
Performance (II): Amdahl’s Law
and it’s implications

Hung-Wei Tseng

Recap: von Neumman Architecture

2

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

• The simplest kind of performance
• Shorter execution time means better performance
• Usually measured in seconds

Processor
PC

120007a30: 0f00bb27 ldah gp,15(t12)
120007a34: 509cbd23 lda gp,-25520(gp)
120007a38: 00005d24 ldah t1,0(gp)
120007a3c: 0000bd24 ldah t4,0(gp)
120007a40: 2ca422a0 ldl t0,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: 00003d24 ldah t0,0(gp)
120007a4c: 2ca4e2b3 stl zero,-23508(t1)
120007a50: 0004ff47 clr v0
120007a54: 28a4e5b3 stl zero,-23512(t4)
120007a58: 20a421a4 ldq t0,-23520(t0)
120007a5c: 0e0020e4 beq t0,120007a98
120007a60: 0204e147 mov t0,t1
120007a64: 0304ff47 clr t2
120007a68: 0500e0c3 br 120007a80

instruction memory

How long is it take to
execution each of these?

How many of these?

3

Recap: Execution Time

clock

Instructions
Program

Cycles
Instruction × Seconds

Cycle

Recap: CPU Performance Equation

4

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT

Performance = 1
Execution Time

1
Frequency(i . e . , clock rate)1GHz = 109Hz = 1

109 sec per cycle = 1 ns per cycle

• The relative performance between two machines, X and Y. Y is n
times faster than X

• The speedup of Y over X

5

Recap: Speedup

n = Execution TimeX

Execution TimeY

Speedup = Execution TimeX

Execution TimeY

• Performance equation consists of the following three factors
! IC
" CPI
CT

 How many can a programmer affect?
A. 0
B. 1
C. 2
D. 3

6

Recap: How programmer affects performance?

• Performance equation consists of the following three factors
! IC
" CPI
CT

 How many can the programming language affect?
A. 0
B. 1
C. 2
D. 3

7

Recap: How programming languages affect performance

Team scores

8

0 1 1 1

• What affects each factor in “Performance Equation” (cont.)
• Amdahl’s law and it’s implications

9

Outline

• Which of the following programming language needs to
highest instruction count to print “Hello, world!” on screen?

A. C
B. C++
C. Java
D. Perl
E. Python

10

Programming languagesPoll close in

• How many instructions are there in “Hello, world!”

11

Programming languages

Instruction count LOC Ranking

C 600k 6 1

C++ 3M 6 2

Java ~210M 8 5

Perl 10M 4 3

Python ~30M 1 4

• Which of the following programming language needs to
highest instruction count to print “Hello, world!” on screen?

A. C
B. C++
C. Java
D. Perl
E. Python

12

Programming languages

Recap: How my “C code” becomes a “program”

13

Source Code

Compiler
(e.g., gcc)

Program
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s

Linker

Objects, Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

One Time Cost!

Recap: How my “Java code” becomes a “program”

14

Compiler
(e.g., javac)

Jave Bytecode (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

Source Code

Java Virtual
Machine (e.g., java)

Other (.class)
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

One Time Cost!Everytime when we run it!

Recap: How my “Python code” becomes a “program”

15

Interpreter
(e.g., python)

Source Code

Program
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s

Libraries
00c2e800
00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

cafebabe
00000033
001d0a00
06000f09
00100011
0800120a
00130014
07001507Ins

tru
cti

on
s

Everytime when we run
it!

• Performance equation consists of the following three factors
! IC
" CPI
CT

 How many can the programming language affect?
A. 0
B. 1
C. 2
D. 3

16

How programming languages affect performance

• Performance equation consists of the following three factors
! IC
" CPI
CT

 How many can the compiler affect?
A. 0
B. 1
C. 2
D. 3

17

How compilers affect performance
Poll close in

• Performance equation consists of the following three factors
! IC
" CPI
CT

 How many can the compiler affect?
A. 0
B. 1
C. 2
D. 3

18

How compilers affect performance
Poll close in

• gcc has different optimization levels.
• -O0 — no optimizations
• -O3 — typically the best-performing optimization

19

Revisited the demo with compiler optimizations!

 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

A B

• Compiler can reduce the instruction count, change CPI
— with “limited scope”

• Compiler CANNOT help improving “crummy” source code

20

Demo revisited — compiler optimization

 if(option)
 std::sort(data, data + arraySize);

 for (unsigned c = 0; c < arraySize*1000; ++c) {
 if (data[c%arraySize] >= INT_MAX/2)
 sum ++;
 }
 }

Compiler can never add this — only the programmer can!

• Algorithm complexity provides a good estimate on the
performance if —
• Every instruction takes exactly the same amount of time
• Every operation takes exactly the same amount of instructions

21

How about “computational complexity”

These are unlikely to be true

• IC (Instruction Count)
• ISA, Compiler, algorithm, programming language, programmer

• CPI (Cycles Per Instruction)
• Machine Implementation, microarchitecture, compiler, application, algorithm,

programming language, programmer
• Cycle Time (Seconds Per Cycle)

• Process Technology, microarchitecture, programmer
22

Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT

Amdahl’s Law — and It’s
Implication in the Multicore Era

23

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.

Amdahl’s Law

24

Speedupenhanced(f, s) = 1
(1 − f) + f

s

f — The fraction of time in the original program
s — The speedup we can achieve on f

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced

Amdahl’s Law

25

Execution Timebaseline = 1
f 1-f

1-ff/s

baseline

enhanced

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced
= 1

(1 − f) + f
s

Execution Timeenhanced = (1-f) + f/s

Speedupenhanced(f, s) = 1
(1 − f) + f

s

• Assume that we have an application composed with a total of 500000
instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.
• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions

by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What’s the performance improvement after this change?

A. No change
B. 1.25
C. 1.5
D. 2
E. None of the above

26

Recap: Speedup

ET = IC × CPI × CT
ETbaseline = (5 × 105) × (20% × 6 + 80% × 1) × 1

2 × 10−9 sec = 5−3

ETenhanced = (5 × 105) × (20% × 12 + 80% × 1) × 1
4 × 10−9 sec = 4−3

Speedup = Execution Timebaseline

Execution Timeenhanced

= 5
4 = 1.25

• Assume that we have an application composed with a total of 500000
instructions, in which 20% of them are the load/store instructions with an
average CPI of 6 cycles, and the rest instructions are integer instructions
with average CPI of 1 cycle when using a 2GHz processor.
• If we double the CPU clock rate to 4GHz that helps to accelerate all instructions

by 2x except that load/store instruction cannot be improved — their CPI will
become 12 cycles. What’s the performance improvement after this change?

27

Replay using Amdahl’s Law

How much time in load/store?
How much time in the rest?

500000 × (0.2 × 6) × 0.5 ns = 300000 ns → 60 %
500000 × (0.8 × 1) × 0.5 ns = 200000 ns → 40 %

Speedupenhanced(f, s) = 1
(1 − f) + f

s

Speedupenhanced(40 % ,2) = 1
(1 − 40%) + 40 %

2
= 1.25 ×

28

• Final Fantasy XV spends lots of time loading a
map — within which period that 95% of the
time on the accessing the H.D.D., the rest in the
operating system, file system and the I/O
protocol. If we replace the H.D.D. with a flash
drive, which provides 100x faster access time.
By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

29

Practicing Amdahl’s LawPoll close in

• Final Fantasy XV spends lots of time loading a
map — within which period that 95% of the
time on the accessing the H.D.D., the rest in the
operating system, file system and the I/O
protocol. If we replace the H.D.D. with a flash
drive, which provides 100x faster access time.
By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

30

Practicing Amdahl’s LawPoll close in

• Final Fantasy XV spends lots of time loading a
map — within which period that 95% of the
time on the accessing the H.D.D., the rest in the
operating system, file system and the I/O
protocol. If we replace the H.D.D. with a flash
drive, which provides 100x faster access time.
By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

31

Practicing Amdahl’s Law

Speedupenhanced(95 % ,100) = 1
(1 − 95%) + 95 %

100
= 16.81 ×

• We can apply Amdahl’s law for multiple optimizations
• These optimizations must be dis-joint!

• If optimization #1 and optimization #2 are dis-joint:

• If optimization #1 and optimization #2 are not dis-joint:

Amdahl’s Law on Multiple Optimizations

Speedupenhanced(fOpt1, fOpt2, sOpt1, sOpt2) = 1
(1 − fOpt1 − fOpt2) + f_Opt1

s_Opt1 + f_Opt2
s_Opt2

Speedupenhanced(fOnlyOpt1, fOnlyOpt2, fBothOpt1Opt2, sOnlyOpt1, sOnlyOpt2, sBothOpt1Opt2)

fOpt1 1-fOpt1-fOpt2fOpt2

fOnlyOpt1 1-fOnlyOpt1-fOnlyOpt2-fBothOpt1Opt2fOnlyOpt2 fBothOpt1Opt2

= 1
(1 − fOnlyOpt1 − fOnlyOpt2 − fBothOpt1Opt2) + + f_BothOpt1Opt2

s_BothOpt1Opt2 + f_OnlyOpt1
s_OnlyOpt1 + f_OnlyOpt2

s_OnlyOpt2

33

Practicing Amdahl’s Law (2)
• Final Fantasy XV spends lots of time loading a

map — within which period that 95% of the time
on the accessing the H.D.D., the rest in the
operating system, file system and the I/O protocol.
If we replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

Poll close in

34

Practicing Amdahl’s Law (2)
• Final Fantasy XV spends lots of time loading a

map — within which period that 95% of the time
on the accessing the H.D.D., the rest in the
operating system, file system and the I/O protocol.
If we replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

Poll close in

• Final Fantasy XV spends lots of time loading a
map — within which period that 95% of the time
on the accessing the H.D.D., the rest in the
operating system, file system and the I/O protocol.
If we replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

35

Practicing Amdahl’s Law (2)

Speedupenhanced(95 % ,5 % ,100,2) = 1
(1 − 95% − 5%) + 95 %

100 + 5 %
2

= 28.98 ×

36

Speedup further!
• With the latest flash memory technologies,

the system spends 16% of time on
accessing the flash, and the software
overhead is now 84%. If we want to adopt
a new memory technology to replace flash
to achieve 2x speedup on loading maps,
how much faster the new technology
needs to be?

A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

Poll close in

37

Speedup further!
• With the latest flash memory technologies,

the system spends 16% of time on
accessing the flash, and the software
overhead is now 84%. If we want to adopt
a new memory technology to replace flash
to achieve 2x speedup on loading maps,
how much faster the new technology
needs to be?

A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

Poll close in

• With the latest flash memory technologies,
the system spends 16% of time on
accessing the flash, and the software
overhead is now 84%. If we want to adopt
a new memory technology to replace flash
to achieve 2x speedup on loading maps,
how much faster the new technology
needs to be?

A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

38

Speedup further!

Speedupenhanced(16 % , x) = 1
(1 − 16%) + 16 %

x
= 2

x = 0.47 Does this make sense?

• The maximum speedup is bounded by

39

Amdahl’s Law Corollary #1

Speedupmax(f, ∞) = 1
(1 − f) + f

∞

Speedupmax(f, ∞) = 1
(1 − f)

• With the latest flash memory technologies,
the system spends 16% of time on
accessing the flash, and the software
overhead is now 84%. If we want to adopt
a new memory technology to replace flash
to achieve 2x speedup on loading maps,
how much faster the new technology
needs to be?

A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

40

Speedup further!

Speedupmax(16 % , ∞) = 1
(1 − 16%) = 1.19

2x is not possible

• If we can pick just one thing to work on/optimize

41

Corollary #1 on Multiple Optimizations

f1 1-f1-f2-f3-f4f2 f3 f4

Speedupmax(f1, ∞) = 1
(1 − f1)

Speedupmax(f2, ∞) = 1
(1 − f2)

Speedupmax(f3, ∞) = 1
(1 − f3)

Speedupmax(f4, ∞) = 1
(1 − f4)

The biggest fx would lead
to the largest Speedupmax!

• When f is small, optimizations will have little effect.
• Common == most time consuming not necessarily the most

frequent
• The uncommon case doesn’t make much difference
• The common case can change based on inputs, compiler

options, optimizations you’ve applied, etc.

42

Corollary #2 — make the common case fast!

• Compile your program with -pg flag
• Run the program

• It will generate a gmon.out
• gprof your_program gmon.out > your_program.prof

• It will give you the profiled result in your_program.prof

43

Identify the most time consuming part

• With optimization, the common becomes
uncommon.

• An uncommon case will (hopefully) become the
new common case.

• Now you have a new target for optimization.
• — You have to revisit “Amdahl’s Law” every time

you applied some optimization
44

If we repeatedly optimizing our design based on Amdahl’s law...

Storage Media CPU

Storage
Media CPU

Moneta: A High-Performance Storage Array Architecture for Next-Generation, Non-volatile Memories Adrian M. Caulfield, Arup De,
Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010.

• If the program spend 90% in A, 10% in B. Assume that an
optimization can accelerate A by 9x, by hurts B by 10x...

• Assume the original execution time is T. The new execution
time

45

Don’t hurt non-common part too mach

ETnew = ETold × 90 %
9 + ETold × 10% × 10

ETnew = 1.1 × ETold

Speedup = ETold

ETnew
= ETold

1.1 × ETold
= 0.91 × ……slowdown!

You may not use Amdahl’s Law for this case as Amdahl’s Law does NOT
(1) consider overhead
(2) bound to slowdown

• Reading quiz due next Monday before the lecture
• We will drop two of your least performing reading quizzes
• You have two shots, both unlimited time

• Check our website for slides, iLearn for quizzes/assignments,
piazza for discussions
• Assignment #1 due 10/19
• Assignments SHOULD BE done individually
• We will drop your least performing assignment as well
• Attendance counts as one assignment

81

Announcement

ͺͻͥ

Computer
Science &
Engineering

203

