Performance (lll): How to Evaluate
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with Performance Metrics
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UNLINMITED TV SHOWS & MOVIES

SERIES

GREAT PRETENDER

Great Pretender

2020 | | TV-MA| | 1 Season | Drama Anime

Supposedly Japan's greatest swindler, Makoto Edamura gets more than he
bargainec for wnen he tres to con Laurent Thierry, a rezl world-class crook.

Starring: Chiaki Kobayashi, Junichi Suwabe, Natsumi Fujiwara




Recap: von Neumman Architecture
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Recap: Summary of CPU Performance Equation

1
Performance =
f Execution Time
: : Instructi Cycles [y d
Execution Time = 22220 « ¢ 2N
Program Instruction Cycle

ET=I1CXCPIXCT

- |C (Instruction Count)
- ISA, Compiler, algorithm, programming language, programmer
- CPI (Cycles Per Instruction)

- Machine Implementation, microarchitecture, compiler, application, algorithm,
programming language, programmer

- Cycle Time (Seconds Per Cycle)
- Process Technology, microarchitecture, programmer
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Recap: Speedup

- The relative performance between two machines, Xand Y. Y is n
times faster than X

Execution Timey

n = ; :
Execution Timey

+ The speedup of Y over X

Execution Timey,

Speedup =

Execution Timey



Recap: Amdahl’s Law
1

(1—f)+1

ExeCUtion Timebaseline — 1

ExeCUtion Timeenhanced — (1 ‘f) + f/S <

Execution Timey, ... 1
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Recap: Amdahl’'s Law Corollary #1
- The maximum speedup is bounded by

1
(1-f)+5
1
(=5

Speedup,, . (f, c0) =

Speedup,. . (f, ) =



Recap: Corollary #1 on Multiple Optimizations

- If we can pick just one thing to work on/optimize

|

Speedup,. . (fi,0) =
Speedup,, . (f,, 00) =
Speedup,, . (f3,00) =
Speedup,. . (f,,0) =

(1 Ifl)
(I =)
1
(I =)
1
(1 =f4)

The biggest f, would lead
to the largest Speedup max!




Recap: Corollary #2 — make the common case fast!

- When f Is small, optimizations will have little effect.

- Common == most time consuming not necessarily the most
frequent

- The uncommon case doesn’'t make much difference

- The common case can change based on inputs, compiler
options, optimizations you've applied, etc.



Team scores
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Outline

- Amdahl’s law and it's implications (cont.)

- How to fairly present/compare your system performance or ...
fool others...

- High-level view of your memory hierarchy (if we have time)
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Amdahl’'s Law — and It's Implication
In the Multicore Era (cont.)

H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.
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Time (Seconds)

If we repeatedly optimizing our design based on Amdahl’s law...

30

22.5

15

7.5

Cumulative Execution
Time
Sort was the
most significant

' Other
Sort
W Filel/O

File /O is now
more critical to
performance

- With optimization, the common
becomes uncommon.

- An uncommon case will (hopefully)
become the new common case.

- Now you have a new target for
optimization — You have to revisit
"Amdahl’s Law" every time you
applied some optimization

Something else (e.g.,
data movement)
matters more now
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Amdahl’'s Law on Multicore Architectures

- Symmetric multicore processor with 7 cores (if we assume the
processor performance scales perfectly)

1

Sp €€dl/tp pamllel(f;?amllelizable’ I”l) =

f_parallelizable
( 1 — ]gaamllelizable) | p
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Amdahl’'s Law on Multicore Architectures

- Regarding Amdanhl’s Law on multicore architectures, how many of the following statements
Is/are correct?

® If we have unlimited parallelism, the performance of each parallel piece does not matter as long
as the performance slowdown in each piece is bounded

@ With unlimited amount of parallel hardware units, single-core performance does not matter
anymore

® With unlimited amount of parallel hardware units, the maximum speedup will be bounded by
the fraction of parallel parts

@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange
overhead is minor

moow»
AwN 2O
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Amdahl’'s Law on Multicore Architect

- Regarding Amdanhl’s Law on multicore architectures, how many of the following statements
Is/are correct?

® If we have unlimited parallelism, the performance of each parallel piece does not matter as long
as the performance slowdown in each piece is bounded

@ With unlimited amount of parallel hardware units, single-core performance does not matter
anymore

® With unlimited amount of parallel hardware units, the maximum speedup will be bounded by
the fraction of parallel parts

@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange
overhead is minor

\'s

moow»
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Amdahl’'s Law on Multicore Architectures

- Regarding Amdahl’s Law on multicore architectures, how many O1f the following statements
iS/are correct? Speeduppamllel(ﬁ)amllelizable’ OO) -
(1 _fbarﬁelizable) +

If we have unlimited parallelism, the performance of each parallel piece does not matter as long
as the performance slowdown in each piece is bounded

@ With unlimited amount of parallel hardware units, singleicore performance does not matter

nymore Speeduppamllel(ﬁaamllelizable’ OO) — (U= formr ) speedup Is determined by 1-f
With unlimited amount of parallel hardware units, the maximum speedup will be bounded by
the fraction of parallel parts

@ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange
overhead is minor

f_parallelizable X Speedup( < 1)

o >

m OO |w .
A w|d|- o

m O
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Corollary #3

1

Speeduppamllel(ﬁyamllelizable’ OO) — . J_parallelizable

(1 _ﬁparallelizable) ! 00
1

( 1 - ];amllelizable)

Speedup,,,.aiiel fparatietizaples ) =

- Single-core performance still matters
- It will eventually dominate the performance

- If we cannot improve single-core performance further, finding more
“parallelizable” parts is more important
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Recap: Demo (2) — merge sort v.s. bitonic sort on GPUs

Merge Sort Bitonic Sort
O(nlog,n) O(nlogzzn)

volid BitonicSort() {
int 1i,3,k;

for (k=2; k<=N; k=2xk) {
for (j=k>>1;: j>0: j=j>>1) {
for (i1=0; i<N; i++) {
int ij=1i%j;
if ((1ij)>1) {
if ((i&k)==0 && alil]l > alij])
exchange(i,ij);
1f ((1&k)!=0 && ali] < alijl)
exchange(i,ij);

20



logn

Merge sort

1 14112 11110 9117 2008 5|13 1514 2|6 7/
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O(nlog n)
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Parallel merge sort
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Bitonic sort

/////”'\\\\\‘_/////”"\\\\\*/////”'\\\\\*/////"\\\\\*

14 12 11 10 17 20 13 15

M 9102017/ 5 8 1513 2 4 7 ©

%\54%’ %&4%’ é&é%’ \%54/% void BitonicSort() {

112142017 9 10 5 8 1513 7 6 2 4 int 1,3,k;

for (k=2; k<=N; k=2xk) {
for (j=k>>1; j>0; j=j>>1) {
for (i1=0; i<N; i++) {

1 111214201710 9 5 8 1315 7 6 4 2 int i5=ir:
EW W if ((13)>1) A
1f ((1&k)==0 && alil > alijl)
. egchange(i,ij)g N
1 1110 9 20171214 7 8 1315 5 6 4 2 1f ((1&k)!=0 && ali] < ali3])

exchange(1i,13);



Bitonic sort (cont.)

9 10 1M 1214 1/ 2016513 8 7 6 5 4 2 void BitonicSort() {
é “\g:<?:’t,‘, int 1,73,k;
547276 9 8 7712 13 10 11 15 14 17 20 O N S o)
for (i=0; 1i<N; i++) {
if ((19)>1) {
5 426 98 7 121310 1 15 14 17 20 it ((18K)==0 8& alil > alij])
exchange(i,ij);
% %4% %ﬁ% %Z/E if ((i8k) 120 && alil < alijl)
exchange(i,1j);
}
10 11 12 13 15 14 17 20 }

.................. %\E\%\E\E’\E’\E\%’ o

2 4 5 6 7 38 910 M 1213 14 15 1/ 20

beneflts — in-place merge (no additional space is hecessary), very stable comparison
patterns

O(n log2 n) — hard to beat n(log n) if you can’t parallelize this a lot!
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Corollary #4

1

SP6eduppamzzez(ﬁmmzzezizabze» 00) = f_parallelizable

(1 _]gpamllelizable) T 00
1

( 1 - ];Qamllelizable)

Speedup,,,.aiiel fparatietizaples ) =

- |f we can build a processor with unlimited parallelism

- The complexity doesn't matter as long as the algorithm can utilize all
parallelism

- That's why bitonic sort or MapReduce works!

- The future trend of software/application design is seeking for
more parallelism rather than lower the computational complexity
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“Fair” Comparisons

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the
Computer, MITP, 1995

V.Sze, Y.-H.Chen, T. -J. Yang and J. S. Emer. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered
Harmful. In IEEE Solid-State Circuits Magazine, vol. 12, no. 3, pp. 28-41, Summer 2020.
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TFLOPS (Tera FLoating-point Operations Per Second)

Console Teraflops
® Sony

@® Nintendo

TFLOPS clock rate XOROEX | @ Sego
® Microsot

Switch 1 921 MHz

XBOX One X 6 1.75 GHz e
PS4 Pro 4 1.6 GHz
GeForce GTX 2080 14.2 1.95 GHz
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Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

# of floating point instructions X 10712

TFLOPS =

Exection Time

IC X % of floating point instructions X 1072
ICX CPIx CT

% of floating point instructions X 10712

CPIX CT IC is gone!

Cannot compare different ISA/compiler
- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI?

Does not make sense if the application is not floating point
Intensive
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TFLOPS (Tera FLoating-point Operations Per Second)

- Cannot compare different ISA/compiler
- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI?

- Does not make sense if the application is not floating point intensive

TFLOPS clock rate

Switch 1 921 MHz
XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz
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nvidia.com

L[
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“ 1 NVIDIA.

Artificial Intelligence Computing Leadership from NVIDIA

CLOUD & DATA CENTER rropucTs v SOLUTIONS ~ FOR DEVELOPERS ~ TECHNOLOGIES ~

Tesla V100 AITRAINING  AIINFERENCE  HPC  DATACENTERGPUs  SPECIFICATIONS

e From recognizing speech ta training virtual personal assistants and teaching
esla
autonomous cars to drive, data scientists are taking on increasingly complex
challenges with Al. Solving these kinds of problems requires training deep learning

models that are exponentially growing in complexity, in a practical amount of time.

5.1 Hours

8X Tesla P100
15.5 Hours

0 4 8 12 16
Time to Solution in Hours-Lower Is Better With 640 , Tesla V100 is the world’s first GPU to break the 100 teraFLOPS

[TFLOPS) barrier of deep learning performance. The next generation of
NVLIink™ connects multiple V100 GPUs at up to 300 GB/s to create the world’s most
powerful computing servers. Al models that would consume weeks of computing

resources on previous systems can now be trained in a few days. With this dramatic
reduction in training time, a whole new world of problems will now be solvable with Al.
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The Most Advanced Data Center GPU Ever Built. SPECIFICATIONS

NVIDIA® Tesla® V100 is the world’s most advanced data center H“—‘
GPU ever built to accelerate Al, HPC, and graphics. Powered by | —
NVIDIA Volta, the latest GPU architecture, Tesla V100 offers the TeSFlfc:'e"m Te?;;;"“
erformance of up to 100 CPUs in a single GPU—enabling data
P . . P ' g g GPU Architecture NVIDIA Volta
scientists, researchers, and engineers to tackle challenges that NVIDIA Tensor <zo
were once thought impossible. Cores
ISIVIDIA CUDA 5,120
0res
47X H gher Throughpu: than CPU Deep Learning Trzining injL« Doub.e-Precision
Cerver on Deep Learring Inference Than a 'Wor<day 25 TFLO PS Performance Lk £ IFEOES
. Single-Precision
\ L - 14 TFLOPS 15.7 TFLOPS
Tesla V100 m axvianc z 1 Hours Only @ 1 6 blt Performance
- . Tensor
Teeta P100 | LD floating point .. mance 112TFLOPS | 125 TFLOPS
IXCPU | 8X P10C ey GPU Memory 32GB /166GB HBM2
M
0 X 2 0K 40K SOX 0 i 8 12 1 Bael'?(;?/\"i}:lt"l 900GB/sec
Me~formance Normalized 1o TP lime ta So utinn in Fours ' -
Lovszr is Better ECC Yes
2630k @ 2.46Hz | GPU: add 1X NVIDIA e et O e s Interconnecl
System Interface PCle Gen3 NVIDIA NVLink
Form Facter PCle Full
. SXM2
1 GPJ Node Replaces Up To ba CPU Noces Height/Length
Noda Ran aremenrt: HPC Mivaed Woarklnad Max Pawer oy




They try to tell it's the better Al hardware

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inferences/Sec
<10ms latency
Training TOPS 6 FP32 NA 12 FP32
Inference TOPS 6 FP32 90 INT8 48 INT8
On-chip Memory 4 16 MB 24 MB . 11 MB
Power 300W /5W 250W

Bandwidth 320 GB/S 34 GB/S 350 GB/S
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https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Inference per second

Inferences Inferences 5 Operations
Second Operation Second
Inferences operations cycles . :
= — X | X X #_of _PEs X Utilization_of_PEs]
Operation cycle second

Hardware Input Data

Operations per inference

Operations per cycle

Cycles per second
Number of PEs
Utilization of PEs

Effectual operations out of (total) operations

Effectual operations plus unexploited ineffectual
perations per cycle




What's wrong with inferences per second?

- There is no standard on how they inference — but these affect!

- What model?
- What dataset?

- That's why Facebook is trying to promote an Al benchmark —

MLPerf

34

® Pitfall: For NN hardware, Inferences Per Second (IPS)
I8 an inaccurate summary performance metric.

Our results show that IPS is a poor overall performance summary
for NN hardware, as it’s simply the inverse of the complexity of
the typical inference in the application (e.g., the number, size, and
type of NN layers). For example, the TPU runs the 4-layer MLP1
at 360,000 1PS but the 89-layer CNNI1 at only 4,700 IPS, so TPU
IPS vary by 75X! Thus, using IPS as the single-speed summary is
even more misleading for NN accelerators than MIPS or FLOPS
are for regular processors [23], so IPS should be even more
disparaged. To compare NN machines better, we need a
benchmark suite written at a high-level to port it to the wide
varicty of NN architectures. Fathom is a promising new attempt at
such a benchmark suite [3].




Poll close in 1:30
With MLPerf, are we good with inferences/second?

- The following table shows the inference/second using ImageNet dataset and ResNet-50
v1.5 model as well as the number of maximum concurrent “inferences” each machine can
support. If we are targeting as making decisions for autonomous cars — requires a

decision to be made within 2bms, which of the following architecture would work?

Intel® Xeon® Platinum 9200 Google Cloud TPU v3 NVIDIA/Supermicro 4029GP-TRT-
processors (CPU) (TPU) OTO-28 8xT4 (GPU)

32,716.00 44,977.80

Inferences per second 5,965.62

Cores 112 processors * 2-way SMT 2 MXU 320*8 MXU

Number of Maximum Parallel 294
Inferencing Instances

A. CPUand TPU

B. TPU and GPU operation. Ideally, the camera-to-recognition latency per frame

C. Only GPU should not substantially exceed the inter-frame time of the
input images (e.g., 25 milliseconds for a 40 FPS camera).

D. Only TPU

E. All would work well

2 320*8 = 2560

https://mlperf.org/inference-results/

https://www.cs.unc.edu/~anderson/papers/rtas19.pdf
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https://mlperf.org/inference-results/

Poll close in 1:30
With MLPerf, are we good with inferences/sec

- The following table shows the inference/second using ImageNet dataset and ResNet-50
v1.5 model as well as the number of maximum concurrent “inferences” each machine can
support. If we are targeting as making decisions for autonomous cars — requires a

decision to be made within 2bms, which of the following architecture would work?

Intel® Xeon® Platinum 9200 Google Cloud TPU v3 NVIDIA/Supermicro 4029GP-TRT-
processors (CPU) (TPU) OTO-28 8xT4 (GPU)

32,716.00 44,977.80

Inferences per second 5,965.62

Cores 112 processors * 2-way SMT 2 MXU 320*8 MXU

Number of Maximum Parallel 294
Inferencing Instances

A. CPUand TPU

B. TPU and GPU operation. Ideally, the camera-to-recognition latency per frame
C. Only GPU should not substantially exceed the inter-frame time of the
' input images (e.g., 25 milliseconds for a 40 FPS camera).

D. Only TPU -
E. All would work well

2 320*8 = 2560

https://mlperf.org/inference-results/

https://www.cs.unc.edu/~anderson/papers/rtas19.pdf
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With MLPerf, are we good with inferences/second?

- The following table shows the inference/second using ImageNet dataset and ResNet-50
v1.5 model as well as the number of maximum concurrent “inferences” each machine can
support. If we are targeting as making decisions for autonomous cars — requires a

decision to be made within 2bms, which of the following architecture would work?

Intel® Xeon® Platinum 9200 Google Cloud TPU v3 NVIDIA/Supermicro 4029GP-TRT-
processors (CPU) (TPU) OTO-28 8xT4 (GPU)

Inferences per second 5,965.62 32,716.00 44,977.80

MXU 112 processors * 2-way SMT 2 MXU 320*8 MXU
Number of Maximum Parallel 294 2 320*8 = 2560
Inferencing Instances , .
https://mlperf.org/inference-results/
A. CPUand TPU Batches/Sec 5965.62 32716 44977.8

= 26.63 = 16358 = 17.5694531
B. TPU and GPU 2 2560

C. OnlyGPU  geconds/Batch — ' — 3755 — ' — 611us L 56.91ms
D. Only TPU 26.63 16358 17.5694531

E. All would work well
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Choose the right metric — Latency
v.s. Throughput/Bandwidth



Latency v.s. Bandwidth/Throughput

- Latency — the amount of time to finish an operation

- Access time

- Response time

- Throughput — the amount of work can be done within a given
period of time

- Bandwidth (MB/Sec, GB/Sec, Mbps, Gbps)

- |OPs (I/O operations per second)

- FLOPs (Floating-point operations per second)

- |IPS (Inferences per second)
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With MLPerf, are we good with inferences/second?

- The following table shows the inference/second using ImageNet dataset and ResNet-50
v1.5 model as well as the number of maximum concurrent “inferences” each machine can
support. If we are targeting as making decisions for autonomous cars — requires a

decisilatency sensitive 100ms, which of the following architecture would work?

ntel® Xeon® Platinum 9200 Google Cloud TPU v3 NVIDIA/Supermicro 4029GP-TRT-
processors (CPU) (TPU) OTO-28 8xT4 (GPU)

Inferences per second 5,965.62Bandwidth 32716.00 44,977.80

MXU 128*128*2 4*4*320*8

Number of Maximum Parallel 224

. 128*2 = 256 4*320*8 =10240
Inferencing Instances

https://mlperf.org/inference-results/

A. CPUand TPU | Batches/Sec 5965.62 26,63 32716 _ 198 449717.8 A

B. TPU and GPU 224 256 10240
C. Only GPU Seconds/Batch ; = 37.55ms L = 7.81ms L = 227.79ms
D. Only TPU 26.63 128 128

E. All would work well
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Latency/Delay v.s. Throughput

Toyota Prius 100 Gb Network
¢100 miles (161 km) from UCSD ¢100 miles (161 km) from UCSD
¢75 MPH on highway! eLightspeed! — 3*10°mjsec

eMax load: 374 kg = 2,770 hard drives eMaxload:4 lanes operating at 25GHz

(2TB per drive) \ “off

</
bandwidth 290GB/sec 100 Gb/s or
12.5GB/sec
2 Peta-byte over 16//7/2 seconds
total lat bh
otal latency 3.5 hours _ 1.94 Days
latency in 100GB/100Gb = 8 secs!

sl RGER{TEE  You see nothing inthe first 3.5 hours  You can start watching the first
moivie 45 movie in 8 secs!



12 ways to Fool the Masses When Giving Performance
Results on Parallel Computers

- Quote only 32-bit performance results, not 64-bit results.

- Present performance figures for an inner kernel, and then represent these figures as the
performance of the entire application.

- Quietly employ assembly code and other low-level language constructs.

- Scale up the problem size with the number of processors, but omit any mention of this fact.
- Quote performance results projected to a full system.

- Compare your results against scalar, unoptimized code on Crays.

- When direct run time comparisons are required, compare with an old code on an obsolete system.

- If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on
the best sequential implementation.

- Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.
- Mutilate the algorithm used in the parallel implementation to match the architecture.

- Measure parallel run times on a dedicated system, but measure conventional run times in a busy
environment.

- If all else fails, show pretty pictures and animated videos, and don't talk about performance.
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Memory Hierarchy

Hung-Wel Tseng



Performance gap between Processor/Memory
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Performance of modern DRAM

Best case access time (no precharge) Precharge needed
Production year Chip size DRAM type RAS time (ns) CAS time (ns) Total (ns) Total (ns)
2000 256M bit DDRI1 21 21 42 63
2002 512M bit DDRI1 15 15 30 45
2004 1G bit DDR2 15 15 30 45
2006 2(y bit DDR?2 10 10 20 30
2010 4G bit DDR3 13 13 26 39
2016 3G bit DDR4 13 13 26 39

Figure 2.4 Capacity and access times for DDR SDRAMs by year of production. Access time is for arandom memory
word and assumes a new row must be opened. If the row is in a different bank, we assume the bank is precharged,;
if the row is not open, then a precharge is required, and the access time is longer. As the number of banks has
increased, the ability to hide the precharge time has also increased. DDR4 SDRAMs were initially expected in
2014, but did not begin production until early 2016.
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The impact of “slow” memory

- Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPl is just 1. Now, consider we have DDR4 and the
program is well-behaved that precharge is never necessary — the

access latency is simply 26 ns. What's the average CPI (pick the
most close one)?

A. 9
B. 1/
C. 27
D. 35
E. 69
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N 7
The impact of “slow” memory

1— IR&tinct

- Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPl is just 1. Now, consider we have DDR4 and the
program is well-behaved that precharge is never necessary — the

access latency is simply 26 ns. What's the average CPI (pick the
most close one)?

A. 9
B. 1/
C. 27
D. 35
E. 69
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The impact of “slow” memory

- Assume that we have a processor running @ 2 GHz and a program with
30% of load/store instructions. If the computer has “perfect” memory,
the CPlis just 1. Now, consider we have DDR4 and the program is well-
behaved that precharge is never necessary — the access latency is
simply 26 ns. What's the average CPI (pick the most close one)?

A. 9

B. 1/

C. 27

D. 35

1 + 100% X (52) + 30% X 52 = 68.6 cycles
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Announcement

- Assignment #1 due 10/19

- Assignments SHOULD BE done individually — but if you discussed with others,
make sure you put their names on your submission

- We will drop your least performing assignment as well

- Attendance counts as one assignment

- Reading quiz due next Wednesday before the lecture

- We will drop two of your least performing reading quizzes

- You have two shots, both unlimited time

. Office Hours on Zoom (the office hour link, not the lecture one)
- Walk-in, no appointment is necessary

- Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p

- Quan Fan: F1p-3p
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