
Multithreaded Architectures and 
Programming on Multithreaded 

Architectures
Hung-Wei



SuperScalar Processor w/ ROB

2

Instruction 
Queue

Fetch/decode instruction
Unresolved

Branch

Address Data
Memory

P1 
P2 
P3 
P4 
P5 
P6 
… 
…

Physical 
Registers

va
lid

 
va

lue

physical 
register #X1

X2
X3
…Register 

mapping table

Renaming 
logic

Address 
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

 

Va
lue

Ad
dr.

 

De
st

Re
g.

Load
Queue

Store
Queue



Recap: What about “linked list”

3

LOOP: ld   X10, 8(X10) 
      addi  X7, X7, 1 
      bne  X10, X0, LOOP  

Static instructions Dynamic instructions
① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP

Ins
tru

cti
on

 Qu
eu

e

1

3

2

5

7

1 2
3 4
5 6
7 8
9 4

6

8

910

11ILP is low because of data 
dependencies

Wasted slots

Wasted slots
Wasted slots

Wasted slots

Wasted slots
Wasted slots



• perf is a tool that captures performance counters of your 
processors and can generate results like branch mis-prediction 
rate, cache miss rates and ILP.

4

Demo: ILP within a program



Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington

5



SMT SuperScalar Processor w/ ROB

6

Instruction 
Queue

Fetch/
decode 

instruction

Address Data
Memory

P1 
P2 
P3 
P4 
P5 
P6 
… 
…

Physical 
Registers

va
lid

 
va

luephysical register #X1
X2
X3
…
Register 

mapping table #1Renaming 
logic

Address 
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

 

Va
lue

Ad
dr.

 

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…
Register 

mapping table #2

PC #1
PC #2



• Improve the throughput of execution 
• May increase the latency of a single thread 

• Less branch penalty per thread 
• Increase hardware utilization 
• Simple hardware design: Only need to duplicate PC/Register 
Files 

• Real Case: 
• Intel HyperThreading (supports up to two threads per core) 

• Intel Pentium 4, Intel Atom, Intel Core i7 
• AMD RyZen

7

SMT



SMT SuperScalar Processor w/ ROB

8

Instruction 
Queue

Fetch/
decode 

instruction

Address Data
Memory

P1 
P2 
P3 
P4 
P5 
P6 
… 
…

Physical 
Registers

va
lid

 
va

luephysical register #X1
X2
X3
…
Register 

mapping table #1Renaming 
logic

Address 
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

 

Va
lue

Ad
dr.

 

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…
Register 

mapping table #2

PC #1
PC #2

O(IW4)



• Chip Multiprocessor 
• Programming in multithreaded architectures

9

Outline



Wider-issue processors won’t give you much more

10



The pipelines of Modern 
Processors

11



Intel Skylake

12

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-2

2.1 THE SKYLAKE MICROARCHITECTURE 
The Skylake microarchitecture builds on the successes of the Haswell and Broadwell microarchitectures. 
The basic pipeline functionality of the Skylake microarchitecture is depicted in Figure 2-1. 

The Skylake microarchitecture offers the following enhancements:
• Larger internal buffers to enable deeper OOO execution and higher cache bandwidth.
• Improved front end throughput.
• Improved branch predictor.
• Improved divider throughput and latency.
• Lower power consumption.
• Improved SMT performance with Hyper-Threading Technology.
• Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an 
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. A 
four-core configuration can be supported similar to the arrangement shown in Figure 2-3.

Figure 2-1.  CPU Core Pipeline Functionality of the Skylake Microarchitecture 

32K L1 Instruction 
Cache

MSROM Decoded Icache 
(DSB)

Legacy Decode
Pipeline

Instruction Decode Queue (IDQ,, or micro-op queue)

Allocate/Rename/Retire/MoveElimination/ZeroIdiom

32K L1 Data Cache

256K L2 Cache 
(Unified)

Int ALU, 
Vec FMA,
Vec MUL,
Vec Add,
Vec ALU,
Vec Shft,
Divide,

Branch2 

Port 2
LD/STA

Scheduler

BPU

Port 0

Int ALU, 
Fast LEA,
Vec FMA,
Vec MUL,
Vec Add,
Vec ALU,
Vec Shft,
Int MUL,
Slow LEA 

Int ALU, 
Fast LEA,
Vec SHUF,
Vec ALU,

CVT

Int ALU, 
Int Shft,
Branch1,

Port 3
LD/STA

Port 4
STD

Port 7
STA

Port 1 Port 5 Port 6

5 uops/cycle4 uops/cycle 6 uops/cycle

4-issue integer pipeline 4-issue memory pipeline



13



Intel SkyLake

14

Core
L2 $

Core
L2 $

Core
L2 $

Core
L2 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $



Core

Core

Core

Core

Core

Core

Core

Core

15

L3 $L3 $ L2
 $

L2
 $ L2 $

L2 $L2
 $

L2
 $ L2 $

L2 $



The case for a Single-Chip Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung 

Chang
Stanford University

16



Wide-issue SS processor v.s. multiple narrower-issue SS processors

17

6-way SS processor — 
3 INT ALUs, 3 FP ALUs

I-cache: 32KB, D-cache: 32KB
4 2-issue SS processor — 
4* (1 INT ALUs, 1 FP ALUs

I-cache: 8KB, D-cache: 8KB)



Intel SkyLake

18

Core
L2 $

Core
L2 $

Core
L2 $

Core
L2 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $



Concept of CMP

19

Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$



• Both CMP & SMT exploit thread-level or task-level parallelism. Assuming 
both application X and application Y have similar instruction combination, 
say 60% ALU, 20% load/store, and 20% branches. Consider two processors:

P1: CMP with a 2-issue pipeline on each core. Each core has a private L1 
32KB D-cache

P2: SMT with a 4-issue pipeline. 64KB L1 D-cache

Which one do you think is better? 
A. P1 
B. P2

20

SMT v.s. CMPPoll close in



• Both CMP & SMT exploit thread-level or task-level parallelism. Assuming 
both application X and application Y have similar instruction combination, 
say 60% ALU, 20% load/store, and 20% branches. Consider two processors:

P1: CMP with a 2-issue pipeline on each core. Each core has a private L1 
32KB D-cache

P2: SMT with a 4-issue pipeline. 64KB L1 D-cache

Which one do you think is better? 
A. P1 
B. P2

21

SMT v.s. CMPPoll close in



• Both CMP & SMT exploit thread-level or task-level parallelism. Assuming 
both application X and application Y have similar instruction combination, 
say 60% ALU, 20% load/store, and 20% branches. Consider two processors:

P1: CMP with a 2-issue pipeline on each core. Each core has a private L1 
32KB D-cache

P2: SMT with a 4-issue pipeline. 64KB L1 D-cache

Which one do you think is better? 
A. P1 
B. P2

22

SMT v.s. CMP



Architectural Support for Parallel 
Programming

23



• To exploit parallelism you need to break your computation into multiple 
“processes” or multiple “threads” 

• Processes (in OS/software systems) 
• Separate programs actually running (not sitting idle) on your computer at the same 
time. 

• Each process will have its own virtual memory space and you need explicitly exchange 
data using inter-process communication APIs 

• Threads (in OS/software systems) 
• Independent portions of your program that can run in parallel 
• All threads share the same virtual memory space 

• We will refer to these collectively as “threads” 
• A typical user system might have 1-8 actively running threads. 
• Servers can have more if needed (the sysadmins will hopefully configure it that way)

24

Parallel programming



What software thinks about “multiprogramming” hardware

25

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$



What software thinks about “multiprogramming” hardware

26

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

for(i=0;i<size/4;i++) 
    sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++) 
    sum += a[i]; for(i=size/2;i<3*size/4;i++) 

    sum += a[i];

for(i=3*size/4;i<size;i++) 
    sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF

Others do not see the updated value in the 
cache and keep working — incorrect result!



• Coherency — Guarantees all processors see the same value 
for a variable/memory address in the system when the 
processors need the value at the same time 
• What value should be seen 

• Consistency — All threads see the change of data in the same 
order 
• When the memory operation should be done

27

Coherency & Consistency



• Snooping protocol 
• Each processor broadcasts / listens to cache misses 

• State associate with each block (cacheline) 
• Invalid 

• The data in the current block is invalid 
• Shared 

• The processor can read the data 
• The data may also exist on other processors 

• Exclusive 
• The processor has full permission on the data 
• The processor is the only one that has up-to-date data

28

Simple cache coherency protocol



1 1 0x29 IIJJKKLLMMNNOOPP
1 1 0xDE QQRRSSTTUUVVWWXX
1 0 0x10 YYZZAABBCCDDEEFF
0 1 0x8A AABBCCDDEEGGFFHH
1 1 0x60 IIJJKKLLMMNNOOPP
1 1 0x70 QQRRSSTTUUVVWWXX
0 1 0x10 QQRRSSTTUUVVWWXX
0 1 0x11 YYZZAABBCCDDEEFF

Coherent way-associative cache

29

1 1 0x00 AABBCCDDEEGGFFHH
1 1 0x10 IIJJKKLLMMNNOOPP
1 0 0xA1 QQRRSSTTUUVVWWXX
0 1 0x10 YYZZAABBCCDDEEFF
1 1 0x31 AABBCCDDEEGGFFHH
1 1 0x45 IIJJKKLLMMNNOOPP
0 1 0x41 QQRRSSTTUUVVWWXX
0 1 0x68 YYZZAABBCCDDEEFF

datatagdatatag

memory address:      0x0   8   2   4
memory address:      0b0000100000100100

block
offset

set
indextag

=? =?0x1   0
hit? hit?

V DV D
01
01
01
00
10
10
10
10

01
01
01
00
10
10
10
10

St
ate

s

St
ate

s



Snooping Protocol

30

Invalid Shared

Exclusive

read miss(processor)

wr
ite

 m
iss

 
(p

roc
es

so
r)

write miss(bus)

write 
requ

est(
proc

ess
or) 

wr
ite

 m
iss

(b
us

) 
wr

ite
 ba

ck
 da

ta

read
 miss(

bus
) 

write 
bac

k da
ta

read 
miss/hit

read/write 
miss (bus)

write hit



What happens when we write in coherent caches?

31

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

for(i=0;i<size/4;i++) 
    sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++) 
    sum += a[i]; for(i=size/2;i<3*size/4;i++) 

    sum += a[i];

for(i=3*size/4;i<size;i++) 
    sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF write miss/
invalidate

sum = 0 sum = 0 sum = 0

read miss

sum = 0xDEADBEEF

write back
sum = 0xDEADBEEFsum = 0xDEADBEEF



• Assuming that we are running the following code on a CMP with a cache coherency protocol, how 
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than 
10 numbers)

! 0 1 2 3 4 5 6 7 8 9 
" 1 2 5 9 3 6 8 10 12 13 
# 1 1 1 1 1 1 1 1 64 100  
$ 1 1 1 1 1 1 1 1 1 100 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

32

Cache coherency

thread 1 thread 2

while(1) 
    printf(“%d ”,a);

while(1) 
    a++;

Poll close in



• Assuming that we are running the following code on a CMP with a cache coherency protocol, how 
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than 
10 numbers)

! 0 1 2 3 4 5 6 7 8 9 
" 1 2 5 9 3 6 8 10 12 13 
# 1 1 1 1 1 1 1 1 64 100  
$ 1 1 1 1 1 1 1 1 1 100 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

33

Cache coherency

thread 1 thread 2

while(1) 
    printf(“%d ”,a);

while(1) 
    a++;

Poll close in



• Assuming that we are running the following code on a CMP with a cache coherency protocol, how 
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than 
10 numbers)

! 0 1 2 3 4 5 6 7 8 9 
" 1 2 5 9 3 6 8 10 12 13 
# 1 1 1 1 1 1 1 1 64 100  
$ 1 1 1 1 1 1 1 1 1 100 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

34

Cache coherency

thread 1 thread 2

while(1) 
    printf(“%d ”,a);

while(1) 
    a++;



Cache coherency

35

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0]=0

A[0] = 0xDEADBEEF 
A[1] = 0 
A[2] = 0 
A[3] = 0 write miss/

invalidate

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0 
A[1] = 0 
A[2] = 0 
A[3] = 0

read miss

A[0]=0xDEADBEEF

write back

A[0] = 0xDEADBEEF 
A[1] = 0 
A[2] = 0 
A[3] = 0

A[0] = 0xDEADBEEF 
A[1] = 0 
A[2] = 0 
A[3] = 0



• Comparing implementations of thread_vadd — L and R, please identify which one will be 
performing better and why

A. L is better, because the cache miss rate is lower 
B. R is better, because the cache miss rate is lower 
C. L is better, because the instruction count is lower 
D. R is better, because the instruction count is lower 
E. Both are about the same

36

Performance comparison

  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
  { 
    tids[i] = i; 
    pthread_create(&thread[i], NULL, threaded_vadd, &tids[i]); 
  } 
  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
    pthread_join(thread[i], NULL);

Main thread

Version L Version R
void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

Poll close in



• Comparing implementations of thread_vadd — L and R, please identify which one will be 
performing better and why

A. L is better, because the cache miss rate is lower 
B. R is better, because the cache miss rate is lower 
C. L is better, because the instruction count is lower 
D. R is better, because the instruction count is lower 
E. Both are about the same

37

Performance comparison

  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
  { 
    tids[i] = i; 
    pthread_create(&thread[i], NULL, threaded_vadd, &tids[i]); 
  } 
  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
    pthread_join(thread[i], NULL);

Main thread

Version L Version R
void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

Poll close in



L v.s. R

38

Version L Version R

c

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

c



• 3Cs: 
• Compulsory, Conflict, Capacity 

• Coherency miss: 
• A “block” invalidated because of the sharing among processors.

39

4Cs of cache misses



• True sharing 
• Processor A modifies X, processor B also want to access X.  

• False sharing 
• Processor A modifies X, processor B also want to access Y.  
However, Y is invalidated because X and Y are in the same block!

40

False sharing



• Comparing implementations of thread_vadd — L and R, please identify which one will be 
performing better and why

A. L is better, because the cache miss rate is lower 
B. R is better, because the cache miss rate is lower 
C. L is better, because the instruction count is lower 
D. R is better, because the instruction count is lower 
E. Both are about the same

41

Performance comparison

  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
  { 
    tids[i] = i; 
    pthread_create(&thread[i], NULL, threaded_vadd, &tids[i]); 
  } 
  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
    pthread_join(thread[i], NULL);

Main thread

Version L Version R
void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}



• Consider the given program. You can safely assume the caches are 
coherent. How many of the following outputs will you see? 
! (0, 0) 
" (0, 1) 
# (1, 0) 
$ (1, 1) 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

42

Again — how many values are possible?

int main() { 
  int i; 
  pthread_t thread[2]; 
  pthread_create(&thread[0], NULL, modifya, NULL); 
  pthread_create(&thread[1], NULL, modifyb, NULL); 
  pthread_join(thread[0], NULL); 
  pthread_join(thread[1], NULL); 
  fprintf(stderr,”(%d, %d)\n",x,y); 
  return 0; 
}

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include <unistd.h> 

volatile int a,b; 
volatile int x,y; 
volatile int f; 
void* modifya(void *z) { 
  a=1; 
  x=b; 
  return NULL; 
} 
void* modifyb(void *z) { 
  b=1; 
  y=a; 
  return NULL; 
} 

Poll close in



• Consider the given program. You can safely assume the caches are 
coherent. How many of the following outputs will you see? 
! (0, 0) 
" (0, 1) 
# (1, 0) 
$ (1, 1) 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

43

Again — how many values are possible?

int main() { 
  int i; 
  pthread_t thread[2]; 
  pthread_create(&thread[0], NULL, modifya, NULL); 
  pthread_create(&thread[1], NULL, modifyb, NULL); 
  pthread_join(thread[0], NULL); 
  pthread_join(thread[1], NULL); 
  fprintf(stderr,”(%d, %d)\n",x,y); 
  return 0; 
}

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include <unistd.h> 

volatile int a,b; 
volatile int x,y; 
volatile int f; 
void* modifya(void *z) { 
  a=1; 
  x=b; 
  return NULL; 
} 
void* modifyb(void *z) { 
  b=1; 
  y=a; 
  return NULL; 
} 

Poll close in



Possible scenarios

44

Thread 1 
a=1; 
x=b;

Thread 2 
 
 
b=1; 
y=a;

(0,1)
Thread 1 
 
 
a=1; 
x=b;

Thread 2 
b=1; 
y=a;

(1,0)

Thread 1 
a=1; 
 
 
x=b;

Thread 2 
 
b=1; 
y=a;

(1,1)
Thread 1 
 
x=b; 
a=1;

Thread 2 
y=a; 
 
 
b=1; 

(0,0)

OoO Scheduling!



• Processor/compiler may reorder your memory operations/
instructions 
• Coherence protocol can only guarantee the update of the same 
memory address 

• Processor can serve memory requests without cache miss first 
• Compiler may store values in registers and perform memory 
operations later  

• Each processor core may not run at the same speed (cache 
misses, branch mis-prediction, I/O, voltage scaling and etc..) 

• Threads may not be executed/scheduled right after it’s spawned
45

Why (0,0)?



• Consider the given program. You can safely assume the caches are 
coherent. How many of the following outputs will you see? 
! (0, 0) 
" (0, 1) 
# (1, 0) 
$ (1, 1) 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

46

Again — how many values are possible?

int main() { 
  int i; 
  pthread_t thread[2]; 
  pthread_create(&thread[0], NULL, modifya, NULL); 
  pthread_create(&thread[1], NULL, modifyb, NULL); 
  pthread_join(thread[0], NULL); 
  pthread_join(thread[1], NULL); 
  fprintf(stderr,”(%d, %d)\n",x,y); 
  return 0; 
}

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include <unistd.h> 

volatile int a,b; 
volatile int x,y; 
volatile int f; 
void* modifya(void *z) { 
  a=1; 
  x=b; 
  return NULL; 
} 
void* modifyb(void *z) { 
  b=1; 
  y=a; 
  return NULL; 
} 



• Project due next Monday 
• Last reading quiz due next Monday 
• Assignment #5 due next Wednesday 
• iEVAL, starting tomorrow until 12/11 

• Please fill the survey to let us know your opinion! 
• Don’t forget to take a screenshot of your submission and submit through iLearn — it counts as a full credit assignment 
• We will drop your lowest 2 assignment grades 

• Talk by Reetu Das next Monday — attend and submit a screenshot, count as a full credit reading quiz 
• Final Exam 

• Starting from 12/10 to 12/15 11:59pm (we won’t provide any technical support after 12pm 12/15), any consecutive 180 
minutes you pick 

• Similar to the midterm, but more time and about 1.5x longer 
• Two of the questions will be comprehensive exam questions 
• Will release a sample final at the end of the last lecture 

• Office Hours on Zoom (the office hour link, not the lecture one) 
• Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p 
• Quan Fan: F 1p-3p

49

Announcement



50
ͺͻͥ

Computer
Science &
Engineering

203


