
Memory Hierarchy (III): Optimizing 
Cache Performance

Hung-Wei Tseng



Performance gap between Processor/Memory

2



Processor
Recap: Memory Hierarchy

3

DRAM

Storage

SRAM $

Processor 
Core

Registers

larger

fastest

< 1ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

L1 $
L2 $
L3 $

fastest

larger

us/ms



• Processor sends load request to L1-$ 
• if hit 

• return data  
• if miss 

• Select a victim block 
• If the target “set” is not full — select an empty/invalidated block 

as the victim block 
• If the target “set is full — select a victim block using some 

policy 
• LRU is preferred — to exploit temporal locality! 

• If the victim block is “dirty” & “valid” 
• Write back the block to lower-level memory hierarchy 

• Fetch the requesting block from lower-level memory hierarchy 
and place in the victim block 

• If write-back or fetching causes any miss, repeat the same 
process

4

What happens when we read data
Processor 

Core
Registers

L1 $
ld 0xDEADBEEFoffsetindextag

L2 $

DRAM

hit

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block 
0xDEADBE



• Processor sends load request to L1-$ 
• if hit 

• return data — set DIRTY  
• if miss 

• Select a victim block 
• If the target “set” is not full — select an empty/invalidated block 

as the victim block 
• If the target “set is full — select a victim block using some policy 
• LRU is preferred — to exploit temporal locality! 

• If the victim block is “dirty” & “valid” 
• Write back the block to lower-level memory hierarchy 

• Fetch the requesting block from lower-level memory hierarchy 
and place in the victim block 

• If write-back or fetching causes any miss, repeat the same 
process 

• Present the write “ONLY” in L1 and set DIRTY
5

What happens when we write data
Processor 

Core
Registers

L1 $
sd 0xDEADBEEFoffsetindextag

L2 $

DRAM

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

Write & Set dirty
Write &Set dirty



1 1 0x29 r Architecture!
1 1 0xDE This is CS 203: 
1 0 0x10 Advanced Compute
0 1 0x8A r Architecture!
1 1 0x60 This is CS 203: 
1 1 0x70 Advanced Compute
0 1 0x10 r Architecture!
0 1 0x11 This is CS 203: 

Recap: Way-associative cache

6

1 1 0x00 This is CS 203: 
1 1 0x10 Advanced Compute
1 0 0xA1 r Architecture!
0 1 0x10 This is CS 203: 
1 1 0x31 Advanced Compute
1 1 0x45 r Architecture!
0 1 0x41 This is CS 203: 
0 1 0x68 Advanced Compute

datatagdatatag

memory address:      0x0   8   2   4

memory address:      0b0000100000100100

block
offset

set
indextag

=? =?0x1   0
hit? hit?

V DV D

Set



• Compulsory miss 
• Cold start miss. First-time access to a block 

• Capacity miss 
• The working set size of an application is bigger than cache size 

• Conflict miss 
• Required data replaced by block(s) mapping to the same set 
• Similar collision in hash

7

3Cs of misses



AMD Phenom II

8

int a[16384], b[16384], c[16384]; 
/* c = 0x10000, a = 0x20000, b = 0x30000 */ 
for(i = 0; i < 512; i++) 
    c[i] = a[i] + b[i]; /*load a[i], load b[i], store c[i]*/ 

• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate, write-back, and assuming 64-bit address.

address in hex address in binary tag index hit? miss?
load a[0] 0x20000 0b10 0000 0000 0000 0000 0x4 0 compulsory miss
load b[0] 0x30000 0b11 0000 0000 0000 0000 0x6 0 compulsory miss
store c[0] 0x10000 0b01 0000 0000 0000 0000 0x2 0 compulsory miss, evict 

0x4load a[1] 0x20004 0b10 0000 0000 0000 0100 0x4 0 conflict miss, evict 0x6
load b[1] 0x30004 0b11 0000 0000 0000 0100 0x6 0 conflict miss, evict 0x2
store c[1] 0x10004 0b01 0000 0000 0000 0100 0x2 0 conflict miss, evict 0x4

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = the rest bits
tag index offset

load a[15] 0x2003C 0b10 0000 0000 0011 1100 0x4 0 miss, evict 0x6
load b[15] 0x3003C 0b11 0000 0000 0011 1100 0x6 0 miss, evict 0x2
store c[15] 0x1003C 0b01 0000 0000 0011 1100 0x2 0 miss, evict 0x4
load a[16] 0x20040 0b10 0000 0000 0100 0000 0x4 1 compulsory miss
load b[16] 0x30040 0b11 0000 0000 0100 0000 0x6 1 compulsory miss
store c[16] 0x10040 0b01 0000 0000 0100 0000 0x2 1 compulsory miss, evict 

0x4

100% miss rate!



Virtually indexed, physically tagged cache

9

1 0x29 0x45
1 0xDE 0x68
1 0x10 0xA1
0 0x8A 0x98

1 1 0x00 AABBCCDDEEGGFFHH
1 1 0x10 IIJJKKLLMMNNOOPP
1 0 0xA1 QQRRSSTTUUVVWWXX
0 1 0x10 YYZZAABBCCDDEEFF
1 1 0x31 AABBCCDDEEGGFFHH
1 1 0x45 IIJJKKLLMMNNOOPP
0 1 0x41 QQRRSSTTUUVVWWXX
0 1 0x68 YYZZAABBCCDDEEFF

datatag
physical page #virtual page #

memory address:      0x0   8   2   4

memory address:      0b0000100000100100

block
offset

set
indexvirtual page #

=?0xA   1
hit?

V D
V



Team scores

10

3.5 3.5 3.5 4



• Architectural optimizations for cache performance 
• Programmer’s optimizations for cache performance

11

Outline



Basic Hardware Optimization in 
Improving 3Cs

12



• Regarding 3Cs: compulsory, conflict and capacity misses and 
A, B, C:  associativity, block size, capacity
How many of the following are correct? 
! Increasing associativity can reduce conflict misses 
" Increasing associativity can reduce hit time 
# Increasing block size can increase the miss penalty 
$ Increasing block size can reduce compulsory misses 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

13

3Cs and A, B, CPoll close in



• Regarding 3Cs: compulsory, conflict and capacity misses and 
A, B, C:  associativity, block size, capacity
How many of the following are correct? 
! Increasing associativity can reduce conflict misses 
" Increasing associativity can reduce hit time 
# Increasing block size can increase the miss penalty 
$ Increasing block size can reduce compulsory misses 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

14

3Cs and A, B, CPoll close in



• Regarding 3Cs: compulsory, conflict and capacity misses and 
A, B, C:  associativity, block size, capacity
How many of the following are correct? 
! Increasing associativity can reduce conflict misses 
" Increasing associativity can reduce hit time 
# Increasing block size can increase the miss penalty 
$ Increasing block size can reduce compulsory misses 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

15

3Cs and A, B, C

Increases hit time because your 
data array is larger (longer time 

to fully charge your bit-lines)

You need to fetch more data for 
each miss

You bring more into the cache 
when a miss occurs



• D-L1 Cache configuration of AMD Phenom II 
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate, 

write-back, and assuming 64-bit address. 
int a[16384], b[16384], c[16384]; 
/* c = 0x10000, a = 0x20000, b = 0x30000 */ 
for(i = 0; i < 512; i++) { 
    c[i] = a[i] + b[i]; 
    //load a, b, and then store to c 
} 

What’s the data cache miss rate for this code? 
A. 6.25% 
B. 56.25% 
C. 66.67% 
D. 68.75% 
E. 100%

16

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits



Improving Direct-Mapped Cache 
Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffers
Norman P. Jouppi

17



• How many of the following schemes mentioned in “improving direct-mapped 
cache performance by the addition of a small fully-associative cache and 
prefetch buffers” would help AMD Phenom II for the code in the previous slide? 
! Missing cache 
" Victim cache 
# Prefetch 
$ Stream buffer 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

18

Which of the following schemes can help AMD Phenom II?



Prefetching

19



Characteristic of memory accesses

20

D[0]
CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) { 
     D[i] = rand(); 
}

time

time

timeL2 access
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]

miss

L2 access
for D[8] - D[15]

D[9]D[10]



Prefetching

21

D[0]
CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) { 
     D[i] = rand(); 
     // prefetch D[i+8] if i % 8 == 0 
}

time

time

timeL2 access 
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]D[9]D[10]

prefetch

miss

L2 access 
for D[8] - D[15]

prefetch

miss

L2 access 
for D[16] - D[23]

D[11] D[12] D[13] D[14] D[15] D[16]

prefetch



• Identify the access pattern and proactively fetch data/
instruction before the application asks for the data/instruction 
• Trigger the cache miss earlier to eliminate the miss when the 

application needs the data/instruction 
• Hardware prefetch 

• The processor can keep track the distance between misses. If there 
is a pattern, fetch miss_data_address+distance for a miss 

• Software prefetch 
• Load data into X0 
• Using prefetch instructions

22

Prefetching



• x86 provide prefetch instructions 
• As a programmer, you may insert _mm_prefetch in x86 

programs to perform software prefetch for your code 
• gcc also has a flag “-fprefetch-loop-arrays” to automatically 

insert software prefetch instructions

23

Demo



• How many of the following code snippet can “prefetching” effectively help improving 
performance?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4

24

Where can prefetch work effectively?

(1) 
while(node){ 
    node = node->next; 
}

(2) 
while(++i<100000) 
    a[i]=rand(); 

(3) 
while (root != NULL){ 
        if (key > root->data) 
            root = root->right; 
  
        else if (key < root->data) 
            root = root->left; 
        else 
            return true; 
}

(4) 
    for (i = 0; i < 65536; i++) { 
      mix_i = ((i * 167) + 13) & 65536; 
      results[mix_i]++; 
    } 

Poll close in



• How many of the following code snippet can “prefetching” effectively help improving 
performance?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4

25

Where can prefetch work effectively?

(1) 
while(node){ 
    node = node->next; 
}

(2) 
while(++i<100000) 
    a[i]=rand(); 

(3) 
while (root != NULL){ 
        if (key > root->data) 
            root = root->right; 
  
        else if (key < root->data) 
            root = root->left; 
        else 
            return true; 
}

(4) 
    for (i = 0; i < 65536; i++) { 
      mix_i = ((i * 167) + 13) & 65536; 
      results[mix_i]++; 
    } 

Poll close in



• How many of the following code snippet can “prefetching” effectively help improving 
performance?

A. 0 
B. 1 
C. 2 
D. 3 
E. 4

26

Where can prefetch work effectively?

(1) 
while(node){ 
    node = node->next; 
}

(2) 
while(++i<100000) 
    a[i]=rand(); 

(3) 
while (root != NULL){ 
        if (key > root->data) 
            root = root->right; 
  
        else if (key < root->data) 
            root = root->left; 
        else 
            return true; 
}

(4) 
    for (i = 0; i < 65536; i++) { 
      mix_i = ((i * 167) + 13) & 65536; 
      results[mix_i]++; 
    } 

— where the next pointing to is hard to predict

— where the next node is also hard to predict

— the stride to the next element is hard to predict…



• A small cache that captures 
the missing blocks 
• Can be built as fully associative 

since it’s small 
• Consult when there is a miss 
• Retrieve the block if found in the 

missing cache 
• Reduce conflict misses
•

27

Miss cache
Processor 

Core
Registers

L1 $

L2 $
DRAM

Miss $

ld/sd 0xDEADBEEFoffsetindextag

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

return block 
0xDEADBE

miss!
ld/sd 0xDEADBEEFoffsetindextag

miss! fetch block
 0xDEADBEindextag

return block 
0xDEADBE



• A small cache that captures the 
evicted blocks 

• Can be built as fully associative since 
it’s small 

• Consult when there is a miss 
• Swap the entry if hit in victim cache 
• Athlon/Phenom has an 8-entry victim 

cache 
• Reduce conflict misses  
• Jouppi [1990]: 4-entry victim cache 

removed 20% to 95% of conflicts for 
a 4 KB direct mapped data cache

•

28

Victim cache
Processor 

Core
Registers

L1 $

L2 $
DRAM

Victim $

ld/sd 0xAAAABEEFoffsetindextag

fetch block
 0xAAAABEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBEevict

 0xDEADBEindextag

write back
 0x####BEindextag

return block 
0xAAAABE

miss!
ld/sd 0xDEADBEEFoffsetindextag

miss! fetch block
 0xDEADBEindextag



• Both of them improves conflict misses 
• Victim cache can use cache block more efficiently — swaps when miss 

• Miss caching maintains a copy of the missing data — the cache block can both in L1 and miss cache 
• Victim cache only maintains a cache block when the block is kicked out 

• Victim cache captures conflict miss better 
• Miss caching captures every missing block

29

Victim cache v.s. miss caching



• How many of the following schemes mentioned in “improving direct-mapped 
cache performance by the addition of a small fully-associative cache and 
prefetch buffers” would help AMD Phenom II for the code in the previous slide? 
! Missing cache 
" Victim cache 
# Prefetch 
$ Stream buffer 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

30

Which of the following schemes can help Athlon 64?

— only help improving compulsory misses

— help improving conflict misses
— help improving conflict misses
— improving compulsory misses , but can potentially hurt, if we did not do it right



Advanced Hardware Techniques in 
Improving Memory Performance

31



Blocking cache

32

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block 
0xDEADBE fetch block

 0xDEAEBE
return block 
0xDEAEBE



Bank #2Bank #1

Multibanks & non-blocking caches

33

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block 
0xDEADBE fetch block

 0xDEAEBE
return block 
0xDEAEBE



34

Pipelined access and multi-banked caches

Bank #1
Bank #2

Bank #3
Bank #4

Request #1
Request #2

Request #3
Request #4

Baseline

Multi-
banked

Memory 
Request #1

Memory 
Request #2

Memory 
Request #3

Memory 



38

The bandwidth between units is limited
Processor 

Core
Registers

L1 $

L2 $

DRAM

64-bit

64-bit

64-bit



When we handle a miss

39

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

write back 
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back 
2nd chunk

write back 
3rd chunkwrite back 

4th chunk
fetch 1st 

chunk

issue 
fetch 

request

fetch 2nd 
chunk

fetch 3rd 
chunk

fetch 4th 
chunk

miss restartmiss restart

t

t



Early Restart and Critical Word First 

40

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

t

t
write back 
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back 
2nd chunk

write back 
3rd chunkwrite back 

4th chunk
fetch 1st 

chunk

issue 
fetch 

request

fetch 2nd 
chunk

fetch 3rd 
chunk

fetch 4th 
chunk

miss restartmiss
restartif the requesting data (offset 

within a block is already received)



• Don’t wait for full block to be loaded before restarting CPU 
• Early restart—As soon as the requested word of the block arrives, 

send it to the CPU and let the CPU continue execution 
• Critical Word First—Request the missed word first from memory 

and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block. Also called 
wrapped fetch and requested word  first 

• Most useful with large blocks 
• Spatial locality is a problem; often we want the next sequential 

word soon, so not always a benefit (early restart).
41

Early Restart and Critical Word First 



Can we avoid the overhead of writes?

42

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

write back 
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back 
2nd chunk

write back 
3rd chunkwrite back 

4th chunk
fetch 1st 

chunk

issue 
fetch 

request

fetch 2nd 
chunk

fetch 3rd 
chunk

fetch 4th 
chunk

miss restartmiss
restartif the requesting data (offset 

within a block is already received)

Write Back 
Overhead

t

t



Write buffer!

43

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag return block 

0xDEADBE

write to 
buffer

assume the bus between L1/L2 only allows a quarter of the cache block go through it

fetch 1st 
chunk

issue 
fetch 

request

fetch 2nd 
chunk

fetch 3rd 
chunk

fetch 4th 
chunk

miss
restartif the requesting data (offset 

within a block is already received)

Write 
Buffer

t

t

write to L2



• Every write to lower memory will first write to a small SRAM buffer. 
• store does not incur data hazards, but the pipeline has to stall if the 

write misses 
• The write buffer will continue writing data to lower-level memory 
• The processor/higher-level memory can response as soon as the data 

is written to write buffer. 
• Write merge 

• Since application has locality, it’s highly possible the evicted data have 
neighboring addresses. Write buffer delays the writes and allows these 
neighboring data to be grouped together.

44

Can we avoid the “double penalty”?



45

Summary of Optimizations
• Regarding the following cache optimizations, how many of them 

would help improve miss rate? 
! Non-blocking/pipelined/multibanked cache 
" Critical word first and early restart 
# Prefetching 
$ Write buffer 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

Poll close in



46

Summary of Optimizations
• Regarding the following cache optimizations, how many of them 

would help improve miss rate? 
! Non-blocking/pipelined/multibanked cache 
" Critical word first and early restart 
# Prefetching 
$ Write buffer 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

Poll close in



• Regarding the following cache optimizations, how many of them 
would help improve miss rate? 
! Non-blocking/pipelined/multibanked cache 
" Critical word first and early restart 
# Prefetching 
$ Write buffer 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

47

Summary of Optimizations

Miss penalty/Bandwidth
Miss penalty

Miss rate (compulsory)
Miss penalty



• Hardware 
• Prefetch — compulsory miss 
• Write buffer — miss penalty 
• Bank/pipeline — miss penalty 
• Critical word first and early restart — miss panelty

48

Summary of Optimizations



Programming and memory 
performance

49



Data layout

50



• Consider the following data structure:

What’s the output of
printf(“%lu\n”,sizeof(struct student))? 

A. 20 
B. 28 
C. 32 
D. 36 
E. 40

51

The result of sizeof(struct student)
struct student { 
    int id; 
    double *homework; 
    int participation; 
    double midterm; 
    double average; 
};

Poll close in



• Consider the following data structure:

What’s the output of
printf(“%lu\n”,sizeof(struct student))? 

A. 20 
B. 28 
C. 32 
D. 36 
E. 40

52

The result of sizeof(struct student)
struct student { 
    int id; 
    double *homework; 
    int participation; 
    double midterm; 
    double average; 
};

Poll close in



• Almost every popular ISA architecture uses “byte-addressing” 
to access memory locations 

• Instructions generally work faster when the given memory 
address is aligned 
• Aligned — if an instruction accesses an object of size n at address 
X, the access is aligned if X mod n = 0. 

• Some architecture/processor does not support aligned access at all 
• Therefore, compilers only allocate objects on “aligned” address

53

Memory addressing/alignment



• Consider the following data structure:

What’s the output of
printf(“%lu\n”,sizeof(struct student))? 

A. 20 
B. 28 
C. 32 
D. 36 
E. 40

54

The result of sizeof(struct student)
struct student { 
    int id; 
    double *homework; 
    int participation; 
    double midterm; 
    double average; 
}; 64-bit

id

average

homework
participation

midterm



• Assignment #2 due tonight 
• Reading quiz due Wednesday 
• Project is up — check the website 
• Assignment #3 due next Monday 
• Office Hours on Zoom (the office hour link, not the lecture one) 

• Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p 
• Quan Fan: F 1p-3p

80

Announcement



81
ͺͻͥ

Computer
Science &
Engineering

203


