
Dynamic Branch Prediction
Hung-Wei Tseng

Recap: Pipelining

2

Recap: Pipelining

3

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)
xor x13,x14,x15
and x16,x17,x18
add x19,x20,x21
sub x22,x23,x24
ld x25, 4(x26)
sd x27, 0(x28)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM WB
EX MEM WB
ID EX MEM

t

After this point,
we are completing an
instruction each cycle!

Cycles
Instruction = 1

• Structural hazards — resource conflicts cannot support
simultaneous execution of instructions in the pipeline

• Control hazards — the PC can be changed by an instruction in
the pipeline

• Data hazards — an instruction depending on a the result that’s
not yet generated or propagated when the instruction needs
that

4

Recap: Three pipeline hazards

• Each instruction has to go through all 5 pipeline stages: IF, ID, EXE,
MEM, WB in order — only valid if it’s single-issue, RISC-V 5-stage
pipeline

• An instruction can enter the next pipeline stage in the next cycle if
• No other instruction is occupying the next stage
• This instruction has completed its own work in the current stage
• The next stage has all its inputs ready and it can retrieve those inputs

• Fetch a new instruction only if
• We know the next PC to fetch
• We can predict the next PC
• Flush an instruction if the branch resolution says it’s mis-predicted.

5

Recap: Tips of drawing a pipeline diagram

• Stall can address the issue — but slow
• Improve the pipeline unit design to allow parallel execution

6

Recap: Solving Structural Hazards

• Assuming that we have an application with 20% of branch
instructions and the instruction stream incurs no data hazards.
When there is a branch, we disable the instruction fetch and
insert no-ops until we can determine the PC. What’s the average
CPI if we execute this program on the 5-stage RISC-V pipeline?
A. 1
B. 1.2
C. 1.4
D. 1.6
E. 1.8

7

Recap: The impact of control hazards

MEM
EX
ID

IF ID EX
IF ID

IF

add x1, x2, x3
ld x4, 0(x5)
bne x0, x7, L
add x0, x0, x0 IF

WB
MEM
EX
ID

add x0, x0, x0 IF

WB

ID EX MEM WB
IF ID EX MEM WB

MEM WB

WB
MEM

IF

EX
ID EX MEM WB

1 + 20% × 2 = 1.4

sub x9,x10,x11
sd x1, 0(x12)

• Local predictor — every branch instruction has its own state
• 2-bit — each state is described using 2 bits
• Change the state based on actual outcome
• If we guess right — no penalty
• If we guess wrong — flush (clear pipeline
registers) for mis-predicted instructions
that are currently in IF and ID stages and
reset the PC

8

2-bit/Bimodal local predictor

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC target PC St
ate

Strong
Not Taken
00 (0)

Weak
Not Taken

01 (1)

Strong
Taken
11 (3)

Weak
Taken
10 (2)Taken Taken

Taken
Taken

Not taken
Not taken

Not taken

Not taken

Predict Taken

• What’s the overall branch prediction (include both branches) accuracy for this nested for
loop?
i = 0;
do {
 if(i % 2 != 0) // Branch X, taken if i % 2 == 0
 a[i] *= 2;
 a[i] += i;
} while (++i < 100)// Branch Y

(assume all states started with 00)
A. ~25%
B. ~33%
C. ~50%
D. ~67%
E. ~75%

9

2-bit local predictor

i branch? state prediction actual
0 X 00 NT T
1 Y 00 NT T
1 X 01 NT NT
2 Y 01 NT T
2 X 00 NT T
3 Y 10 T T
3 X 01 NT NT
4 Y 11 T T
4 X 00 NT T
5 Y 11 T T
5 X 01 NT NT
6 Y 11 T T
6 X 00 NT T
7 Y 11 T T

For branch Y, almost 100%,
For branch X, only 50%

Can we do a
better job?

• 2-level global predictor
• Hybrid predictors
• Perceptrons
• Branch and coding

11

Outline

Two-level global predictor

12

Marius Evers, Sanjay J. Patel, Robert S. Chappell, and Yale N. Patt. 1998. An analysis of
correlation and predictability: what makes two-level branch predictors work. In Proceedings of
the 25th annual international symposium on Computer architecture (ISCA '98).

• What’s the overall branch prediction (include both branches) accuracy for this nested for
loop?
i = 0;
do {
 if(i % 2 != 0) // Branch X, taken if i % 2 == 0
 a[i] *= 2;
 a[i] += i;
} while (++i < 100)// Branch Y

(assume all states started with 00)
A. ~25%
B. ~33%
C. ~50%
D. ~67%
E. ~75%

13

2-bit local predictor

i branch? state prediction actual
0 X 00 NT T
0 Y 00 NT T
1 X 01 NT NT
1 Y 01 NT T
2 X 00 NT T
2 Y 10 T T
3 X 01 NT NT
3 Y 11 T T
4 X 00 NT T
4 Y 11 T T
5 X 01 NT NT
5 Y 11 T T
6 X 00 NT T
6 Y 11 T T

For branch Y, almost 100%,
For branch X, only 50%

This pattern
repeats all the time!

Global history (GH) predictor

14

PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Taken

=(NT, T,NT,NT)

Performance of GH predictor

15

i = 0;
do {
 if(i % 2 != 0) // Branch X, taken if i % 2 == 0
 a[i] *= 2;
 a[i] += i;
} while (++i < 100)// Branch Y

i branch? GHR state prediction actual
0 X 000 00 NT T
0 Y 001 00 NT T
1 X 011 00 NT NT
1 Y 110 00 NT T
2 X 101 00 NT T
2 Y 011 00 NT T
3 X 111 00 NT NT
3 Y 110 01 NT T
4 X 101 01 NT T
4 Y 011 01 NT T
5 X 111 00 NT NT
5 Y 110 10 T T
6 X 101 10 T T
6 Y 011 10 T T
7 X 111 00 NT NT
7 Y 110 11 T T
8 X 101 11 T T
8 Y 011 11 T T
9 X 111 00 NT NT
9 Y 110 11 T T
10 X 101 11 T T
10 Y 011 11 T T

Near perfect after this

Hybrid predictors

19

gshare predictor

20

PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 pa

tte
rn 00

01
10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Not Taken

=(NT, T,NT,NT)

⊕ 1100

0100

1000

• Allowing the predictor to identify both branch address but also
use global history for more accurate prediction

21

gshare predictor

0x400048 0x400032 1
0x400080 0x400068 1
0x401080 0x401100 1
0x4000F8 0x400100 0

branch PC target PC St
ate

Tournament Predictor

22

PC

4
MU
X

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

0x400048 1000
0x400080 0110
0x401080 1010
0x4000F8 0110

branch PC local history

Local
History
Predictor

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Taken

What
predictor to

use

• The state predicts “which predictor is better”
• Local history
• Global history

• The predicted predictor makes the prediction

23

Tournament Predictor

TAGE

24

André Seznec. The L-TAGE branch predictor. Journal of Instruction Level Parallelism (http://
wwwjilp.org/vol9), May 2007.

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

TAGE

25

PC

4
MU
X

Branch Target Buffer

………………000001110100

“Very” Long
Global History
Register L(N) — the last m-bits of

history used for table N

pred tag u

h[0:L(1)]⊕
001
010
010
000
000
101
010
001

St
ate

pred tag u

h[0:L(2)]⊕

=?
=?

pred tag u

h[0:L(3)]⊕

=?

prediction (using the
longest match)

Perceptron

26

Jiménez, Daniel, and Calvin Lin. "Dynamic branch prediction with perceptrons." Proceedings
HPCA Seventh International Symposium on High-Performance Computer Architecture. IEEE,
2001.
The following slides are excerpted from https://www.jilp.org/cbp/Daniel-slides.PDF by Daniel
Jiménez

https://www.jilp.org/cbp/Daniel-slides.PDF

• The machine learns to predict conditional branches
• Artificial neural networks

• Simple model of neural networks in brain cells
• Learn to recognize and classify patterns

27

Branch Prediction is Essentially an ML Problem

• The inputs to the perceptron are branch outcome histories
• Just like in 2-level adaptive branch prediction
• Can be global or local (per-branch) or both (alloyed)
• Conceptually, branch outcomes are represented as

• +1, for taken
• -1, for not taken

• The output of the perceptron is
• Non-negative, if the branch is predicted taken
• Negative, if the branch is predicted not taken

• Ideally, each static branch is allocated its own perceptron
28

Mapping Branch Prediction to NN

• Inputs (x’s) are from branch
history and are -1 or +1

• n + 1 small integer weights
(w’s) learned by on-line
training

• Output (y) is dot product of
x’s and w’s; predict taken if y
0

• Training finds correlations
between history and outcome

29

Mapping Branch Prediction to NN (cont.)

y

x0

x1

x2

xn

w0

w1
w2

wn

y = w0 + ∑n
i=1 xiwi

Training Algorithm

30

Predictor Organization

31

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

PC

4
MU
X

Branch Target Buffer Ta
ble

 of

Pe
rce

ptr
on

s/
We

igh
t V

ec
tor

s

wv0
wv1
wv2
wv3
wv4
wv5
wv6
wv7
wv8
wv9
wv10
wv11
wv12
wv13
wv14
wv15

branch PC % #_of_entries Selected Weight Vector

0100

Global
History
Register

Compute

Prediction

• The Intel Pentium MMX, Pentium II, and Pentium III have local
branch predictors with a local 4-bit history and a local pattern
history table with 16 entries for each conditional jump.

• Global branch prediction is used in Intel Pentium M, Core, Core
2, and Silvermont-based Atom processors.

• Tournament predictor is used in DEC Alpha, AMD Athlon
processors

• The AMD Ryzen multi-core processor's Infinity Fabric and the
Samsung Exynos processor include a perceptron based neural
branch predictor.

32

Branch predictors in processors

Branch and programming

33

• Why the sorting the array speed up the code despite the increased
instruction count?

34

Demo revisited

 if(option)
 std::sort(data, data + arraySize);

 for (unsigned i = 0; i < 100000; ++i) {
 int threshold = std::rand();
 for (unsigned i = 0; i < arraySize; ++i) {
 if (data[i] >= threshold)
 sum ++;
 }
 }

• The population count (or popcount) of a specific value is the
number of set bits (i.e., bits in 1s) in that value.

• Applications
• Parity bits in error correction/detection code
• Cryptography
• Sparse matrix
• Molecular Fingerprinting
• Implementation of some succinct data structures like bit vectors
and wavelet trees.

38

Demo: Popcount

• Given a 64-bit integer number, find the number of 1s in its
binary representation.

• Example 1:
Input: 9487
Output: 7
Explanation: 9487’s binary
representation is
0b10010100001111

39

Demo: pop count

int main(int argc, char *argv[]) {

 uint64_t key = 0xdeadbeef;

 int count = 1000000000;
 uint64_t sum = 0;

 for (int i=0; i < count; i++)
 {
 sum += popcount(RandLFSR(key));
 }
 printf("Result: %lu\n", sum);
 return sum;
}

• Because popcount is important, both intel and AMD added a
POPCNT instruction in their processors with SSE4.2 and
SSE4a

• In C/C++, you may use the intrinsic “_mm_popcnt_u64” to get
of “1”s in an unsigned 64-bit number
• You need to compile the program with -m64 -msse4.2 flags to
enable these new features

54

Hardware acceleration

#include <smmintrin.h>
inline int popcount(uint64_t x) {
 int c = _mm_popcnt_u64(x);
 return c;
}

56
ͺͻͥ

Computer
Science &
Engineering

203

