
Performance (III): How to Evaluate 
Performance Fairly or … Fool Others 

with Performance Metrics
Hung-Wei Tseng
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Recap: von Neumman Architecture
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• IC (Instruction Count) 
• ISA, Compiler, algorithm, programming language, programmer 

• CPI (Cycles Per Instruction) 
• Machine Implementation, microarchitecture, compiler, application, algorithm, 

programming language, programmer 
• Cycle Time (Seconds Per Cycle) 

• Process Technology, microarchitecture, programmer
4

Recap: Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT



• The relative performance between two machines, X and Y. Y is n 
times faster than X

• The speedup of Y over X
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Recap: Speedup

n = Execution TimeX

Execution TimeY

Speedup = Execution TimeX

Execution TimeY



Recap: Amdahl’s Law
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Execution Timebaseline = 1
f 1-f

1-ff/s

baseline

enhanced

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced
= 1

(1 − f ) + f
s

Execution Timeenhanced = (1-f) + f/s

Speedupenhanced( f, s) = 1
(1 − f ) + f

s



• The maximum speedup is bounded by
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Recap: Amdahl’s Law Corollary #1

Speedupmax( f, ∞) = 1
(1 − f ) + f

∞

Speedupmax( f, ∞) = 1
(1 − f )



• If we can pick just one thing to work on/optimize
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Recap: Corollary #1 on Multiple Optimizations

f1 1-f1-f2-f3-f4f2 f3 f4

Speedupmax( f1, ∞) = 1
(1 − f1)

Speedupmax( f2, ∞) = 1
(1 − f2)

Speedupmax( f3, ∞) = 1
(1 − f3)

Speedupmax( f4, ∞) = 1
(1 − f4)

The biggest fx would lead 
to the largest Speedupmax!



• When f is small, optimizations will have little effect. 
• Common == most time consuming not necessarily the most 

frequent 
• The uncommon case doesn’t make much difference 
• The common case can change based on inputs, compiler 

options, optimizations you’ve applied, etc.
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Recap: Corollary #2 — make the common case fast!



Team scores
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• Amdahl’s law and it’s implications (cont.) 
• How to fairly present/compare your system performance or … 

fool others… 
• High-level view of your memory hierarchy (if we have time)

11

Outline



Amdahl’s Law — and It’s Implication 
in the Multicore Era (cont.)
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H&P Chapter 1.9
M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. In Computer, vol. 41, no. 7, pp. 33-38, July 2008.



Demo — sort
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• With optimization, the common 
becomes uncommon. 

• An uncommon case will (hopefully) 
become the new common case. 

• Now you have a new target for 
optimization — You have to revisit 
“Amdahl’s Law” every time you 
applied some optimization
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If we repeatedly optimizing our design based on Amdahl’s law...

Sort was the 
most significant

File I/O is now 
more critical to 

performance

Something else (e.g., 
data movement) 

matters more now



• Symmetric multicore processor with n cores (if we assume the 
processor performance scales perfectly)
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Amdahl’s Law on Multicore Architectures

Speedupparallel( fparallelizable, n) = 1
(1 − fparallelizable) + f_ parallelizable

n



• Regarding Amdahl’s Law on multicore architectures, how many of the following statements 
is/are correct? 
! If we have unlimited parallelism, the performance of each parallel piece does not matter as long 

as the performance slowdown in each piece is bounded 
" With unlimited amount of parallel hardware units, single-core performance does not matter 

anymore 
# With unlimited amount of parallel hardware units, the maximum speedup will be bounded by 

the fraction of parallel parts 
$ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange 

overhead is minor 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Amdahl’s Law on Multicore ArchitecturesPoll close in
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Amdahl’s Law on Multicore Architectures
Speedupparallel( fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable × Speedup( < 1)
∞

Speedupparallel( fparallelizable, ∞) = 1
(1 − fparallelizable) speedup is determined by 1-f



• Single-core performance still matters 
• It will eventually dominate the performance 
• If we cannot improve single-core performance further, finding more 

“parallelizable” parts is more important

19

Corollary #3
Speedupparallel( fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedupparallel( fparallelizable, ∞) = 1
(1 − fparallelizable)



Merge Sort
Recap: Demo (2) — merge sort v.s. bitonic sort on GPUs
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O(nlog2n)
Bitonic Sort 

void BitonicSort() { 
     
    int i,j,k; 
     
    for (k=2; k<=N; k=2*k) { 
        for (j=k>>1; j>0; j=j>>1) { 
            for (i=0; i<N; i++) { 
                int ij=i^j; 
                if ((ij)>i) { 
                    if ((i&k)==0 && a[i] > a[ij]) 
                        exchange(i,ij); 
                    if ((i&k)!=0 && a[i] < a[ij]) 
                        exchange(i,ij); 
                } 
            } 
        } 
    } 
} 

O(nlog2
2n)



Merge sort
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1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

9 10 17 20 5 8 13 15 2 4 6 71 14 11 12

1 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7

1 9 10 11 12 14 17 20 2 4 5 6 7 8 13 15

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

O(n log n)

log n
you can merge with O(n) time 

with O(n) space



Parallel merge sort
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1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

1 14 11 12 9 10 17 20 5 8 13 15 2 4 6 7

1 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7

1 9 10 11 12 14 17 20 2 4 5 6 7 8 13 15

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20



Bitonic sort
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1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

1 14 12 11 9 10 20 17 5 8 15 13 2 4 7 6

1 11 12 14 20 17 9 10 5 8 15 13 7 6 2 4

1 11 12 14 20 17 10 9 5 8 13 15 7 6 4 2

1 11 10 9 20 17 12 14 7 8 13 15 5 6 4 2

1 9 10 11 12 14 20 17 13 15 7 8 5 6 4 2

1 9 10 11 12 14 17 20 15 13 8 7 6 5 4 2

void BitonicSort() { 
     
    int i,j,k; 
     
    for (k=2; k<=N; k=2*k) { 
        for (j=k>>1; j>0; j=j>>1) { 
            for (i=0; i<N; i++) { 
                int ij=i^j; 
                if ((ij)>i) { 
                    if ((i&k)==0 && a[i] > a[ij]) 
                        exchange(i,ij); 
                    if ((i&k)!=0 && a[i] < a[ij]) 
                        exchange(i,ij); 
                } 
            } 
        } 
    } 
} 



Bitonic sort (cont.)
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1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

1 9 10 11 12 14 17 20 15 13 8 7 6 5 4 2

1 5 4 2 6 9 8 7 12 13 10 11 15 14 17 20

1 5 4 2 6 9 8 7 12 13 10 11 15 14 17 20

1 2 4 5 6 7 8 9 10 11 12 13 15 14 17 20

O(n log2 n) — hard to beat n(log n) if you can’t parallelize this a lot!

benefits — in-place merge (no additional space is necessary), very stable comparison 
patterns

void BitonicSort() { 
     
    int i,j,k; 
     
    for (k=2; k<=N; k=2*k) { 
        for (j=k>>1; j>0; j=j>>1) { 
            for (i=0; i<N; i++) { 
                int ij=i^j; 
                if ((ij)>i) { 
                    if ((i&k)==0 && a[i] > a[ij]) 
                        exchange(i,ij); 
                    if ((i&k)!=0 && a[i] < a[ij]) 
                        exchange(i,ij); 
                } 
            } 
        } 
    } 
} 



• If we can build a processor with unlimited parallelism 
• The complexity doesn’t matter as long as the algorithm can utilize all 

parallelism 
• That’s why bitonic sort or MapReduce works! 

• The future trend of software/application design is seeking for 
more parallelism rather than lower the computational complexity
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Corollary #4
Speedupparallel( fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedupparallel( fparallelizable, ∞) = 1
(1 − fparallelizable)



“Fair” Comparisons
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Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the 
Computer, MITP, 1995 
V. Sze, Y. -H. Chen, T. -J. Yang and J. S. Emer. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered 
Harmful. In IEEE Solid-State Circuits Magazine, vol. 12, no. 3, pp. 28-41, Summer 2020.



TFLOPS (Tera FLoating-point Operations Per Second)
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TFLOPS clock rate
Switch 1 921 MHz

XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz



• Cannot compare different ISA/compiler 
• What if the compiler can generate code with fewer instructions? 
• What if new architecture has more IC but also lower CPI? 

• Does not make sense if the application is not floating point 
intensive

28

Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instructions × 10−12

Exection Time

= IC × % of floating point instructions × 10−12

IC × CPI × CT

IC is gone!= % of floating point instructions × 10−12

CPI × CT



• Cannot compare different ISA/compiler 
• What if the compiler can generate code with fewer instructions? 
• What if new architecture has more IC but also lower CPI? 

• Does not make sense if the application is not floating point intensive
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TFLOPS (Tera FLoating-point Operations Per Second)

TFLOPS clock rate
Switch 1 921 MHz

XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz
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125 TFLOPS 
Only @ 16-bit
floating point



They try to tell it’s the better AI hardware
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https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/


Inference per second

33

Inferences
Second = Inferences

Operation × Operations
Second

= Inferences
Operation × [ operations

cycle × cycles
second × #_of_PEs × Utilization_of_PEs]
Hardware Model Input Data

Operations per inference v

Operations per cycle v

Cycles per second v

Number of PEs v

Utilization of PEs v v

Effectual operations out of (total) operations v v
Effectual operations plus unexploited ineffectual 

operations per cycle v



• There is no standard on how they inference — but these affect! 
• What model? 
• What dataset? 

• That’s why Facebook is trying to promote an AI benchmark — 
MLPerf

34

What’s wrong with inferences per second?



• The following table shows the inference/second using ImageNet dataset and ResNet-50 
v1.5 model as well as the number of maximum concurrent “inferences” each machine can 
support. If we are targeting as making decisions for autonomous cars — requires a 
decision to be made within 25ms, which of the following architecture would work?

A. CPU and TPU 
B. TPU and GPU 
C. Only GPU 
D. Only TPU 
E. All would work well

35

With MLPerf, are we good with inferences/second?

Intel® Xeon® Platinum 9200 
processors (CPU)

Google Cloud TPU v3 
(TPU)

NVIDIA/Supermicro 4029GP-TRT-
OTO-28 8xT4 (GPU)

Inferences per second 5,965.62 32,716.00 44,977.80

Cores 112 processors * 2-way SMT 2 MXU 320*8 MXU
Number of Maximum Parallel 

Inferencing Instances 224 2 320*8 = 2560

https://www.cs.unc.edu/~anderson/papers/rtas19.pdf

https://mlperf.org/inference-results/

Poll close in

https://www.cs.unc.edu/~anderson/papers/rtas19.pdf
https://mlperf.org/inference-results/
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With MLPerf, are we good with inferences/second?

Intel® Xeon® Platinum 9200 
processors (CPU)

Google Cloud TPU v3 
(TPU)

NVIDIA/Supermicro 4029GP-TRT-
OTO-28 8xT4 (GPU)

Inferences per second 5,965.62 32,716.00 44,977.80

MXU 112 processors * 2-way SMT 2 MXU 320*8 MXU
Number of Maximum Parallel 

Inferencing Instances 224 2 320*8 = 2560
https://mlperf.org/inference-results/

5965.62
224 = 26.63Batches/Sec 32716

2 = 16358 44977.8
2560 = 17.5694531

Seconds/Batch 1
26.63 = 37.55ms

1
16358 = 611us

1
17.5694531 = 56.91ms

https://mlperf.org/inference-results/


Choose the right metric — Latency 
v.s. Throughput/Bandwidth

38



• Latency — the amount of time to finish an operation 
• Access time 
• Response time 

• Throughput — the amount of work can be done within a given 
period of time 
• Bandwidth (MB/Sec, GB/Sec, Mbps, Gbps) 
• IOPs (I/O operations per second) 
• FLOPs (Floating-point operations per second) 
• IPS (Inferences per second)

39

Latency v.s. Bandwidth/Throughput



• The following table shows the inference/second using ImageNet dataset and ResNet-50 
v1.5 model as well as the number of maximum concurrent “inferences” each machine can 
support. If we are targeting as making decisions for autonomous cars — requires a 
decision to be made within 100ms, which of the following architecture would work?

A. CPU and TPU 
B. TPU and GPU 
C. Only GPU 
D. Only TPU 
E. All would work well
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With MLPerf, are we good with inferences/second?

Intel® Xeon® Platinum 9200 
processors (CPU)

Google Cloud TPU v3 
(TPU)

NVIDIA/Supermicro 4029GP-TRT-
OTO-28 8xT4 (GPU)

Inferences per second 5,965.62 32,716.00 44,977.80

MXU 128*128*2 4*4*320*8
Number of Maximum Parallel 

Inferencing Instances 224 128*2 = 256 4*320*8 = 10240
https://mlperf.org/inference-results/

5965.62
224 = 26.63Batches/Sec 32716

256 = 128 44977.8
10240 = 4.39

Seconds/Batch 1
26.63 = 37.55ms

1
128 = 7.81ms

1
128 = 227.79ms

Latency sensitive

Bandwidth

https://mlperf.org/inference-results/


 Toyota Prius 100 Gb Network

bandwidth 290GB/sec 100 Gb/s or 
12.5GB/sec

total latency 3.5 hours 2 Peta-byte over 167772 seconds 
= 1.94 Days

latency in 
getting the first 

moivie
You see nothing in the first 3.5 hours

100GB/100Gb = 8 secs! 
You can start watching the first 

movie in 8 secs!

Latency/Delay v.s. Throughput
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•100 miles (161 km) from UCSD  
•75 MPH on highway! 
•Max load: 374 kg = 2,770 hard drives 

(2TB per drive)

•100 miles (161 km) from UCSD  
•Lightspeed! — 3*108m/sec 
•Max load:4 lanes operating at 25GHz



• Quote only 32-bit performance results, not 64-bit results. 
• Present performance figures for an inner kernel, and then represent these figures as the 

performance of the entire application. 
• Quietly employ assembly code and other low-level language constructs. 
• Scale up the problem size with the number of processors, but omit any mention of this fact. 
• Quote performance results projected to a full system. 
• Compare your results against scalar, unoptimized code on Crays. 
• When direct run time comparisons are required, compare with an old code on an obsolete system. 
• If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on 

the best sequential implementation. 
• Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar. 
• Mutilate the algorithm used in the parallel implementation to match the architecture. 
• Measure parallel run times on a dedicated system, but measure conventional run times in a busy 

environment. 
• If all else fails, show pretty pictures and animated videos, and don't talk about performance.
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12 ways to Fool the Masses When Giving Performance 
Results on Parallel Computers



Memory Hierarchy
Hung-Wei Tseng



Performance gap between Processor/Memory

50



Performance of modern DRAM

51



• Assume that we have a processor running @ 2 GHz and a program 
with 30% of load/store instructions. If the computer has “perfect” 
memory, the CPI is just 1. Now, consider we have DDR4 and the 
program is well-behaved that precharge is never necessary — the 
access latency is simply 26 ns. What’s the average CPI (pick the 
most close one)? 

A. 9 
B. 17 
C. 27 
D. 35 
E. 69

52

The impact of “slow” memoryPoll close in
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The impact of “slow” memoryPoll close in



• Assume that we have a processor running @ 2 GHz and a program with 
30% of load/store instructions. If the computer has “perfect” memory, 
the CPI is just 1. Now, consider we have DDR4 and the program is well-
behaved that precharge is never necessary — the access latency is 
simply 26 ns. What’s the average CPI (pick the most close one)? 

A. 9 
B. 17 
C. 27 
D. 35 
E. 69

54

The impact of “slow” memory

1 + 100% × (52) + 30% × 52 = 68.6 cycles



Q & A

60



• Assignment #1 due 10/19 
• Assignments SHOULD BE done individually — but if you discussed with others, 

make sure you put their names on your submission 
• We will drop your least performing assignment as well 
• Attendance counts as one assignment 

• Reading quiz due next Wednesday before the lecture 
• We will drop two of your least performing reading quizzes 
• You have two shots, both unlimited time 

• Office Hours on Zoom (the office hour link, not the lecture one) 
• Walk-in, no appointment is necessary 
• Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p 
• Quan Fan: F 1p-3p

61

Announcement
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