Memory Hierarchy (lllI): Optimizing
Cache Performance

Hung-Wel Tseng
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Recap: Memory Hierarchy
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What happens when we read data

- Processor sends load request to L1-$
Processor - if hit

Core e return data
 if miss
- Select a victim block

- If the target "“set” is not full — select an empty/invalidated block
as the victim block

- If the target "set is full — select a victim block using some

. olic
write back returnblock " . .
- LRU is preferred — to exploit temporal locality!
' OxXDEADBE

= If the victim block is “dirty” & “valid”
- Write back the block to lower-level memory hierarchy

- Fetch the requesting block from lower-level memory hierarchy
return block ang place in the victim block

ADBE. If write-back or fetching causes any miss, repeat the same
process

Registers
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What happens when we write data

- Processor sends load request to L1-$

Processor « if hit
Core « return data — set DIRTY
. e if miss
Registers o
- Select a victim block
sd Write & Set dirty - If the target “set” is not full — select an empty/invalidated block

as the victim block
- If the target “set is full — select a victim block using some policy
- LRU is preferred — to exploit temporal locality!
return blocoklf the victim block is “dirty” & "valid"
OXDEADBE - Write back the block to lower-level memory hierarchy

- Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

return block it write-back or fetching causes any miss, repeat the same

ADBE process
« Present the write “ONLY" in L1 and set DIRTY

et dirty
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Recap: Way-associative cache

memory address: Ox0 3 2 4
set block

index offset

tag

memory address: 7]0
VD tag data VD tag data
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3Cs of misses

» Compulsory miss

- Cold start miss. First-time access to a block

- Capacity miss

- The working set size of an application is bigger than cache size
. Conflict miss

- Required data replaced by block(s) mapping to the same set
- Similar collision in hash



AMD Phenomlli 100% miss rate!

Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate, write-back, and assuming 64-bit address.

int al16384], b[16384], c[16384]; C=ABS
/* C = 0x10000, a = 0x20000, b = 0x30000 */ 64KB=2%64"S
for(i1 = 9; 1 < 512; 1++) S =512

offset =1g(64) = 6 bits

index =1g(512) = 9 bits
tag = the rest bits

c[i] = ali] + b[1i]; /*load alil], load b[i], store cl[i]x/

address in hex tag ““index’  offset tag index hit? miss?
load al[@] 0x20000 Obl0 0000 0000 00O 0000 OX4 0 compulsory miss
load b[0] Ox30000 Obll 0000 0000 0000 0000 Ox6 0 compulsory miss
store c[0] 0x10000 0b01 0000 0VOO 0000 0000 Ox?2 %) compulsory miss, evict
load al1] 0Xx20004 Ob10 0000 0000 00O 0100 Ox4 0 conflict miss, evict Oxé6
load b[1] Ox30004 Obll 0000 00O 00VO 0100 Ox6 0 conflict miss, evict Ox2
store c[1] 0x10004 0b01 0000 0000 0000 0100 Ox2 5 conflict miss, evict Ox4
load al[15] @><.20@3C obl10 é@@@ 0000 0011 1100 | @.x4 0 miss, evict Ox6
load b[15] Ox3003C Obll 0000 00O 0011 1100 Ox6 0 miss, evict Ox2
store c[15] 0x1003C Ob01l 0000 0000 0011 1100 Ox2 0 miss, evict Ox4
load al[16] 0x20040 Pb10 0000 0000 0100 0000 Ox4 1 compulsory miss
load b[16] Ox30040 Pbll 0000 0000 0100 0000 Ox6 1 compulsory miss
store c[16] 0x10040 0b01 0000 0000 0100 0000 Ox2 1 compulsory miss, evict




Virtually indexed, physmally tagged cache

memory address: Ox0
set block

virtual page #index offset

memory address: @b P00100000100100

VD tag data
1]1 0x00 AA CCDDEEGGFFHH
V_virtual page hysical page # /1]  exie KKLLMMNNOOPP
1 0x29 Ox45 QQRR-JUVVWWXX
1 OxDE 0x68 AABBCCDDEEFF
1 0x10 OxAl AA CCDDEEGGFFHH
0 Ox8A 0x98 11JJKKLELEMMNNOOPP

QQRRSSTTUUVVWWXX
YYZZAABBCCDDEEFF

oy
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Outline

- Architectural optimizations for cache performance
- Programmer’s optimizations for cache performance

1



Basic Hardware Optimization in
Improving 3Cs



3Csand A,B,C

- Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity
How many of the following are correct?
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ncreasing associativity can reduce conflict misses
ncreasing associativity can reduce hit time
ncreasing block size can increase the miss penalty
ncreasing block size can reduce compulsory misses
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3Csand A,B,C

- Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity
How many of the following are correct?
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ncreasing associativity can reduce conflict misses
ncreasing associativity can reduce hit time
ncreasing block size can increase the miss penalty
ncreasing block size can reduce compulsory misses
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3Csand A,B,C

- Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity

How many of the following are correct? Increases hit time because your
: C e : : data array is larger (longer time
@ Increasing associativity can reduce conflict misses to fully charge your bit-lines)
®@ Increasing associativity canreduce hittime ¢---------ccac-----" -
® Increasing block size can increase the miss pella_lty
@ Increasing block size c;an reduce compulsory misses |
1
A. K '
! 4 Y4
B. ' '
C N You heed to fetch more data for
: .’ each miss

i

AW - O

| . .
You bring more into the cache
when a miss occurs

rm
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AMD Phenomli

- D-L1 Cache configuration of AMD Phenom i

- Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 64-bit address.

int al[16384], b[16384]1, cl[16384];
/* Cc = Ox10000, a = 0x20000, b = 0x30000 x/
for(i = 0; 1 < 512; i++) {

cl[i] = ali]l + bli];

//load a, b, and then store to c

}
What's the data cache miss rate for this code?
A. 6.25%
o C =ABS
B. 56.25% e s
C. 66.67% S 519
D. 68.75% offset = Ig(64) = 6 bits

S index = 1g(512) = 9 bits
E. 100% tag =64 -1g(512) - 1g(64) = 49 bits
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Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers

Norman P. Jouppi




Which of the following schemes can help AMD Phenom I1?

- How many of the following schemes mentioned in “improving direct-mapped
cache performance by the addition of a small fully-associative cache and
prefetch buffers” would help AMD Phenom Il for the code in the previous slide?

® Missing cache
Victim cache
Prefetch
Stream buffer
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Prefetching




Characteristic of memory accesses

for(i = 9;1 < 1000000; i++) {
D[i] = rand();
s
DI[O] D[1] D[2] D[3] D[4] D[5] D[6] D[/] D[8] D[OPD[10]

cru — AR T

time

g — L IRIRIRIRIRIRIN L

miss mIss

time

12$ 4 ! R
L2 access L2 access time
for D[O] - D[7] for D[8] - D[15]
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Prefetching

for(i1 = 0;1 < 1000000; 1++) {
D[1] = rand();
// prefetch D[i+8] if 1 % 8 ==

s
D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8]D[Q]D[10}\""] D12 D(3] D[4l DI15] Dl16]
| || I I T ||
CPU — I N L L I
prefetch Aref .tM prefetch
g —u T¢¢¢¢T¢¢¢J¢l¢lTl¢¢¢,
time
Mmiss IS MmIsS
12$ ! 4 | ,
L2 access L2 access L2 access time

for D[O] - D[7]  for D[8] - D[15] for D[16] - D[23]
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Prefetching

- |dentify the access pattern and proactively fetch data/
Instruction before the application asks for the data/instruction

- Trigger the cache miss earlier to eliminate the miss when the
application needs the data/instruction

- Hardware prefetch

- The processor can keep track the distance between misses. If there
IS a pattern, fetch miss_data_address+distance for a miss

. Software prefetch
- Load data into XO
- Using prefetch instructions

22



Demo

. X806 provide prefetch instructions

. As a programmer, you may insert _mm_prefetchinx86
programs to perform software prefetch for your code

- gcc also has a flag “-fprefetch-loop-arrays” to automatically
Insert software prefetch instructions

23



Poll close in 1:30

Where can prefetch work effectively?

- How many of the following code snippet can “prefetching” effectively help improving
performance?

(2)

(1) : :
hile(noce): while+i<100000)

node = node->next;

Iy
. (3) (4)
while (root != NULL){ for (1 = 0; 1 < 656536; it++) {
if (key > root->data) mix_i = ((i * 167) + 13) & 65536;
root = root->right; resultsimix_1i]++;
¥
else if (key < root->data)
root = root->left;
else m
return true;
A. O }
B. 1
C. 2
D. 3
E. 4

24



Where can prefetch work effectivel

- How many of the following code snippet can “prefetching” effectively help improving

performance? -
(1) S (2)
while(node){ while(++1<100000)
node = node—>next; al1l=rand();

}

(3) (4)

while (root != NULL){ for (i = @; 1 < 65536; i++) {

if (key > root->data) mix_i = ((i * 167) + 13) & 65536;
root = root->right; resultsimix_1]++;
¥

else if (key < root->data)
root = root->left;

else m
return true;

moOow>»
AwWN 2O
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Where can prefetch work effectively?

- How many of the following code snippet can “prefetching” effectively help improving
performance?

A) (V .
1le(++1<100000)

. w
while(node){ alil=rand();
node = node->next;

} — where the next pointing to is hard to |c()£)edict
3
ﬂ\SVh)lle (root != NULL){ for (i = 0; 1 < 65536; 1++) {

if (key > rOOt—>data) miX_i = ((i b S 167) + 13) & 65536;

root = root->right; results[mix_1i]++;
}

else 1f (key < root->data) | — the stride to the next element is hard to predict...
root = root->left; —

else
return true;

A }

— where the next node is also hard to predict

T —

T

m o O w.
A w N —|o
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Miss cache

- A small cache that captures
Processor the missing blocks

Core | N
| - Can be built as fully associative
Registers . e
e since it's small

1d/sd @x2EADBEEF 1d/sd , ,
miss! miss! slock return block Consult when there is a miss
eteh block SHADBE 9XDEADBE Retrieve the block if found in the
- AD : missing cache
' Miss $

return block | {fetch blo return bibdyeduce conflict misses

OxDE |_“23, DEADBE

m27




Victim cache

- A small cache that captures the
Processor evicted blocks

Core - Can be built as fully associative since
Registers It's small

- Consult when there is a miss

slock return blockSwap the entry if hit in victim cache

SEADBE 9xXDEADBE Athlon/Phenom has an 8-entry victim

cache

- Reduce conflict misses

rg’:(urn bloc s aa Mo aCk . Jouppi [1990]: 4-entry victim cache
£-12 A removed 20% to 95% of conflicts for

a 4 KB direct mapped data cache

1d/sd @xAZ
miss! miss!

fetch block




Victim cache v.s. miss caching

- Both of them improves conflict misses

- Victim cache can use cache block more efficiently — swaps when miss
- Miss caching maintains a copy of the missing data — the cache block can both in L1 and miss cache
- Victim cache only maintains a cache block when the block is kicked out

- Victim cache captures conflict miss better
- Miss caching captures every missing block

100 .
Keye= = LI Icache
Q0

Percentage of cooflict misses removed
b=

Percentage of cocflict misses removed

3 4 5 9 10 11 (2 < -
] 13 14 15
Nurriber of entries in miss cact 01 2 BN 4 501_6 7 ‘8 V%CIIOCL! 12 13 14 15

Figure 3-3: Conflict misses removed by miss caching Figure 3-5: Conflict misses removed by victim caching
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Which of the following schemes can help Athlon 64?

- How many of the following schemes mentioned in “improving direct-mapped
cache performance by the addition of a small fully-associative cache and
prefetch buffers” would help AMD Phenom Il for the code in the previous slide?

VI\/Iissing cache— help improving conflict misses
M ictim cache — help improving conflict misses
Wrefetch — improving compulsory misses , but can potentially hurt, if we did not do it right

@Stream buffer — only help improving compulsory misses

O0Ow>
WN = O

m
I
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Advanced Hardware Techniques In
Improving Memory Performance




Blocking cache

return block

return block
fetch block OxDEAEBE

fetch block
OxDEADBE OxDEAEBE

OxDEADBE

| |
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Multibanks & non-blocking caches

fetch block
OxDEADBE

RAM

Bank

. ’

$

* fetch block
OXDEAEBE

eturn block
OxDEAEBE

' ' '

@XDEADBE

RAM

RAM RAM

Bank #2

#1
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Pipelined access and multi-banked caches

Request #1 Request #2 Request #3

Baseline

Request #1 Bank #1
Multi- eques Bank #2
banked Request #3 Bank #3
Request #4 Bank #4
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The bandwidth between units is limited

Processor
Core




When we handle a miss

miss restart
miss astart .
write back ifssu;:
st chunk etc fetcH 4th
write back retufn block writk quest chfink
Y 5 OxDEADBE 2nd thunk fetcH 3rd
chynk
fdtch blogk fetch 2nd
chunk
fetgh 1st
unk
{

assume the bus between L1/L2 only allows a quarter of the cache block go through it
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Early Restart and Critical Word First

if the requesting data (offset
within a block is already received

miss
ISSue

) restar

t
write back
st chunk fetch fetcH 4th
write back retufn block writk quest chiink
l OxXOEADBE 2nd thunk fetcH 3rd
chyink
chunk
fetfh 1st
unk
4

assume the bus between L1/L2 only allows a quarter of the cache block go through it
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Early Restart and Critical Word First

- Don't wait for full block to be loaded before restarting CPU

- Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution

- Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

- Most useful with large blocks

- Spatial locality is a problem; often we want the next sequential
word soon, so not always a benefit (early restart).

41



Can we avoid the overhead of writes?

if the requesting data (offset

within a block is already received) "€star

. L S
miss astart -

Write

retufn bloci®
OXDEADBE

fatch blo¢k

fetch 4th

chpink
fetcH 3rd

Write Back chifink
fetch 2nd
chunk

fetfh 1st
unk

Overhead

assume the bus between L1/L2 only allows a quarter of the cache block go through it
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Write buffer!

if the requesting data (offset
within a block is already received)

restar

miss

writé
retuln block P
Ox)EADBE

Write fatch blo¢k
Buffer

fetch 4th

chpink
fetcH 3rd

chyink

write ba

assume the bus between L1/L2 only allows a quarter of the cache block go through it

{
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Can we avoid the “double penalty”?

- Every write to lower memory will first write to a small SRAM buffer.

- store does not incur data hazards, but the pipeline has to stall if the
write misses

- The write buffer will continue writing data to lower-level memory

- The processor/higher-level memory can response as soon as the data
Is written to write buffer.

- Write merge

- Since application has locality, it's highly possible the evicted data have
neighboring addresses. Write buffer delays the writes and allows these
neighboring data to be grouped together.
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Summary of Optimizations

- Regarding the following cache optimizations, how many of them
would help improve miss rate?
® Non-blocking/pipelined/multibanked cache
Critical word first and early restart
Prefetching
Write buffer

MOOWPXrEEE

A WODN-—-O0
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&
Summary of Optimizations 1 YWinct

- Regarding the following cache optimizations, how many of them
would help improve miss rate?
® Non-blocking/pipelined/multibanked cache
Critical word first and early restart
Prefetching
Write buffer

MOOWPXrEEE

A WODN-—-O0
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Summary of Optimizations

- Regarding the following cache optimizations, how many of them
would help improve miss rate?
® Non-blocking/pipelined/multibanked cache Miss penalty/Bandwidth
@ Critical word first and early restart Miss penalty
® Prefetching miss rate (compulsory)

@ Write buffer Miss penalty
A. O

oo
—_—

Mmoo
A WNDN
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Summary of Optimizations

- Hardware
- Prefetch — compulsory miss
- Write buffer — miss penalty
- Bank/pipeline — miss penalty
- Critical word first and early restart — miss panelty
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Programming and memory
performance



Data layout



:
Theresultof si1zeof(struct student)

- Consider the following data structure:
struct student {
int 1d;
double *xhomework:
int participation;
double midterm;
double average;

};

What's the output of

printf(“%lu\n”,sizeof(struct student))?
A. 20

28

. 32

36

40

mo oW
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:
Theresultof s1zeof(struct stud

- Consider the following data structure:
struct student {
int 1d;
double *xhomework:
int participation;
double midterm;
double average;

};

What's the output of

printf(“%lu\n”,sizeof(struct student))?
A. 20

28

. 32

36

40

mo oW
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Memory addressing/alignment

- Almost every popular ISA architecture uses “byte-addressing”
to access memory locations

- Instructions generally work faster when the given memory
address is alignhed

- Aligned — if an instruction accesses an object of size n at address
X, the access is aligned if X mod n = 0.

- Some architecture/processor does not support aligned access at all
- Therefore, compilers only allocate objects on "“aligned” address
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Theresultof sizeof(struct student)

- Consider the following data structure:
struct student {
int 1d;
double *xhomework:
int participation;
double midterm;
double average;

average

midterm

participation

homework

};
What's the output of
printf (”%lu\n”,sizeof(struct student))?
A. 20
B. 28
C. 32
D. 36

64-bit
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Announcement

- Assignment #2 due tonight

- Reading quiz due Wednesday

- Project is up — check the website
- Assignment #3 due next Monday

. Office Hours on Zoom (the office hour link, not the lecture one)
- Hung-Wei/Prof. Usagi: M 8p-9p, W 2p-3p
- Quan Fan: F 1p-3p
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