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Recap: Pipelining
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add x1, x2, x3 
ld  x4, 0(x5) 
sub x6, x7, x8 
sub x9,x10,x11 
sd  x1, 0(x12) 
xor x13,x14,x15 
and x16,x17,x18 
add x19,x20,x21 
sub x22,x23,x24 
ld  x25, 4(x26) 
sd  x27, 0(x28)
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After this point, 
we are completing an 
instruction each cycle!

Cycles
Instruction = 1



• Structural hazards — resource conflicts cannot support 
simultaneous execution of instructions in the pipeline 

• Control hazards — the PC can be changed by an instruction in 
the pipeline 

• Data hazards — an instruction depending on a the result that’s 
not yet generated or propagated when the instruction needs 
that

4

Recap: Three pipeline hazards



• Each instruction has to go through all 5 pipeline stages: IF, ID, EXE, 
MEM, WB in order — only valid if it’s single-issue, RISC-V 5-stage 
pipeline 

• An instruction can enter the next pipeline stage in the next cycle if 
• No other instruction is occupying the next stage 
• This instruction has completed its own work in the current stage 
• The next stage has all its inputs ready and it can retrieve those inputs 

• Fetch a new instruction only if 
• We know the next PC to fetch 
• We can predict the next PC 
• Flush an instruction if the branch resolution says it’s mis-predicted.
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Recap: Tips of drawing a pipeline diagram



• Stall can address the issue — but slow 
• Improve the pipeline unit design to allow parallel execution
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Recap: Solving Structural Hazards



• Assuming that we have an application with 20% of branch 
instructions and the instruction stream incurs no data hazards. 
When there is a branch, we disable the instruction fetch and 
insert no-ops until we can determine the PC. What’s the average 
CPI if we execute this program on the 5-stage RISC-V pipeline? 
A. 1 
B. 1.2 
C. 1.4 
D. 1.6 
E. 1.8
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Recap: The impact of control hazards

MEM
EX
ID

IF ID EX
IF ID

IF

add x1, x2, x3 
ld  x4, 0(x5) 
bne x0, x7, L
add x0, x0, x0 IF

WB
MEM
EX
ID

add x0, x0, x0 IF

WB

ID EX MEM WB
IF ID EX MEM WB

MEM WB

WB
MEM

IF

EX
ID EX MEM WB

1 + 20% × 2 = 1.4

sub x9,x10,x11 
sd  x1, 0(x12)



• Local predictor — every branch instruction has its own state 
• 2-bit — each state is described using 2 bits 
• Change the state based on actual outcome 
• If we guess right — no penalty 
• If we guess wrong — flush (clear pipeline 
registers) for mis-predicted instructions 
that are currently in IF and ID stages and 
reset the PC
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2-bit/Bimodal local predictor

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01
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Predict Taken



• What’s the overall branch prediction (include both branches) accuracy for this nested for 
loop? 
i = 0; 
do { 
    if( i % 2 != 0) // Branch X, taken if i % 2 == 0 
       a[i] *= 2; 
    a[i] += i; 
} while ( ++i < 100)// Branch Y

(assume all states started with 00) 
A. ~25% 
B. ~33% 
C. ~50% 
D. ~67% 
E. ~75%
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2-bit local predictor

i branch? state prediction actual
0 X 00 NT T
1 Y 00 NT T
1 X 01 NT NT
2 Y 01 NT T
2 X 00 NT T
3 Y 10 T T
3 X 01 NT NT
4 Y 11 T T
4 X 00 NT T
5 Y 11 T T
5 X 01 NT NT
6 Y 11 T T
6 X 00 NT T
7 Y 11 T T

For branch Y, almost 100%, 
For branch X, only 50%

Can we do a 
better job?



• 2-level global predictor 
• Hybrid predictors 
• Perceptrons 
• Branch and coding
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Outline



Two-level global predictor
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Marius Evers, Sanjay J. Patel, Robert S. Chappell, and Yale N. Patt. 1998. An analysis of 
correlation and predictability: what makes two-level branch predictors work. In Proceedings of 
the 25th annual international symposium on Computer architecture (ISCA '98).



• What’s the overall branch prediction (include both branches) accuracy for this nested for 
loop? 
i = 0; 
do { 
    if( i % 2 != 0) // Branch X, taken if i % 2 == 0 
       a[i] *= 2; 
    a[i] += i; 
} while ( ++i < 100)// Branch Y

(assume all states started with 00) 
A. ~25% 
B. ~33% 
C. ~50% 
D. ~67% 
E. ~75%
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2-bit local predictor

i branch? state prediction actual
0 X 00 NT T
0 Y 00 NT T
1 X 01 NT NT
1 Y 01 NT T
2 X 00 NT T
2 Y 10 T T
3 X 01 NT NT
3 Y 11 T T
4 X 00 NT T
4 Y 11 T T
5 X 01 NT NT
5 Y 11 T T
6 X 00 NT T
6 Y 11 T T

For branch Y, almost 100%, 
For branch X, only 50%

This pattern 
repeats all the time!



Global history (GH) predictor
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Performance of GH predictor
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i = 0; 
do { 
    if( i % 2 != 0) // Branch X, taken if i % 2 == 0 
       a[i] *= 2; 
    a[i] += i; 
} while ( ++i < 100)// Branch Y

i branch? GHR state prediction actual
0 X 000 00 NT T
0 Y 001 00 NT T
1 X 011 00 NT NT
1 Y 110 00 NT T
2 X 101 00 NT T
2 Y 011 00 NT T
3 X 111 00 NT NT
3 Y 110 01 NT T
4 X 101 01 NT T
4 Y 011 01 NT T
5 X 111 00 NT NT
5 Y 110 10 T T
6 X 101 10 T T
6 Y 011 10 T T
7 X 111 00 NT NT
7 Y 110 11 T T
8 X 101 11 T T
8 Y 011 11 T T
9 X 111 00 NT NT
9 Y 110 11 T T
10 X 101 11 T T
10 Y 011 11 T T

Near perfect after this



Hybrid predictors
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gshare predictor
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• Allowing the predictor to identify both branch address but also 
use global history for more accurate prediction
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gshare predictor



0x400048 0x400032 1
0x400080 0x400068 1
0x401080 0x401100 1
0x4000F8 0x400100 0

branch PC    target PC St
ate

Tournament Predictor
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• The state predicts “which predictor is better” 
• Local history 
• Global history 

• The predicted predictor makes the prediction

23

Tournament Predictor



TAGE
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André Seznec. The L-TAGE branch predictor. Journal of Instruction Level Parallelism (http://
wwwjilp.org/vol9), May 2007.



0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100
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Perceptron
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Jiménez, Daniel, and Calvin Lin. "Dynamic branch prediction with perceptrons." Proceedings 
HPCA Seventh International Symposium on High-Performance Computer Architecture. IEEE, 
2001. 
The following slides are excerpted from https://www.jilp.org/cbp/Daniel-slides.PDF by Daniel 
Jiménez

https://www.jilp.org/cbp/Daniel-slides.PDF


• The machine learns to predict conditional branches 
• Artificial neural networks  

• Simple model of neural networks in brain cells 
• Learn to recognize and classify patterns
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Branch Prediction is Essentially an ML Problem



• The inputs to the perceptron are branch outcome histories 
• Just like in 2-level adaptive branch prediction 
• Can be global or local (per-branch) or both (alloyed) 
• Conceptually, branch outcomes are represented as 

• +1, for taken 
• -1, for not taken 

• The output of the perceptron is 
• Non-negative, if the branch is predicted taken 
• Negative, if the branch is predicted not taken 

•  Ideally, each static branch is allocated its own perceptron
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Mapping Branch Prediction to NN



• Inputs (x’s) are from branch 
history and are -1 or +1 

•  n + 1 small integer weights 
(w’s) learned by on-line 
training 

•  Output (y) is dot product of 
x’s and w’s; predict taken if y  
0 

•  Training finds correlations 
between history and outcome
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Mapping Branch Prediction to NN (cont.)
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Training Algorithm
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Predictor Organization
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• The Intel Pentium MMX, Pentium II, and Pentium III have local 
branch predictors with a local 4-bit history and a local pattern 
history table with 16 entries for each conditional jump. 

• Global branch prediction is used in Intel Pentium M, Core, Core 
2, and Silvermont-based Atom processors. 

• Tournament predictor is used in DEC Alpha, AMD Athlon 
processors 

• The AMD Ryzen multi-core processor's Infinity Fabric and the 
Samsung Exynos processor include a perceptron based neural 
branch predictor.
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Branch predictors in processors



Branch and programming
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• Why the sorting the array speed up the code despite the increased 
instruction count?
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Demo revisited

    if(option) 
        std::sort(data, data + arraySize); 

    for (unsigned i = 0; i < 100000; ++i) { 
        int threshold = std::rand(); 
        for (unsigned i = 0; i < arraySize; ++i) { 
            if (data[i] >= threshold) 
                sum ++; 
        } 
    }



• The population count (or popcount) of a specific value is the 
number of set bits (i.e., bits in 1s) in that value. 

• Applications 
• Parity bits in error correction/detection code 
• Cryptography 
• Sparse matrix 
• Molecular Fingerprinting 
• Implementation of some succinct data structures like bit vectors 
and wavelet trees.
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Demo: Popcount



• Given a 64-bit integer number, find the number of 1s in its 
binary representation. 

• Example 1:
Input: 9487
Output: 7
Explanation: 9487’s binary 
representation is 
0b10010100001111
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Demo: pop count

int main(int argc, char *argv[]) { 

     uint64_t key = 0xdeadbeef; 

     int count = 1000000000; 
     uint64_t sum = 0; 
      
     for (int i=0; i < count; i++) 
     {  
        sum += popcount(RandLFSR(key));  
     } 
     printf("Result: %lu\n", sum); 
     return sum; 
} 



• Because popcount is important, both intel and AMD added a 
POPCNT instruction in their processors with SSE4.2 and 
SSE4a 

• In C/C++, you may use the intrinsic “_mm_popcnt_u64” to get 
# of “1”s in an unsigned 64-bit number 
• You need to compile the program with  -m64 -msse4.2 flags to 
enable these new features
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Hardware acceleration

#include <smmintrin.h> 
inline int popcount(uint64_t x) { 
     int c = _mm_popcnt_u64(x); 
     return c; 
}
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