Physical registers

@ ALUs

® Data cache

® Reorder buffer/Instruction Queue
A. 2

moow

3
.4
5
6

55

Architectural support for simultaneous multithreading

- To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?

® Program counter — you need to have one for each context
@ Register mapping tables — you need to have one for each context

® Physical registers — you can share

@ ALUs — you can share

® Data cache — you can share

® Reorder buffer/Instruction Queue

A 2 — you heed to indicate which context the instruction is from

56

SuperScalar Processor w/ BDB

Fetch/decode instruction

Renaming Unresolved _Prsical . -'
. Branch X1 register # o3 [
logic X2 P4 Bh I
.v—.] Register - ylzlt(:s
- —= mapping table W
instruction— |
= Queue =
Address Integer Floating- Floating- IBranzch
Resolution ALU Point Adder Point Mul/Div
Sv88 S
— Load — — Store

— Queue - — Queue -
Address

SMT SuperScalar Processor w/RO
m Fetch/ physical register # :

decode | Renaming Reglster
M|nstructlo logic mapping table #1
 Pivecalieg PS hysical

vaI|

E - Register - Registers
—Instruction — mapping table #2 - | |
= Queue =
Address Integer Floating- Floating- I 1
Resolution ALU Point Adder Point Mul/Div
Sv&8 g
— Load — — Store

— Queue - — Queue -
Address

SMT

- How many of the following about SMT are correct?

® SMT makes processors with deep pipelines more tolerable to mis-predicted
branches

@ SMT can improve the throughput of a single-threaded application

® SMT processors can better utilize hardware during cache misses comparing with
superscalar processors with the same issue width

@ SMT processors can have higher cache miss rates comparing with superscalar
processors with the same cache sizes when executing the same set of applications.

O

mooOwe
WD -

59

SMT

- How many of the following about SMT are correct?

® SMT makes processors with deep pipelines more tolerable to mis-predicted
branches

@ SMT can improve the throughput of a single-threaded application

® SMT processors can better utilize hardware during cache misses comparing with
superscalar processors with the same issue width

@ SMT processors can have higher cache miss rates comparing with superscalar
processors with the same cache sizes when executing the same set of applications.

O

mooOwe
WD -

60

SMT

- How many of the following about SMT are correct?

@ SMT makes processors with deep pipelines more tolerable to mis-predicted
branche SWe can execute from other threads/contexts instead of the current one

hurt, b/c you are sharing resource with other threads.

@ SMT canimprove the throughput of a single-threaded application

® SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width We can execute from other threads/
contexts instead of the current one

@ SMT processors can have higher cache miss rates comparing with superscalar
processors with the same cache sizes when executing the same set of applications.

b/c we're sharing the cache

o|l0 @ »
RIWOIN —m O

m

61

Announcement

- Project due next Monday
- Reading quiz due this Wednesday
- Assignment #5 will be up tomorrow — start EARLY!!!

- IEVAL, starting tomorrow until 12/11

- Please fill the survey to let us know your opinion!

- Don't forget to take a screenshot of your submission and submit through iLearn — it counts as a full credit
assignment

- We will drop your lowest 2 assignment grades

. Final Exam

- Starting from 12/10 to 12/15 11:59pm (we won't provide any technical support after 12pm 12/15), any
consecutive 180 minutes you pick

- Similar to the midterm, but more time and about 1.5x longer

- Will release a sample final at the end of the last lecture

. Office Hours on Zoom (the office hour link, not the lecture one)
- Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p

. Quan Fan: F 1p-3p

/8

Computer

Engineering

