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von Neumman Architecture
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• IC (Instruction Count) 
• ISA, Compiler, algorithm, programming language, programmer 

• CPI (Cycles Per Instruction) 
• Machine Implementation, microarchitecture, compiler, application, algorithm, programming language, 

programmer 
• Cycle Time (Seconds Per Cycle) 

• Process Technology, microarchitecture, programmer
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Recap: Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT
Speedup = Execution TimeX

Execution TimeY



• Cannot compare different ISA/compiler 
• What if the compiler can generate code with fewer instructions? 
• What if new architecture has more IC but also lower CPI? 

• Does not make sense if the application is not floating point intensive
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Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instructions × 10−12

Exection Time

= IC × % of floating point instructions × 10−12

IC × CPI × CT

IC is gone!= % of floating point instructions × 10−12

CPI × CT

A good performance metric must cover IC, CPI, CT!



• Corollary #1: Maximum speedup 
• Corollary #2: Make the common case fast 

• Common case changes all the time 
• Corollary #3: Single-core performance 

still matters 
• Corollary #4: Exploiting more parallelism 

from a program is the key to performance 
gain in modern architectures
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Amdahl’s Law
Speedupenhanced( f, s) = 1

(1 − f ) + f
s

Speedupmax( f, ∞) = 1
(1 − f )

Speedupparallel( fparallelizable, ∞) = 1
(1 − fparallelizable)

Speedupparallel( fparallelizable, ∞) = 1
(1 − fparallelizable)

Speedupmax( f1, ∞) = 1
(1 − f1)

Speedupmax( f2, ∞) = 1
(1 − f2)

Speedupmax( f3, ∞) = 1
(1 − f3)

Speedupmax( f4, ∞) = 1
(1 − f4)



Performance gap between Processor/Memory
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• Assume that we have a processor running @ 2 GHz and a program with 
30% of load/store instructions. If the computer has “perfect” memory, 
the CPI is just 1. Now, consider we have DDR4 and the program is well-
behaved that precharge is never necessary — the access latency is 
simply 26 ns. What’s the average CPI (pick the most close one)? 

A. 9 
B. 17 
C. 27 
D. 35 
E. 69
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The impact of “slow” memory

1 + 100% × (52) + 30% × 52 = 68.6 cycles



9

ARCHITECTURE

#MAGA
Architecture



Team scores

10

0.5 2 2.5 3



• The Basic Idea behind Memory Hierarchy 
• How cache works
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Outline



Alternatives?
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Fast, but expensive $$$



Thinking about water
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• Assume that we have a processor running @ 2 GHz and a program 
with 30% of load/store instructions. If the computer has “perfect” 
memory, the CPI is just 1. Now, in addition to DDR4, whose latency 
26 ns, we also got an SRAM cache with latency of just at 0.5ns and 
can capture 90% of the desired data/instructions. what’s the 
average CPI (pick the most close one)? 

A. 2 
B. 4 
C. 8 
D. 16 
E. 32
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How can memory hierarchy help in performance?
Poll close in



• Assume that we have a processor running @ 2 GHz and a program 
with 30% of load/store instructions. If the computer has “perfect” 
memory, the CPI is just 1. Now, in addition to DDR4, whose latency 
26 ns, we also got an SRAM cache with latency of just at 0.5ns and 
can capture 90% of the desired data/instructions. what’s the 
average CPI (pick the most close one)? 

A. 2 
B. 4 
C. 8 
D. 16 
E. 32

16

How can memory hierarchy help in performance?
Poll close in



• Assume that we have a processor running @ 2 GHz and a program 
with 30% of load/store instructions. If the computer has “perfect” 
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How can memory hierarchy help in performance?

1 + (1 − 90%) × [100% × (52) + 30% × 52] = 7.76 cycles



L1? L2? L3?
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• Assume that we have a processor running @ 2 GHz and a program with 30% of 
load/store instructions. If the computer has “perfect” memory, the CPI is just 1. 
Now, in addition to DDR4, whose latency 26 ns, we also got a 2-level SRAM 
caches with  

• it’s 1st-level one at latency of 0.5ns and can capture 90% of the desired data/
instructions.  

• the 2nd-level at latency of 5ns and can capture 60% of the desired data/instructions 
    What’s the average CPI (pick the most close one)? 

A. 2 
B. 4 
C. 8 
D. 16 
E. 32
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How can deeper memory hierarchy help in performance?
Poll close in
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How can deeper memory hierarchy help in performance?

1 + (1 − 90%) × [10 + (1 − 60%) × 52 + 30% × (10 + (1 − 60%) × 52)] = 5 cycles



Processor
Memory Hierarchy
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Why adding small SRAMs would 
work?
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• Which description about locality of arrays sum and A in the following 
code is the most accurate?
for(i = 0; i< 100000; i++) 
{ 
    sum[i%10] += A[i]; 
} 

A. Access of A has temporal locality, sum has spatial locality 
B. Both A and sum have temporal locality, and sum also has spatial locality 
C. Access of A has spatial locality, sum has temporal locality 
D. Both A and sum have spatial locality 
E. Both A and sum have spatial locality, and sum also has temporal locality
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LocalityPoll close in
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Locality

spatial locality:  
A[0], A[1], A[2], A[3], .... 
sum[0], sum[1], ... , sum[9] 
temporal locality: 
reuse of sum[0], sum[1], ... , sum[9]



• Spatial locality — application tends to visit nearby stuffs in the 
memory 
• Code — the current instruction, and then PC + 4 
• Data — the current element in an array, then the next  

• Temporal locality — application revisit the same thing again 
and again 
• Code — loops, frequently invoked functions 
• Data — the same data can be read/write many times
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Locality

Most of time, your program is just visiting a 
very small amount of data/instructions within 

a given window



Architecting the Cache
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Load/store only access a “word” each time

AAAA BBBB

load 0x000A
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To capture “spatial” locality, $ fetch a “block”
“Logically” partition 
memory space into 

“blocks”
SRAM $

AABB CCDD EEFF GGHH

AABB CCDD

lw 0x0020lw 0x0024
Assume each block is 16 bytes



How to tell who is there?

31

This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 
Advanced Compute
r Architecture!
This is CS 203: 

Processor 
Core

Registers 0x000

0x
00

00
0x

00
01

 
0x

00
02

 
0x

00
03

 
0x

00
04

 
0x

00
05

 
0x

00
06

 
0x

00
07

 
0x

00
08

 
0x

00
09

 
0x

00
0A

 
0x

00
0B

 
0x

00
0C

 
0x

00
0D

 
0x

00
0E

 
0x

00
0F

0123456789ABCDEF
tag



1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

data
How to tell who is there?
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lw 0x0008

CS 2

The complexity of search the matching tag—
O(n)— will be slow if our cache size grows!

lw 0x4048

0x404 not found,  
go to lower-level memory

Can we search things faster?
O(1)—hash table!

block offsettag Va
lid

 Bi
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Bit Tell if the block here is modified
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Hash-like structure — direct-mapped cache
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Processor 
Core
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load 0x0008

load 0x4048
0x40 not found,  

go to lower-level memory

The biggest issue with hash is —
Collision!

index
block offsettag

V D



1 1 0x29 r Architecture!
1 1 0xDE This is CS 203: 
1 0 0x10 Advanced Compute
0 1 0x8A r Architecture!
1 1 0x60 This is CS 203: 
1 1 0x70 Advanced Compute
0 1 0x10 r Architecture!
0 1 0x11 This is CS 203: 

Way-associative cache
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1 1 0x00 This is CS 203: 
1 1 0x10 Advanced Compute
1 0 0xA1 r Architecture!
0 1 0x10 This is CS 203: 
1 1 0x31 Advanced Compute
1 1 0x45 r Architecture!
0 1 0x41 This is CS 203: 
0 1 0x68 Advanced Compute

datatagdatatag

memory address:      0x0   8   2   4

memory address:      0b0000100000100100

block
offset

set
indextag

=? =?0x1   0
hit? hit?

V DV D

Set



• C: Capacity in data arrays 
• A:  Way-Associativity — how many blocks within a set 

• N-way: N blocks in a set, A = N 
• 1 for direct-mapped cache 

• B: Block Size (Cacheline) 
• How many bytes in a block 

• S: Number of Sets: 
• A set contains blocks sharing the same index 
• 1 for fully associate cache
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C = ABS



• number of bits in block offset — lg(B) 
• number of bits in set index: lg(S) 
• tag bits: address_length - lg(S) - lg(B) 

• address_length is 32 bits for 32-bit machine 
• (address / block_size) % S = set index
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Corollary of C = ABS

memory address:      0b0000100000100100

block
offset

set
indextag



• L1 data (D-L1) cache configuration of AMD Phenom II 
• Size 64KB, 2-way set associativity, 64B block 
• Assume 64-bit memory address 

    Which of the following is correct?  
A. Tag is 49 bits 
B. Index is 8 bits 
C. Offset is 7 bits 
D. The cache has 1024 sets 
E. None of the above

37

AMD Phenom IIPoll close in
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AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits



• Assignment #1 due tonight 
• Assignments SHOULD BE done individually — if discussed with others, make sure their names on your 

submission 
• We will drop your least performing assignment as well 
• Attendance counts as one assignment 

• Reading quiz due Wednesday before the lecture 
• We will drop two of your least performing reading quizzes 
• You have two shots, both unlimited time 

• Joel Emer’s Talk next Monday @ 11am 
• We will not have a lecture next Monday to encourage you attend Joel Emer’s talk 
• If you capture a screen shot and submit it through iLearn, you will receive a full credit reading quiz 
• The talk cannot be broadcasted on YouTube due to the license constraint 

• Office Hours on Zoom (the office hour link, not the lecture one) 
• Walk-in, no appointment is necessary 
• Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p 
• Quan Fan: F 1p-3p

141

Announcement
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