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SuperScalar Processor w/ ROB
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Recap: What about “linked list”
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LOOP: ld   X10, 8(X10) 
      addi  X7, X7, 1 
      bne  X10, X0, LOOP  

Static instructions Dynamic instructions
① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP
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• perf is a tool that captures performance counters of your 
processors and can generate results like branch mis-prediction 
rate, cache miss rates and ILP.
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Demo: ILP within a program



Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington
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SMT SuperScalar Processor w/ ROB
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• Improve the throughput of execution 
• May increase the latency of a single thread 

• Less branch penalty per thread 
• Increase hardware utilization 
• Simple hardware design: Only need to duplicate PC/Register 

Files 
• Real Case: 

• Intel HyperThreading (supports up to two threads per core) 
• Intel Pentium 4, Intel Atom, Intel Core i7 

• AMD RyZen
7

SMT



SMT SuperScalar Processor w/ ROB
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• Chip Multiprocessor 
• Programming in multithreaded architectures
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Outline



Wider-issue processors won’t give you much more
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The pipelines of Modern 
Processors
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Intel Skylake
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INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-2

2.1 THE SKYLAKE MICROARCHITECTURE 
The Skylake microarchitecture builds on the successes of the Haswell and Broadwell microarchitectures. 
The basic pipeline functionality of the Skylake microarchitecture is depicted in Figure 2-1. 

The Skylake microarchitecture offers the following enhancements:
• Larger internal buffers to enable deeper OOO execution and higher cache bandwidth.
• Improved front end throughput.
• Improved branch predictor.
• Improved divider throughput and latency.
• Lower power consumption.
• Improved SMT performance with Hyper-Threading Technology.
• Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an 
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. A 
four-core configuration can be supported similar to the arrangement shown in Figure 2-3.

Figure 2-1.  CPU Core Pipeline Functionality of the Skylake Microarchitecture 
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Intel SkyLake
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The case for a Single-Chip Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung 

Chang
Stanford University
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Wide-issue SS processor v.s. multiple narrower-issue SS processors
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6-way SS processor — 
3 INT ALUs, 3 FP ALUs

I-cache: 32KB, D-cache: 32KB
4 2-issue SS processor — 
4* (1 INT ALUs, 1 FP ALUs

I-cache: 8KB, D-cache: 8KB)



Intel SkyLake
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Concept of CMP

19

Processor

Last-level $ (LLC)

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$



• Both CMP & SMT exploit thread-level or task-level parallelism. Assuming 
both application X and application Y have similar instruction combination, 
say 60% ALU, 20% load/store, and 20% branches. Consider two processors:

P1: CMP with a 2-issue pipeline on each core. Each core has a private L1 
32KB D-cache

P2: SMT with a 4-issue pipeline. 64KB L1 D-cache

Which one do you think is better? 
A. P1 
B. P2

20

SMT v.s. CMPPoll close in
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SMT v.s. CMP



Architectural Support for Parallel 
Programming

23



• To exploit parallelism you need to break your computation into multiple 
“processes” or multiple “threads” 

• Processes (in OS/software systems) 
• Separate programs actually running (not sitting idle) on your computer at the same 

time. 
• Each process will have its own virtual memory space and you need explicitly exchange 

data using inter-process communication APIs 
• Threads (in OS/software systems) 

• Independent portions of your program that can run in parallel 
• All threads share the same virtual memory space 

• We will refer to these collectively as “threads” 
• A typical user system might have 1-8 actively running threads. 
• Servers can have more if needed (the sysadmins will hopefully configure it that way)

24

Parallel programming



What software thinks about “multiprogramming” hardware
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What software thinks about “multiprogramming” hardware
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for(i=0;i<size/4;i++) 
    sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++) 
    sum += a[i]; for(i=size/2;i<3*size/4;i++) 

    sum += a[i];

for(i=3*size/4;i<size;i++) 
    sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF

Others do not see the updated value in the 
cache and keep working — incorrect result!



• Coherency — Guarantees all processors see the same value 
for a variable/memory address in the system when the 
processors need the value at the same time 
• What value should be seen 

• Consistency — All threads see the change of data in the same 
order 
• When the memory operation should be done

27

Coherency & Consistency



• Snooping protocol 
• Each processor broadcasts / listens to cache misses 

• State associate with each block (cacheline) 
• Invalid 

• The data in the current block is invalid 
• Shared 

• The processor can read the data 
• The data may also exist on other processors 

• Exclusive 
• The processor has full permission on the data 
• The processor is the only one that has up-to-date data

28

Simple cache coherency protocol



1 1 0x29 IIJJKKLLMMNNOOPP
1 1 0xDE QQRRSSTTUUVVWWXX
1 0 0x10 YYZZAABBCCDDEEFF
0 1 0x8A AABBCCDDEEGGFFHH
1 1 0x60 IIJJKKLLMMNNOOPP
1 1 0x70 QQRRSSTTUUVVWWXX
0 1 0x10 QQRRSSTTUUVVWWXX
0 1 0x11 YYZZAABBCCDDEEFF

Coherent way-associative cache
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Snooping Protocol
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What happens when we write in coherent caches?
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for(i=0;i<size/4;i++) 
    sum += a[i];

sum = 0
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• Assuming that we are running the following code on a CMP with a cache coherency protocol, how 
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than 
10 numbers)

! 0 1 2 3 4 5 6 7 8 9 
" 1 2 5 9 3 6 8 10 12 13 
# 1 1 1 1 1 1 1 1 64 100  
$ 1 1 1 1 1 1 1 1 1 100 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

32

Cache coherency

thread 1 thread 2

while(1) 
    printf(“%d ”,a);

while(1) 
    a++;

Poll close in



• Assuming that we are running the following code on a CMP with a cache coherency protocol, how 
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than 
10 numbers)

! 0 1 2 3 4 5 6 7 8 9 
" 1 2 5 9 3 6 8 10 12 13 
# 1 1 1 1 1 1 1 1 64 100  
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Cache coherency

thread 1 thread 2

while(1) 
    printf(“%d ”,a);

while(1) 
    a++;

Poll close in



• Assuming that we are running the following code on a CMP with a cache coherency protocol, how 
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than 
10 numbers)

! 0 1 2 3 4 5 6 7 8 9 
" 1 2 5 9 3 6 8 10 12 13 
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Cache coherency

thread 1 thread 2

while(1) 
    printf(“%d ”,a);

while(1) 
    a++;



Cache coherency
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A[3] = 0



• Comparing implementations of thread_vadd — L and R, please identify which one will be 
performing better and why

A. L is better, because the cache miss rate is lower 
B. R is better, because the cache miss rate is lower 
C. L is better, because the instruction count is lower 
D. R is better, because the instruction count is lower 
E. Both are about the same

36

Performance comparison

  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
  { 
    tids[i] = i; 
    pthread_create(&thread[i], NULL, threaded_vadd, &tids[i]); 
  } 
  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
    pthread_join(thread[i], NULL);

Main thread

Version L Version R
void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

Poll close in
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Performance comparison

  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
  { 
    tids[i] = i; 
    pthread_create(&thread[i], NULL, threaded_vadd, &tids[i]); 
  } 
  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
    pthread_join(thread[i], NULL);

Main thread

Version L Version R
void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

Poll close in



L v.s. R
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Version L Version R

c

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

c



• 3Cs: 
• Compulsory, Conflict, Capacity 

• Coherency miss: 
• A “block” invalidated because of the sharing among processors.

39

4Cs of cache misses



• True sharing 
• Processor A modifies X, processor B also want to access X.  

• False sharing 
• Processor A modifies X, processor B also want to access Y.  

However, Y is invalidated because X and Y are in the same block!

40

False sharing



• Comparing implementations of thread_vadd — L and R, please identify which one will be 
performing better and why

A. L is better, because the cache miss rate is lower 
B. R is better, because the cache miss rate is lower 
C. L is better, because the instruction count is lower 
D. R is better, because the instruction count is lower 
E. Both are about the same

41

Performance comparison

  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
  { 
    tids[i] = i; 
    pthread_create(&thread[i], NULL, threaded_vadd, &tids[i]); 
  } 
  for(i = 0 ; i < NUM_OF_THREADS ; i++) 
    pthread_join(thread[i], NULL);

Main thread

Version L Version R
void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS) 
  { 
        c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}

void *threaded_vadd(void *thread_id) 
{ 
  int tid = *(int *)thread_id; 
  int i; 
  for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++) 
  { 
      c[i] = a[i] + b[i]; 
  } 
  return NULL; 
}



• Consider the given program. You can safely assume the caches are 
coherent. How many of the following outputs will you see? 
! (0, 0) 
" (0, 1) 
# (1, 0) 
$ (1, 1) 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

42

Again — how many values are possible?

int main() { 
  int i; 
  pthread_t thread[2]; 
  pthread_create(&thread[0], NULL, modifya, NULL); 
  pthread_create(&thread[1], NULL, modifyb, NULL); 
  pthread_join(thread[0], NULL); 
  pthread_join(thread[1], NULL); 
  fprintf(stderr,”(%d, %d)\n",x,y); 
  return 0; 
}

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include <unistd.h> 

volatile int a,b; 
volatile int x,y; 
volatile int f; 
void* modifya(void *z) { 
  a=1; 
  x=b; 
  return NULL; 
} 
void* modifyb(void *z) { 
  b=1; 
  y=a; 
  return NULL; 
} 

Poll close in
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Again — how many values are possible?

int main() { 
  int i; 
  pthread_t thread[2]; 
  pthread_create(&thread[0], NULL, modifya, NULL); 
  pthread_create(&thread[1], NULL, modifyb, NULL); 
  pthread_join(thread[0], NULL); 
  pthread_join(thread[1], NULL); 
  fprintf(stderr,”(%d, %d)\n",x,y); 
  return 0; 
}

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include <unistd.h> 

volatile int a,b; 
volatile int x,y; 
volatile int f; 
void* modifya(void *z) { 
  a=1; 
  x=b; 
  return NULL; 
} 
void* modifyb(void *z) { 
  b=1; 
  y=a; 
  return NULL; 
} 

Poll close in



Possible scenarios

44

Thread 1 
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OoO Scheduling!



• Processor/compiler may reorder your memory operations/
instructions 
• Coherence protocol can only guarantee the update of the same 

memory address 
• Processor can serve memory requests without cache miss first 
• Compiler may store values in registers and perform memory 

operations later  
• Each processor core may not run at the same speed (cache 

misses, branch mis-prediction, I/O, voltage scaling and etc..) 
• Threads may not be executed/scheduled right after it’s spawned

45

Why (0,0)?



• Consider the given program. You can safely assume the caches are 
coherent. How many of the following outputs will you see? 
! (0, 0) 
" (0, 1) 
# (1, 0) 
$ (1, 1) 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Again — how many values are possible?

int main() { 
  int i; 
  pthread_t thread[2]; 
  pthread_create(&thread[0], NULL, modifya, NULL); 
  pthread_create(&thread[1], NULL, modifyb, NULL); 
  pthread_join(thread[0], NULL); 
  pthread_join(thread[1], NULL); 
  fprintf(stderr,”(%d, %d)\n",x,y); 
  return 0; 
}

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include <unistd.h> 

volatile int a,b; 
volatile int x,y; 
volatile int f; 
void* modifya(void *z) { 
  a=1; 
  x=b; 
  return NULL; 
} 
void* modifyb(void *z) { 
  b=1; 
  y=a; 
  return NULL; 
} 



• Project due next Monday 
• Last reading quiz due next Monday 
• Assignment #5 due next Wednesday 
• iEVAL, starting tomorrow until 12/11 

• Please fill the survey to let us know your opinion! 
• Don’t forget to take a screenshot of your submission and submit through iLearn — it counts as a full credit assignment 
• We will drop your lowest 2 assignment grades 

• Talk by Reetu Das next Monday — attend and submit a screenshot, count as a full credit reading quiz 
• Final Exam 

• Starting from 12/10 to 12/15 11:59pm (we won’t provide any technical support after 12pm 12/15), any consecutive 180 
minutes you pick 

• Similar to the midterm, but more time and about 1.5x longer 
• Two of the questions will be comprehensive exam questions 
• Will release a sample final at the end of the last lecture 

• Office Hours on Zoom (the office hour link, not the lecture one) 
• Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p 
• Quan Fan: F 1p-3p

49

Announcement



50
ͺͻͥ

Computer
Science &
Engineering

203


