
Memory Hierarchy (I): The Basics
Hung-Wei Tseng

2

von Neumman Architecture

3

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

• IC (Instruction Count)
• ISA, Compiler, algorithm, programming language, programmer

• CPI (Cycles Per Instruction)
• Machine Implementation, microarchitecture, compiler, application, algorithm, programming language,

programmer
• Cycle Time (Seconds Per Cycle)

• Process Technology, microarchitecture, programmer
4

Recap: Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT
Speedup = Execution TimeX

Execution TimeY

• Cannot compare different ISA/compiler
• What if the compiler can generate code with fewer instructions?
• What if new architecture has more IC but also lower CPI?

• Does not make sense if the application is not floating point intensive
5

Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instructions × 10−12

Exection Time

= IC × % of floating point instructions × 10−12

IC × CPI × CT

IC is gone!= % of floating point instructions × 10−12

CPI × CT

A good performance metric must cover IC, CPI, CT!

• Corollary #1: Maximum speedup
• Corollary #2: Make the common case fast

• Common case changes all the time
• Corollary #3: Single-core performance

still matters
• Corollary #4: Exploiting more parallelism

from a program is the key to performance
gain in modern architectures

6

Amdahl’s Law
Speedupenhanced(f, s) = 1

(1 − f) + f
s

Speedupmax(f, ∞) = 1
(1 − f)

Speedupparallel(fparallelizable, ∞) = 1
(1 − fparallelizable)

Speedupparallel(fparallelizable, ∞) = 1
(1 − fparallelizable)

Speedupmax(f1, ∞) = 1
(1 − f1)

Speedupmax(f2, ∞) = 1
(1 − f2)

Speedupmax(f3, ∞) = 1
(1 − f3)

Speedupmax(f4, ∞) = 1
(1 − f4)

Performance gap between Processor/Memory

7

• Assume that we have a processor running @ 2 GHz and a program with
30% of load/store instructions. If the computer has “perfect” memory,
the CPI is just 1. Now, consider we have DDR4 and the program is well-
behaved that precharge is never necessary — the access latency is
simply 26 ns. What’s the average CPI (pick the most close one)?

A. 9
B. 17
C. 27
D. 35
E. 69

8

The impact of “slow” memory

1 + 100% × (52) + 30% × 52 = 68.6 cycles

9

ARCHITECTURE

#MAGA
Architecture

Team scores

10

0.5 2 2.5 3

• The Basic Idea behind Memory Hierarchy
• How cache works

11

Outline

Alternatives?

12

Fast, but expensive $$$

Thinking about water

13

ProcessorProcessor
Memory Hierarchy

14

DRAM

Storage

SRAM $

Processor
Core

Registers

larger

fastest

< 1ns

tens of ns

us/ms

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

• Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPI is just 1. Now, in addition to DDR4, whose latency
26 ns, we also got an SRAM cache with latency of just at 0.5ns and
can capture 90% of the desired data/instructions. what’s the
average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

15

How can memory hierarchy help in performance?
Poll close in

• Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPI is just 1. Now, in addition to DDR4, whose latency
26 ns, we also got an SRAM cache with latency of just at 0.5ns and
can capture 90% of the desired data/instructions. what’s the
average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

16

How can memory hierarchy help in performance?
Poll close in

• Assume that we have a processor running @ 2 GHz and a program
with 30% of load/store instructions. If the computer has “perfect”
memory, the CPI is just 1. Now, in addition to DDR4, whose latency
26 ns, we also got an SRAM cache with latency of just at 0.5ns and
can capture 90% of the desired data/instructions. what’s the
average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

17

How can memory hierarchy help in performance?

1 + (1 − 90%) × [100% × (52) + 30% × 52] = 7.76 cycles

L1? L2? L3?

18

• Assume that we have a processor running @ 2 GHz and a program with 30% of
load/store instructions. If the computer has “perfect” memory, the CPI is just 1.
Now, in addition to DDR4, whose latency 26 ns, we also got a 2-level SRAM
caches with

• it’s 1st-level one at latency of 0.5ns and can capture 90% of the desired data/
instructions.

• the 2nd-level at latency of 5ns and can capture 60% of the desired data/instructions
 What’s the average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

19

How can deeper memory hierarchy help in performance?
Poll close in

• Assume that we have a processor running @ 2 GHz and a program with 30% of
load/store instructions. If the computer has “perfect” memory, the CPI is just 1.
Now, in addition to DDR4, whose latency 26 ns, we also got a 2-level SRAM
caches with

• it’s 1st-level one at latency of 0.5ns and can capture 90% of the desired data/
instructions.

• the 2nd-level at latency of 5ns and can capture 60% of the desired data/instructions
 What’s the average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

20

How can deeper memory hierarchy help in performance?
Poll close in

• Assume that we have a processor running @ 2 GHz and a program with 30% of
load/store instructions. If the computer has “perfect” memory, the CPI is just 1.
Now, in addition to DDR4, whose latency 26 ns, we also got a 2-level SRAM
caches with

• it’s 1st-level one at latency of 0.5ns and can capture 90% of the desired data/
instructions.

• the 2nd-level at latency of 5ns and can capture 60% of the desired data/instructions
 What’s the average CPI (pick the most close one)?

A. 2
B. 4
C. 8
D. 16
E. 32

21

How can deeper memory hierarchy help in performance?

1 + (1 − 90%) × [10 + (1 − 60%) × 52 + 30% × (10 + (1 − 60%) × 52)] = 5 cycles

Processor
Memory Hierarchy

22

DRAM

Storage

SRAM $

Processor
Core

Registers

larger

fastest

< 1ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

L1 $
L2 $
L3 $

fastest

larger

us/ms

Why adding small SRAMs would
work?

23

• Which description about locality of arrays sum and A in the following
code is the most accurate?
for(i = 0; i< 100000; i++)
{
 sum[i%10] += A[i];
}

A. Access of A has temporal locality, sum has spatial locality
B. Both A and sum have temporal locality, and sum also has spatial locality
C. Access of A has spatial locality, sum has temporal locality
D. Both A and sum have spatial locality
E. Both A and sum have spatial locality, and sum also has temporal locality

24

LocalityPoll close in

• Which description about locality of arrays sum and A in the following
code is the most accurate?
for(i = 0; i< 100000; i++)
{
 sum[i%10] += A[i];
}

A. Access of A has temporal locality, sum has spatial locality
B. Both A and sum have temporal locality, and sum also has spatial locality
C. Access of A has spatial locality, sum has temporal locality
D. Both A and sum have spatial locality
E. Both A and sum have spatial locality, and sum also has temporal locality

25

LocalityPoll close in

• Which description about locality of arrays sum and A in the following
code is the most accurate?
for(i = 0; i< 100000; i++)
{
 sum[i%10] += A[i];
}

A. Access of A has temporal locality, sum has spatial locality
B. Both A and sum have temporal locality, and sum also has spatial locality
C. Access of A has spatial locality, sum has temporal locality
D. Both A and sum have spatial locality
E. Both A and sum have spatial locality, and sum also has temporal locality

26

Locality

spatial locality:
A[0], A[1], A[2], A[3],
sum[0], sum[1], ... , sum[9]
temporal locality:
reuse of sum[0], sum[1], ... , sum[9]

• Spatial locality — application tends to visit nearby stuffs in the
memory
• Code — the current instruction, and then PC + 4
• Data — the current element in an array, then the next

• Temporal locality — application revisit the same thing again
and again
• Code — loops, frequently invoked functions
• Data — the same data can be read/write many times

27

Locality

Most of time, your program is just visiting a
very small amount of data/instructions within

a given window

Architecting the Cache

28

29

0x2000
0x1000

0x8000

0x4000
0x3000

0x6000
0x5000

0x7000

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

0xFFF
0x1FFF
0x2FFF
0x3FFF
0x4FFF
0x5FFF
0x6FFF
0x7FFF
0x8FFF

0x0000

Processor
Core

Registers load 0x0009

AAAAAAAA

Load/store only access a “word” each time

AAAA BBBB

load 0x000A

30

0x2000
0x1000

0x8000

0x4000
0x3000

0x6000
0x5000

0x7000

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

0xFFF
0x1FFF
0x2FFF
0x3FFF
0x4FFF
0x5FFF
0x6FFF
0x7FFF
0x8FFF

0x0000

Processor
Core

Registers

To capture “spatial” locality, $ fetch a “block”
“Logically” partition
memory space into

“blocks”
SRAM $

AABB CCDD EEFF GGHH

AABB CCDD

lw 0x0020lw 0x0024
Assume each block is 16 bytes

How to tell who is there?

31

This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:

Processor
Core

Registers 0x000

0x
00

00
0x

00
01

0x

00
02

0x

00
03

0x

00
04

0x

00
05

0x

00
06

0x

00
07

0x

00
08

0x

00
09

0x

00
0A

0x

00
0B

0x

00
0C

0x

00
0D

0x

00
0E

0x

00
0F

0123456789ABCDEF
tag

1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

data
How to tell who is there?

32

This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:

0123456789ABCDEF
tag
0x000
0x001
0xF07
0x100
0x310
0x450
0x006
0x537
0x266
0x307
0x265
0x80A
0x620
0x630
0x705
0x216

Processor
Core

Registers

lw 0x0008

CS 2

The complexity of search the matching tag—
O(n)— will be slow if our cache size grows!

lw 0x4048

0x404 not found,
go to lower-level memory

Can we search things faster?
O(1)—hash table!

block offsettag Va
lid

 Bi
t Tell if the block here can be used

Dir
ty

Bit Tell if the block here is modified

1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

Hash-like structure — direct-mapped cache

33

0x00 This is CS 203:
0x10 Advanced Compute
0xA1 r Architecture!
0x10 This is CS 203:
0x31 Advanced Compute
0x45 r Architecture!
0x41 This is CS 203:
0x68 Advanced Compute
0x29 r Architecture!
0xDE This is CS 203:
0xCB Advanced Compute
0x8A r Architecture!
0x60 This is CS 203:
0x70 Advanced Compute
0x10 r Architecture!
0x11 This is CS 203:

datatag
0123456789ABCDEF

Processor
Core

Registers
load 0x0008

load 0x4048
0x40 not found,

go to lower-level memory

The biggest issue with hash is —
Collision!

index
block offsettag

V D

1 1 0x29 r Architecture!
1 1 0xDE This is CS 203:
1 0 0x10 Advanced Compute
0 1 0x8A r Architecture!
1 1 0x60 This is CS 203:
1 1 0x70 Advanced Compute
0 1 0x10 r Architecture!
0 1 0x11 This is CS 203:

Way-associative cache

34

1 1 0x00 This is CS 203:
1 1 0x10 Advanced Compute
1 0 0xA1 r Architecture!
0 1 0x10 This is CS 203:
1 1 0x31 Advanced Compute
1 1 0x45 r Architecture!
0 1 0x41 This is CS 203:
0 1 0x68 Advanced Compute

datatagdatatag

memory address: 0x0 8 2 4

memory address: 0b0000100000100100

block
offset

set
indextag

=? =?0x1 0
hit? hit?

V DV D

Set

• C: Capacity in data arrays
• A: Way-Associativity — how many blocks within a set

• N-way: N blocks in a set, A = N
• 1 for direct-mapped cache

• B: Block Size (Cacheline)
• How many bytes in a block

• S: Number of Sets:
• A set contains blocks sharing the same index
• 1 for fully associate cache

35

C = ABS

• number of bits in block offset — lg(B)
• number of bits in set index: lg(S)
• tag bits: address_length - lg(S) - lg(B)

• address_length is 32 bits for 32-bit machine
• (address / block_size) % S = set index

36

Corollary of C = ABS

memory address: 0b0000100000100100

block
offset

set
indextag

• L1 data (D-L1) cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block
• Assume 64-bit memory address

 Which of the following is correct?
A. Tag is 49 bits
B. Index is 8 bits
C. Offset is 7 bits
D. The cache has 1024 sets
E. None of the above

37

AMD Phenom IIPoll close in

• L1 data (D-L1) cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block
• Assume 64-bit memory address

 Which of the following is correct?
A. Tag is 49 bits
B. Index is 8 bits
C. Offset is 7 bits
D. The cache has 1024 sets
E. None of the above

38

AMD Phenom IIPoll close in

• L1 data (D-L1) cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block
• Assume 64-bit memory address

 Which of the following is correct?
A. Tag is 49 bits
B. Index is 8 bits
C. Offset is 7 bits
D. The cache has 1024 sets
E. None of the above

39

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits

• Assignment #1 due tonight
• Assignments SHOULD BE done individually — if discussed with others, make sure their names on your

submission
• We will drop your least performing assignment as well
• Attendance counts as one assignment

• Reading quiz due Wednesday before the lecture
• We will drop two of your least performing reading quizzes
• You have two shots, both unlimited time

• Joel Emer’s Talk next Monday @ 11am
• We will not have a lecture next Monday to encourage you attend Joel Emer’s talk
• If you capture a screen shot and submit it through iLearn, you will receive a full credit reading quiz
• The talk cannot be broadcasted on YouTube due to the license constraint

• Office Hours on Zoom (the office hour link, not the lecture one)
• Walk-in, no appointment is necessary
• Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p
• Quan Fan: F 1p-3p

141

Announcement

ͺͻͥ

Computer
Science &
Engineering

203

