Memory Hierarchy (lllI): Optimizing
Cache Performance

Hung-Wel Tseng

Performance gap between Processor/Memory

100,000
10,000 - e g g e e
S
2. OO0 A v ee ettt e e
(O
% Processor
E 100 el
o
10 e TR T TR T T o T Tn T T T oty TR o T Tn T Tt ottt o T o oo e Tt T T oo T oo T T
Memory
1 = = | T T T T |
1980 1985 1990 1995 2000 2005 2010 2015
Year

Recap: Memory Hierarchy

fastest Processor

Processor
Core

Registers

SRAM $

e h memp——s
..] .
" s —r
A oa.suere
. A= - .
- - -
- L AL BT
P gant_-e -0 telbae
ose 2 .
CUES 22 G . -.--.
rel AR .o -
- IS L ok SR ARRARAS »
alasass - J oM A
. Sal 8 s has
. nrcemmae
q . —yr
' TR)
. - ~ L
) ' 4 -
. OFy
- -
-
| .
])t
!
-
v ~
= ar
. 5 .
»
.
»
n’ .
e

<1ns

a few ns

DRAM

Storage

tens of n

us/ms

What happens when we read data

- Processor sends load request to L1-$
Processor - if hit

Core e return data
 if miss
- Select a victim block

- If the target "“set” is not full — select an empty/invalidated block
as the victim block

- If the target "set is full — select a victim block using some

. olic
write back returnblock " . .
- LRU is preferred — to exploit temporal locality!
' OxXDEADBE

= If the victim block is “dirty” & “valid”
- Write back the block to lower-level memory hierarchy

- Fetch the requesting block from lower-level memory hierarchy
return block ang place in the victim block

ADBE. If write-back or fetching causes any miss, repeat the same
process

Registers

4

What happens when we write data

- Processor sends load request to L1-$

Processor « if hit
Core « return data — set DIRTY
. e if miss
Registers o
- Select a victim block
sd Write & Set dirty - If the target “set” is not full — select an empty/invalidated block

as the victim block
- If the target “set is full — select a victim block using some policy
- LRU is preferred — to exploit temporal locality!
return blocoklf the victim block is “dirty” & "valid"
OXDEADBE - Write back the block to lower-level memory hierarchy

- Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

return block it write-back or fetching causes any miss, repeat the same

ADBE process
« Present the write “ONLY" in L1 and set DIRTY

et dirty

5

Recap: Way-associative cache

memory address: Ox0 3 2 4
set block

index offset

tag

memory address: 7]0
VD tag data VD tag data
1|1 0x29 r Ar ecture! 11 Ox00 This S 203:
OxDE This CS 203: 11 0x10 Adva Compute

ax10_|_|This

oxa1

Ox45 Y Ar

AY R L

This

1
1 Ox70 Adva
1
1

ecture!
S 203:
Compute

= |

0x10 Y Ar
Ox11 This CS 203: Ox68

Ox1 0

6

o O |-

3Cs of misses

» Compulsory miss

- Cold start miss. First-time access to a block

- Capacity miss

- The working set size of an application is bigger than cache size
. Conflict miss

- Required data replaced by block(s) mapping to the same set
- Similar collision in hash

AMD Phenomlli 100% miss rate!

Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate, write-back, and assuming 64-bit address.

int al16384], b[16384], c[16384]; C=ABS
/* C = 0x10000, a = 0x20000, b = 0x30000 */ 64KB=2%64"S
for(i1 = 9; 1 < 512; 1++) S =512

offset =1g(64) = 6 bits

index =1g(512) = 9 bits
tag = the rest bits

c[i] = ali] + b[1i]; /*load alil], load b[i], store cl[i]x/

address in hex tag ““index’ offset tag index hit? miss?
load al[@] 0x20000 Obl0 0000 0000 00O 0000 OX4 0 compulsory miss
load b[0] Ox30000 Obll 0000 0000 0000 0000 Ox6 0 compulsory miss
store c[0] 0x10000 0b01 0000 0VOO 0000 0000 Ox?2 %) compulsory miss, evict
load al1] 0Xx20004 Ob10 0000 0000 00O 0100 Ox4 0 conflict miss, evict Oxé6
load b[1] Ox30004 Obll 0000 00O 00VO 0100 Ox6 0 conflict miss, evict Ox2
store c[1] 0x10004 0b01 0000 0000 0000 0100 Ox2 5 conflict miss, evict Ox4
load al[15] @><.20@3C obl10 é@@@ 0000 0011 1100 | @.x4 0 miss, evict Ox6
load b[15] Ox3003C Obll 0000 00O 0011 1100 Ox6 0 miss, evict Ox2
store c[15] 0x1003C Ob01l 0000 0000 0011 1100 Ox2 0 miss, evict Ox4
load al[16] 0x20040 Pb10 0000 0000 0100 0000 Ox4 1 compulsory miss
load b[16] Ox30040 Pbll 0000 0000 0100 0000 Ox6 1 compulsory miss
store c[16] 0x10040 0b01 0000 0000 0100 0000 Ox2 1 compulsory miss, evict

Virtually indexed, physmally tagged cache

memory address: Ox0
set block

virtual page #index offset

memory address: @b P00100000100100

VD tag data
1]1 0x00 AA CCDDEEGGFFHH
V_virtual page hysical page # /1] exie KKLLMMNNOOPP
1 0x29 Ox45 QQRR-JUVVWWXX
1 OxDE 0x68 AABBCCDDEEFF
1 0x10 OxAl AA CCDDEEGGFFHH
0 Ox8A 0x98 11JJKKLELEMMNNOOPP

QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF

oy

3.5

Team scores

3.5 3.5

10

Outline

- Architectural optimizations for cache performance
- Programmer’s optimizations for cache performance

1

Basic Hardware Optimization in
Improving 3Cs

3Csand A,B,C

- Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity
How many of the following are correct?

MmMOOW>EeEE 06

WO DN -0

ncreasing associativity can reduce conflict misses
ncreasing associativity can reduce hit time
ncreasing block size can increase the miss penalty
ncreasing block size can reduce compulsory misses

13

3Csand A,B,C

- Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity
How many of the following are correct?

MmMOOW>EeEE 06

WO DN -0

ncreasing associativity can reduce conflict misses
ncreasing associativity can reduce hit time
ncreasing block size can increase the miss penalty
ncreasing block size can reduce compulsory misses

14

A/
1 — IR&tinct

3Csand A,B,C

- Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity

How many of the following are correct? Increases hit time because your
: C e : : data array is larger (longer time
@ Increasing associativity can reduce conflict misses to fully charge your bit-lines)
®@ Increasing associativity canreduce hittime ¢---------ccac-----" -
® Increasing block size can increase the miss pella_lty
@ Increasing block size c;an reduce compulsory misses |
1
A. K '
! 4 Y4
B. ' '
C N You heed to fetch more data for
: .’ each miss

i

AW - O

| . .
You bring more into the cache
when a miss occurs

rm

15

AMD Phenomli

- D-L1 Cache configuration of AMD Phenom i

- Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 64-bit address.

int al[16384], b[16384]1, cl[16384];
/* Cc = Ox10000, a = 0x20000, b = 0x30000 x/
for(i = 0; 1 < 512; i++) {

cl[i] = ali]l + bli];

//load a, b, and then store to c

}
What's the data cache miss rate for this code?
A. 6.25%
o C =ABS
B. 56.25% e s
C. 66.67% S 519
D. 68.75% offset = Ig(64) = 6 bits

S index = 1g(512) = 9 bits
E. 100% tag =64 -1g(512) - 1g(64) = 49 bits

16

Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers

Norman P. Jouppi

Which of the following schemes can help AMD Phenom I1?

- How many of the following schemes mentioned in “improving direct-mapped
cache performance by the addition of a small fully-associative cache and
prefetch buffers” would help AMD Phenom Il for the code in the previous slide?

® Missing cache
Victim cache
Prefetch
Stream buffer

MOO®E>XrEEE

WO DN-—-O0

18

Prefetching

Characteristic of memory accesses

for(i = 9;1 < 1000000; i++) {
D[i] = rand();
s
DI[O] D[1] D[2] D[3] D[4] D[5] D[6] D[/] D[8] D[OPD[10]

cru — AR T

time

g — L IRIRIRIRIRIRIN L

miss mIss

time

12$ 4 ! R
L2 access L2 access time
for D[O] - D[7] for D[8] - D[15]

20

Prefetching

for(i1 = 0;1 < 1000000; 1++) {
D[1] = rand();
// prefetch D[i+8] if 1 % 8 ==

s
D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]D[Q]D[10}\""] D12 D(3] D[4l DI15] Dl16]
| || I I T ||
CPU — I N L L I
prefetch Aref .tM prefetch
g —u T¢¢¢¢T¢¢¢J¢l¢lTl¢¢¢,
time
Mmiss IS MmIsS
12$! 4 | ,
L2 access L2 access L2 access time

for D[O] - D[7] for D[8] - D[15] for D[16] - D[23]

21

Prefetching

- |dentify the access pattern and proactively fetch data/
Instruction before the application asks for the data/instruction

- Trigger the cache miss earlier to eliminate the miss when the
application needs the data/instruction

- Hardware prefetch

- The processor can keep track the distance between misses. If there
IS a pattern, fetch miss_data_address+distance for a miss

. Software prefetch
- Load data into XO
- Using prefetch instructions

22

Demo

. X806 provide prefetch instructions

. As a programmer, you may insert _mm_prefetchinx86
programs to perform software prefetch for your code

- gcc also has a flag “-fprefetch-loop-arrays” to automatically
Insert software prefetch instructions

23

Poll close in 1:30

Where can prefetch work effectively?

- How many of the following code snippet can “prefetching” effectively help improving
performance?

(2)

(1) : :
hile(noce): while+i<100000)

node = node->next;

Iy
. (3) (4)
while (root != NULL){ for (1 = 0; 1 < 656536; it++) {
if (key > root->data) mix_i = ((i * 167) + 13) & 65536;
root = root->right; resultsimix_1i]++;
¥
else if (key < root->data)
root = root->left;
else m
return true;
A. O }
B. 1
C. 2
D. 3
E. 4

24

Where can prefetch work effectivel

- How many of the following code snippet can “prefetching” effectively help improving

performance? -
(1) S (2)
while(node){ while(++1<100000)
node = node—>next; al1l=rand();

}

(3) (4)

while (root != NULL){ for (i = @; 1 < 65536; i++) {

if (key > root->data) mix_i = ((i * 167) + 13) & 65536;
root = root->right; resultsimix_1]++;
¥

else if (key < root->data)
root = root->left;

else m
return true;

moOow>»
AwWN 2O

25

Where can prefetch work effectively?

- How many of the following code snippet can “prefetching” effectively help improving
performance?

A) (V .
1le(++1<100000)

. w
while(node){ alil=rand();
node = node->next;

} — where the next pointing to is hard to |c()£)edict
3
ﬂ\SVh)lle (root != NULL){ for (i = 0; 1 < 65536; 1++) {

if (key > rOOt—>data) miX_i = ((i b S 167) + 13) & 65536;

root = root->right; results[mix_1i]++;
}

else 1f (key < root->data) | — the stride to the next element is hard to predict...
root = root->left; —

else
return true;

A }

— where the next node is also hard to predict

T —

T

m o O w.
A w N —|o

26

Miss cache

- A small cache that captures
Processor the missing blocks

Core | N
| - Can be built as fully associative
Registers . e
e since it's small

1d/sd @x2EADBEEF 1d/sd , ,
miss! miss! slock return block Consult when there is a miss
eteh block SHADBE 9XDEADBE Retrieve the block if found in the
- AD : missing cache
' Miss $

return block | {fetch blo return bibdyeduce conflict misses

OxDE |_“23, DEADBE

m27

Victim cache

- A small cache that captures the
Processor evicted blocks

Core - Can be built as fully associative since
Registers It's small

- Consult when there is a miss

slock return blockSwap the entry if hit in victim cache

SEADBE 9xXDEADBE Athlon/Phenom has an 8-entry victim

cache

- Reduce conflict misses

rg’:(urn bloc s aa Mo aCk . Jouppi [1990]: 4-entry victim cache
£-12 A removed 20% to 95% of conflicts for

a 4 KB direct mapped data cache

1d/sd @xAZ
miss! miss!

fetch block

Victim cache v.s. miss caching

- Both of them improves conflict misses

- Victim cache can use cache block more efficiently — swaps when miss
- Miss caching maintains a copy of the missing data — the cache block can both in L1 and miss cache
- Victim cache only maintains a cache block when the block is kicked out

- Victim cache captures conflict miss better
- Miss caching captures every missing block

100 .
Keye= = LI Icache
Q0

Percentage of cooflict misses removed
b=

Percentage of cocflict misses removed

3 4 5 9 10 11 (2 < -
] 13 14 15
Nurriber of entries in miss cact 01 2 BN 4 501_6 7 ‘8 V%CIIOCL! 12 13 14 15

Figure 3-3: Conflict misses removed by miss caching Figure 3-5: Conflict misses removed by victim caching

29

Which of the following schemes can help Athlon 64?

- How many of the following schemes mentioned in “improving direct-mapped
cache performance by the addition of a small fully-associative cache and
prefetch buffers” would help AMD Phenom Il for the code in the previous slide?

VI\/Iissing cache— help improving conflict misses
M ictim cache — help improving conflict misses
Wrefetch — improving compulsory misses , but can potentially hurt, if we did not do it right

@Stream buffer — only help improving compulsory misses

O0Ow>
WN = O

m
I

30

Advanced Hardware Techniques In
Improving Memory Performance

Blocking cache

return block

return block
fetch block OxDEAEBE

fetch block
OxDEADBE OxDEAEBE

OxDEADBE

| |

32

Multibanks & non-blocking caches

fetch block
OxDEADBE

RAM

Bank

. ’

$

* fetch block
OXDEAEBE

eturn block
OxDEAEBE

' ' '

@XDEADBE

RAM

RAM RAM

Bank #2

#1

33

Pipelined access and multi-banked caches

Request #1 Request #2 Request #3

Baseline

Request #1 Bank #1
Multi- eques Bank #2
banked Request #3 Bank #3
Request #4 Bank #4

34

The bandwidth between units is limited

Processor
Core

When we handle a miss

miss restart
miss astart .
write back ifssu;:
st chunk etc fetcH 4th
write back retufn block writk quest chfink
Y 5 OxDEADBE 2nd thunk fetcH 3rd
chynk
fdtch blogk fetch 2nd
chunk
fetgh 1st
unk
{

assume the bus between L1/L2 only allows a quarter of the cache block go through it

39

Early Restart and Critical Word First

if the requesting data (offset
within a block is already received

miss
ISSue

) restar

t
write back
st chunk fetch fetcH 4th
write back retufn block writk quest chiink
l OxXOEADBE 2nd thunk fetcH 3rd
chyink
chunk
fetfh 1st
unk
4

assume the bus between L1/L2 only allows a quarter of the cache block go through it

40

Early Restart and Critical Word First

- Don't wait for full block to be loaded before restarting CPU

- Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

- Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

- Most useful with large blocks

- Spatial locality is a problem; often we want the next sequential
word soon, so not always a benefit (early restart).

41

Can we avoid the overhead of writes?

if the requesting data (offset

within a block is already received) "€star

. L S
miss astart -

Write

retufn bloci®
OXDEADBE

fatch blo¢k

fetch 4th

chpink
fetcH 3rd

Write Back chifink
fetch 2nd
chunk

fetfh 1st
unk

Overhead

assume the bus between L1/L2 only allows a quarter of the cache block go through it

42

Write buffer!

if the requesting data (offset
within a block is already received)

restar

miss

writé
retuln block P
Ox)EADBE

Write fatch blo¢k
Buffer

fetch 4th

chpink
fetcH 3rd

chyink

write ba

assume the bus between L1/L2 only allows a quarter of the cache block go through it

{

43

Can we avoid the “double penalty”?

- Every write to lower memory will first write to a small SRAM buffer.

- store does not incur data hazards, but the pipeline has to stall if the
write misses

- The write buffer will continue writing data to lower-level memory

- The processor/higher-level memory can response as soon as the data
Is written to write buffer.

- Write merge

- Since application has locality, it's highly possible the evicted data have
neighboring addresses. Write buffer delays the writes and allows these
neighboring data to be grouped together.

44

Summary of Optimizations

- Regarding the following cache optimizations, how many of them
would help improve miss rate?
® Non-blocking/pipelined/multibanked cache
Critical word first and early restart
Prefetching
Write buffer

MOOWPXrEEE

A WODN-—-O0

45

&
Summary of Optimizations 1 YWinct

- Regarding the following cache optimizations, how many of them
would help improve miss rate?
® Non-blocking/pipelined/multibanked cache
Critical word first and early restart
Prefetching
Write buffer

MOOWPXrEEE

A WODN-—-O0

46

Summary of Optimizations

- Regarding the following cache optimizations, how many of them
would help improve miss rate?
® Non-blocking/pipelined/multibanked cache Miss penalty/Bandwidth
@ Critical word first and early restart Miss penalty
® Prefetching miss rate (compulsory)

@ Write buffer Miss penalty
A. O

oo
—_—

Mmoo
A WNDN

47

Summary of Optimizations

- Hardware
- Prefetch — compulsory miss
- Write buffer — miss penalty
- Bank/pipeline — miss penalty
- Critical word first and early restart — miss panelty

48

Programming and memory
performance

Data layout

:
Theresultof si1zeof(struct student)

- Consider the following data structure:
struct student {
int 1d;
double *xhomework:
int participation;
double midterm;
double average;

};

What's the output of

printf(“%lu\n”,sizeof(struct student))?
A. 20

28

. 32

36

40

mo oW

57

:
Theresultof s1zeof(struct stud

- Consider the following data structure:
struct student {
int 1d;
double *xhomework:
int participation;
double midterm;
double average;

};

What's the output of

printf(“%lu\n”,sizeof(struct student))?
A. 20

28

. 32

36

40

mo oW

52

Memory addressing/alignment

- Almost every popular ISA architecture uses “byte-addressing”
to access memory locations

- Instructions generally work faster when the given memory
address is alignhed

- Aligned — if an instruction accesses an object of size n at address
X, the access is aligned if X mod n = 0.

- Some architecture/processor does not support aligned access at all
- Therefore, compilers only allocate objects on "“aligned” address

53

Theresultof sizeof(struct student)

- Consider the following data structure:
struct student {
int 1d;
double *xhomework:
int participation;
double midterm;
double average;

average

midterm

participation

homework

};
What's the output of
printf (”%lu\n”,sizeof(struct student))?
A. 20
B. 28
C. 32
D. 36

64-bit

54

Announcement

- Assignment #2 due tonight

- Reading quiz due Wednesday

- Project is up — check the website
- Assignment #3 due next Monday

. Office Hours on Zoom (the office hour link, not the lecture one)
- Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p
- Quan Fan: F 1p-3p

80

Computer

Engineering

