
Memory Hierarchy (IV): Programming
Techniques to Cache Performance &

Basic Pipelined Processor Design
Hung-Wei Tseng

Performance gap between Processor/Memory

2

• How many of the following schemes mentioned in “improving direct-mapped
cache performance by the addition of a small fully-associative cache and
prefetch buffers” would help AMD Phenom II for the code in the previous slide?
! Missing cache
" Victim cache
Prefetch
$ Stream buffer
A. 0
B. 1
C. 2
D. 3
E. 4

3

Which of the following schemes can help Athlon 64?

— only help improving compulsory misses

— help improving conflict misses
— help improving conflict misses
— can potentially hurt

Bank #2Bank #1

Multibanks & non-blocking caches

4

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block
0xDEADBE fetch block

 0xDEAEBE
return block
0xDEAEBE

Early Restart and Critical Word First

5

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block
0xDEADBE

t

t
write back
1st chunk

assume the bus between L1/L2 only allows a quarter of the cache block go through it

write back
2nd chunk

write back
3rd chunkwrite back

4th chunk
fetch 1st

chunk

issue
fetch

request

fetch 2nd
chunk

fetch 3rd
chunk

fetch 4th
chunk

miss restartmiss
restartif the requesting data (offset

within a block is already received)

Write buffer!

6

L1 $

L2 $

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag return block

0xDEADBE

write to
buffer

assume the bus between L1/L2 only allows a quarter of the cache block go through it

fetch 1st
chunk

issue
fetch

request

fetch 2nd
chunk

fetch 3rd
chunk

fetch 4th
chunk

miss
restartif the requesting data (offset

within a block is already received)

Write
Buffer

t

t

write to L2

• Hardware
• Prefetch — compulsory miss
• Write buffer — miss penalty
• Bank/pipeline — miss penalty
• Critical word first and early restart — miss panelty

7

Summary of Optimizations

• Consider the following data structure:

What’s the output of
printf(“%lu\n”,sizeof(struct student))?

A. 20
B. 28
C. 32
D. 36
E. 40

8

The result of sizeof(struct student)
struct student {
 int id;
 double *homework;
 int participation;
 double midterm;
 double average;
}; 64-bit

id

average

homework
participation

midterm

• Almost every popular ISA architecture uses “byte-addressing”
to access memory locations

• Instructions generally work faster when the given memory
address is aligned
• Aligned — if an instruction accesses an object of size n at address
X, the access is aligned if X mod n = 0.

• Some architecture/processor does not support aligned access at all
• Therefore, compilers only allocate objects on “aligned” address

• Compiler optimization cannot help!

9

Memory addressing/alignment

Team scores

10

4.5 5.5 4.5 4

• Programmer’s optimizations for cache performance
• Basic Pipelined Processor Design

11

Outline

Programming and memory
performance

12

Array of structures or structure of arrays

13

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

ID *homework average ID *homework average
ID ID ID

homework homework homework
average average average

14

What data structure is performing better

• Considering your workload would like to calculate the average score of one of
the homework for all students, which data structure would deliver better
performance?

A. Array of objects
B. Object of arrays

Poll close in

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

15

What data structure is performing better

• Considering your workload would like to calculate the average score of one of
the homework for all students, which data structure would deliver better
performance?

A. Array of objects
B. Object of arrays

Poll close in

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

16

What data structure is performing better

• Considering your workload would like to calculate the average score of one of
the homework for all students, which data structure would deliver better
performance?

A. Array of objects
B. Object of arrays

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

What if we want to calculate average scores for each student?

• If you’re designing an in-memory database system, will you be using

• column-store — stores data tables column by column
10:001,12:002,11:003,22:004;
Smith:001,Jones:002,Johnson:003,Jones:004;
Joe:001,Mary:002,Cathy:003,Bob:004;
40000:001,50000:002,44000:003,55000:004;

• row-store — stores data tables row by row

001:10,Smith,Joe,40000;
002:12,Jones,Mary,50000;
003:11,Johnson,Cathy,44000;
004:22,Jones,Bob,55000;

17

Column-store or row-store
RowId EmpId Lastname Firstname Salary

1 10 Smith Joe 40000
2 12 Jones Mary 50000
3 11 Johnson Cathy 44000
4 22 Jones Bob 55000

if the most frequently used query looks like —
select Lastname, Firstname from table

Loop interchange/fission/fusion

18

Demo — programmer & performance

19

 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

O(n2) O(n2)Complexity
Instruction Count?Same Same

Clock RateSame Same

A B
CPIBetter Worse

Loop interchange

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 64-bit address.
int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++) {
 c[i] = a[i] + b[i];
 //load a, b, and then store to c
}

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

20

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 64-bit address.
int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++)
 c[i] = a[i]; //load a and then store to c
for(i = 0; i < 512; i++)
 c[i] += b[i]; //load b, load c, add, and then store to c

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

21

What if the code look like this?Poll close in

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 64-bit address.
int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++)
 c[i] = a[i]; //load a and then store to c
for(i = 0; i < 512; i++)
 c[i] += b[i]; //load b, load c, add, and then store to c

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

22

What if the code look like this?Poll close in

Loop fission

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 64-bit address.
int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++)
 c[i] = a[i]; //load a and then store to c
for(i = 0; i < 512; i++)
 c[i] += b[i]; //load b, load c, add, and then store to c

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

23

What if the code look like this?

• D-L1 Cache configuration of Intel Core i7
• Size 32KB, 8-way set associativity, 64B block, LRU policy, write-

allocate, write-back, and assuming 64-bit address.

Which version of code will perform better?
A. Version A
B. Version B
C. They’re about the same

24

What if the code look like this? — intelPoll close in

for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 d[i][j] = a[i][j] + c[i][j];

for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 {

 a[i][j] = 1/b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];
 }

A B

• D-L1 Cache configuration of Intel Core i7
• Size 32KB, 8-way set associativity, 64B block, LRU policy, write-

allocate, write-back, and assuming 64-bit address.

Which version of code will perform better?
A. Version A
B. Version B
C. They’re about the same

25

What if the code look like this? — intelPoll close in

for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 d[i][j] = a[i][j] + c[i][j];

for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 {

 a[i][j] = 1/b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];
 }

A B

Loop Fusion

26

/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 {
 a[i][j] = 1/b[i][j] * c[i][j];

 d[i][j] = a[i][j] + c[i][j];
 }

2 misses per access to a & c vs. one miss per access

• D-L1 Cache configuration of Intel Core i7
• Size 32KB, 8-way set associativity, 64B block, LRU policy, write-

allocate, write-back, and assuming 64-bit address.

Which version of code will perform better?
A. Version A
B. Version B
C. They’re about the same

27

What if the code look like this? — intel
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 a[i][j] = 1/b[i][j] * c[i][j];
for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 d[i][j] = a[i][j] + c[i][j];

for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1)
 {

 a[i][j] = 1/b[i][j] * c[i][j];
 d[i][j] = a[i][j] + c[i][j];
 }

A B
Loop fusion

Blocking

28

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

Case study: Matrix Multiplication

29

Algorithm class tells you it’s O(n3)
If n=1024, it takes about 1 sec

How long is it take when n=2048?

• If each dimension of your matrix is 2048
• Each row takes 2048*8 bytes = 16KB
• The L1 $ of intel Core i7 is 32KB, 8-way, 64-byte blocked
• You can only hold at most 2 rows/columns of each matrix!
• You need the same row when j increase!

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

30

Matrix Multiplication

c a b

Very likely a miss if
array is large

Block algorithm for matrix multiplication

31

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

c a b

You only need to hold these
sub-matrices in your cache

• Discover the cache miss rate
• valgrind --tool=cachegrind cmd

• cachegrind is a tool profiling the cache performance
• Performance counter

• Intel® Performance Counter Monitor http://www.intel.com/software/pcm/

32

How do you know it’s better?

http://www.intel.com/software/pcm/

Matrix Transpose

36

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 // Compute on b_t
 c[ii][jj] += a[ii][kk]*b_t[jj][kk];
 }
 }
 }

 // Transpose matrix b into b_t
 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 b_t[i][j] += b[j][i];
 }
 }

• By transposing a matrix, the performance of matrix multiplication can be further
improved. What kind(s) of cache misses does matrix transpose help to remove?

A. Compulsory miss
B. Capacity miss
C. Conflict miss
D. Capacity & conflict miss
E. Compulsory & conflict miss

37

What kind(s) of misses can matrix transpose remove?

 // Transpose matrix b into b_t
 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 b_t[i][j] += b[j][i];
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 // Compute on b_t
 c[ii][jj] += a[ii][kk]*b_t[jj][kk];
 }
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

Blo
ck

 +
Tra

ns
po

se

Blo
ck

Poll close in

• By transposing a matrix, the performance of matrix multiplication can be further
improved. What kind(s) of cache misses does matrix transpose help to remove?

A. Compulsory miss
B. Capacity miss
C. Conflict miss
D. Capacity & conflict miss
E. Compulsory & conflict miss

38

What kind(s) of misses can matrix transpose remove?

 // Transpose matrix b into b_t
 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 b_t[i][j] += b[j][i];
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 // Compute on b_t
 c[ii][jj] += a[ii][kk]*b_t[jj][kk];
 }
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

Blo
ck

 +
Tra

ns
po

se

Blo
ck

Poll close in

• By transposing a matrix, the performance of matrix multiplication can be further
improved. What kind(s) of cache misses does matrix transpose help to remove?

A. Compulsory miss
B. Capacity miss
C. Conflict miss
D. Capacity & conflict miss
E. Compulsory & conflict miss

39

What kind(s) of misses can matrix transpose remove?

 // Transpose matrix b into b_t
 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 b_t[i][j] += b[j][i];
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 // Compute on b_t
 c[ii][jj] += a[ii][kk]*b_t[jj][kk];
 }
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

Blo
ck

 +
Tra

ns
po

se

Blo
ck

• Software
• Data layout — capacity miss, conflict miss, compulsory miss
• Blocking — capacity miss
• Transpose — conflict miss
• Loop fission — conflict miss — when $ has limited way associativity
• Loop fusion — capacity miss — when $ has enough way associativity
• Loop interchange — conflict/capacity miss

• Hardware
• Prefetch — compulsory miss
• Write buffer — miss penalty
• Bank/pipeline — miss penalty
• Critical word first and early restart — miss panelty

40

Summary of Optimizations

• Both version A and B produces the same output. Without
compiler optimization, which version of code would have better
performance?

A. Version A
B. Version B
C. They are about the same (less than 5% difference)

41

Which version is faster?
 for(i=0;i<1000000000;i++)
 {
 sum+=data[(i*15) & 131071];
 }

 for(i=0;i<1000000000;i++)
 {
 sum+=data[((i << 4) - i) & 131071];
 }

A B

Poll close in

• Both version A and B produces the same output. Without
compiler optimization, which version of code would have better
performance?

A. Version A
B. Version B
C. They are about the same (less than 5% difference)

42

Which version is faster?
 for(i=0;i<1000000000;i++)
 {
 sum+=data[(i*15) & 131071];
 }

 for(i=0;i<1000000000;i++)
 {
 sum+=data[((i << 4) - i) & 131071];
 }

A B

Poll close in

Basic Pipelined Processor
Hung-Wei Tseng

• Instruction Fetch (IF) — fetch the instruction from memory
• Instruction Decode (ID)

• Decode the instruction for the desired operation and operands
• Reading source register values

• Execution (EX)
• ALU instructions: Perform ALU operations
• Conditional Branch: Determine the branch outcome (taken/not taken)
• Memory instructions: Determine the effective address for data memory access

• Data Memory Access (MEM) — Read/write memory
• Write Back (WB) — Present ALU result/read value in the target register
• Update PC

• If the branch is taken — set to the branch target address
• Otherwise — advance to the next instruction — current PC + 4

45

Tasks in RISC-V ISA

Simple implementation w/o branch

46

add x1, x2, x3

ld x4, 0(x5)

sub x6, x7, x8

sub x9,x10,x11

sd x1, 0(x12)

t

IF ID EX WB

IF ID EX MEM WB

IF ID EX WB

IF ID

Pipelining

47

Pipelining

48

• Different parts of the processor works on different instructions
simultaneously

• A clock signal controls and synchronize the beginning and the
end of each part of the work

• A pipeline register between different parts of the processor to
keep intermediate results necessary for the upcoming work

49

Pipelining

Pipelining

50

Pipelining

51

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)
xor x13,x14,x15
and x16,x17,x18
add x19,x20,x21
sub x22,x23,x24
ld x25, 4(x26)
sd x27, 0(x28)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM

EX
ID
IF

WB
MEM WB

EX MEM WB
ID EX MEM

t

After this point,
we are completing an
instruction each cycle!

Cycles
Instruction = 1

• Both version A and B produces the same output. Without
compiler optimization, which version of code would have
significantly better performance?

A. Version A
B. Version B
C. They are about the same (less than 10% difference)

52

Which version is faster?
 for(i=0;i<1000000000;i++)
 {
 sum+=data[(i*15) & 131071];
 }

 for(i=0;i<1000000000;i++)
 {
 sum+=data[((i << 4) - i) & 131071];
 }

A B
— Because we have pipelined instructions, the CPI of one
instruction doesn’t matter as long as we can keep the pipeline busy

• Project is up — check the website
• Assignment #3 due next Monday
• Midterm

• Release next Tuesday (11/10) 12:00am, turn in before next Friday (11/13) 11:59pm
• You can only open it once and you have to finish a total of 30 questions within 80 minutes.
• You may open book, but you have to bare the risks of not being able to finish them

• Attendance
• The attendance throughout the quarter count as one assignment
• You only need to answer 50% of the Zoom polls to receive full credits

• Please don’t email me for absence — we count only 50% to give you flexibility
• If you just login but never answer questions, you won’t receive any.

• Reading Quizzes — 2 attempts, average
• Office Hours on Zoom (the office hour link, not the lecture one)

• Hung-Wei/Prof. Usagi: M 8p-10p (make up for the last week), W 2p-3p
• Quan Fan: F 1p-3p

75

Announcement

76
ͺͻͥ

Computer
Science &
Engineering

203

