
Memory Hierarchy
Hung-Wei Tseng

von Neumman Architecture

2

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

By loading different programs into memory,
your computer can perform different functions

Performance gap between Processor/Memory

3

Performance of modern DRAM

4

Thinking about water

8

Alternatives?

9

Fast, but expensive $$$

ProcessorProcessor
Memory Hierarchy

10

DRAM

Storage

SRAM $

Processor
Core

Registers

larger

fastest

< 1ns

tens of ns

us/ms

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

L1? L2? L3?

12

Processor
Memory Hierarchy

16

DRAM

Storage

SRAM $

Processor
Core

Registers

larger

fastest

< 1ns

tens of ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

L1 $
L2 $
L3 $

fastest

larger

Why adding small SRAMs would
work?

17

• Spatial locality — application tends to visit nearby stuffs in the
memory
• Code — the current instruction, and then PC + 4
• Data — the current element in an array, then the next

• Temporal locality — application revisit the same thing again
and again
• Code — loops, frequently invoked functions
• Data — the same data can be read/write many times

21

Locality

Most of time, your program is just visiting a
very small amount of data/instructions within

a given window

Architecting the Cache

22

23

0x2000
0x1000

0x8000

0x4000
0x3000

0x6000
0x5000

0x7000

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

0xFFF
0x1FFF
0x2FFF
0x3FFF
0x4FFF
0x5FFF
0x6FFF
0x7FFF
0x8FFF

0x0000

Processor
Core

Registers load 0x0009

AAAAAAAA

Load/store only access a “word” each time

AAAA BBBB

load 0x000A

24

0x2000
0x1000

0x8000

0x4000
0x3000

0x6000
0x5000

0x7000

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH

0xFFF
0x1FFF
0x2FFF
0x3FFF
0x4FFF
0x5FFF
0x6FFF
0x7FFF
0x8FFF

0x0000

Processor
Core

Registers

To capture “spatial” locality, $ fetch a “block”
“Logically” partition
memory space into

“blocks”
SRAM $

AABB CCDD EEFF GGHH

AABB CCDD

load 0x0009load 0x000A

How to tell who is there?

25

This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:

Processor
Core

Registers 0x000

0x
00

00
0x

00
01

0x

00
02

0x

00
03

0x

00
04

0x

00
05

0x

00
06

0x

00
07

0x

00
08

0x

00
09

0x

00
0A

0x

00
0B

0x

00
0C

0x

00
0D

0x

00
0E

0x

00
0F

0123456789ABCDEF
tag

1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

data
How to tell who is there?

26

This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:
Advanced Compute
r Architecture!
This is CS 203:

0123456789ABCDEF
tag
0x000
0x001
0xF07
0x100
0x310
0x450
0x006
0x537
0x266
0x307
0x265
0x80A
0x620
0x630
0x705
0x216

Processor
Core

Registers
load 0x000A

 2

The complexity of search the matching tag—
O(n)— will be slow if our cache size grows!

load 0x404A

0x404 not found,
go to lower-level memory

Can we search things faster?
O(1)—hash table!

block offset
tag

Va
lid

 Bi
t Tell if the block here can be used

Dir
ty

Bit Tell if the block here is modified

1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

Hash-like structure — direct-mapped cache

27

0x00 This is CS 203:
0x10 Advanced Compute
0xA1 r Architecture!
0x10 This is CS 203:
0x31 Advanced Compute
0x45 r Architecture!
0x41 This is CS 203:
0x68 Advanced Compute
0x29 r Architecture!
0xDE This is CS 203:
0xCB Advanced Compute
0x8A r Architecture!
0x60 This is CS 203:
0x70 Advanced Compute
0x10 r Architecture!
0x11 This is CS 203:

datatag
0123456789ABCDEF

Processor
Core

Registers

load 0x000A

load 0x404A
0x40 not found,

go to lower-level memory

The biggest issue with hash is —
Collision!

index
block offsettag

V D

1 1 0x29 r Architecture!
1 1 0xDE This is CS 203:
1 0 0x10 Advanced Compute
0 1 0x8A r Architecture!
1 1 0x60 This is CS 203:
1 1 0x70 Advanced Compute
0 1 0x10 r Architecture!
0 1 0x11 This is CS 203:

Way-associative cache

28

1 1 0x00 This is CS 203:
1 1 0x10 Advanced Compute
1 0 0xA1 r Architecture!
0 1 0x10 This is CS 203:
1 1 0x31 Advanced Compute
1 1 0x45 r Architecture!
0 1 0x41 This is CS 203:
0 1 0x68 Advanced Compute

datatagdatatag

memory address: 0x0 8 2 4

memory address: 0b0000100000100100

block
offset

set
indextag

=? =?0x1 0
hit? hit?

V DV D

Set

• C: Capacity in data arrays
• A: Way-Associativity — how many blocks within a set

• N-way: N blocks in a set, A = N
• 1 for direct-mapped cache

• B: Block Size (Cacheline)
• How many bytes in a block

• S: Number of Sets:
• A set contains blocks sharing the same index
• 1 for fully associate cache

29

C = ABS

• number of bits in block offset — lg(B)
• number of bits in set index: lg(S)
• tag bits: address_length - lg(S) - lg(B)

• address_length is 32 bits for 32-bit machine
• (address / block_size) % S = set index

30

Corollary of C = ABS

memory address: 0b0000100000100100

block
offset

set
indextag

Put everything all together:
How cache interacts with CPU

37

• Processor sends load request to L1-$
• if hit

• return data
• if miss

• Select a victim block
• If the target “set” is not full — select an empty/invalidated block

as the victim block
• If the target “set is full — select a victim block using some

policy
• LRU is preferred — to exploit temporal locality!

• If the victim block is “dirty” & “valid”
• Write back the block to lower-level memory hierarchy

• Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

• If write-back or fetching causes any miss, repeat the same
process

38

What happens when we read data
Processor

Core
Registers

L1 $
ld 0xDEADBEEFoffsetindextag

L2 $

DRAM

hit

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block
0xDEADBE

• Processor sends load request to L1-$
• if hit

• return data — set DIRTY
• if miss

• Select a victim block
• If the target “set” is not full — select an empty/invalidated block

as the victim block
• If the target “set is full — select a victim block using some policy
• LRU is preferred — to exploit temporal locality!

• If the victim block is “dirty” & “valid”
• Write back the block to lower-level memory hierarchy

• Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

• If write-back or fetching causes any miss, repeat the same
process

• Present the write “ONLY” in L1 and set DIRTY
39

What happens when we write data
Processor

Core
Registers

L1 $
sd 0xDEADBEEFoffsetindextag

L2 $

DRAM

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block
0xDEADBE

Write & Set dirty
Write &Set dirty

Simulate the cache!

40

• Consider a direct mapped (1-way) cache with 256 bytes total capacity, a
block size of 16 bytes, and the application repeatedly reading the following
memory addresses:

• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100,
0b1100010000

41

Simulate a direct-mapped cache

• lg(16) = 4 : 4 bits are used for the index
• lg(16) = 4 : 4 bits are used for the byte offset
• The tag is 48 - (4 + 4) = 40 bits
• For example: 0b1000 0000 0000 0000 0000 0000 1000 0000

tag

ind
ex

off
se

t

• C = A B S
• S=256/(16*1) = 16

tag index

Simulate a direct-mapped cache

42

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

miss
hit!

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

miss

miss
hit!

hit!

hit!
miss

hit!

0b10
0b100b110b10

1
1

r Architecture!
This is CS 203: Advanced ComputeThis is CS 203:

• Consider a 2-way cache with 256 bytes total capacity, a block
size of 16 bytes, and the application repeatedly reading the
following memory addresses:
• 0b1000000000, 0b1000001000, 0b1000010000,

0b1000010100, 0b1100010000

43

Simulate a 2-way cache

• 8 = 2^3 : 3 bits are used for the index
• 16 = 2^4 : 4 bits are used for the byte offset
• The tag is 32 - (3 + 4) = 25 bits
• For example: 0b1000 0000 0000 0000 0000 0000 0001 0000

tag

ind
ex

off
se

t

• C = A B S• S=256/(16*2) = 8

tag index

Simulate a 2-way cache

44

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

miss
hit!

0
1
2
3
4
5
6
7

miss

miss
hit!

hit!

hit!
hit

hit!

0b10
0b10

1
1

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b111
r Architecture!

This is CS 203: Advanced Compute

Cause of cache misses

55

• Compulsory miss
• Cold start miss. First-time access to a block

• Capacity miss
• The working set size of an application is bigger than cache size

• Conflict miss
• Required data replaced by block(s) mapping to the same set
• Similar collision in hash

56

3Cs of misses

• Consider a direct mapped (1-way) cache with 256 bytes total capacity, a
block size of 16 bytes, and the application repeatedly reading the following
memory addresses:

• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100,
0b1100010000

57

Simulate a direct-mapped cache

• lg(16) = 4 : 4 bits are used for the index
• lg(16) = 4 : 4 bits are used for the byte offset
• The tag is 48 - (4 + 4) = 40 bits
• For example: 0b1000 0000 0000 0000 0000 0000 1000 0000

tag

ind
ex

off
se

t

• C = A B S
• S=256/(16*1) = 16

tag index

Simulate a direct-mapped cache

58

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

compulsory miss
hit!

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

compulsory miss

compulsory miss
hit!

hit!

hit!
conflict miss

hit!

0b10
0b100b110b10

1
1

• Consider a 2-way cache with 256 bytes total capacity, a block
size of 16 bytes, and the application repeatedly reading the
following memory addresses:
• 0b1000000000, 0b1000001000, 0b1000010000,

0b1000010100, 0b1100010000

59

Simulate a 2-way cache

• 8 = 2^3 : 3 bits are used for the index
• 16 = 2^4 : 4 bits are used for the byte offset
• The tag is 32 - (3 + 4) = 25 bits
• For example: 0b1000 0000 0000 0000 0000 0000 0001 0000

tag

ind
ex

off
se

t

• C = A B S• S=256/(16*2) = 8

tag index

Simulate a 2-way cache

60

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

compulsory miss
hit!

0
1
2
3
4
5
6
7

compulsory miss

compulsory miss
hit!

hit!

hit!
hit

hit!

0b10
0b10

1
1

V D Tag Data
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0b111

Improving 3Cs

69

• 3Cs and A, B, C of caches
• Compulsory miss

• Increase B: increase miss penalty (more data must be fetched from lower
hierarchy)

• Capacity miss
• Increase C: increase cost, access time, power

• Conflict miss
• Increase A: increase access time and power

• Or modify the memory access pattern of your program!

71

Improvement of 3Cs

Programming and memory
performance

72

Data layout

73

• Almost every popular ISA architecture uses “byte-addressing”
to access memory locations

• Instructions generally work faster when the given memory
address is aligned
• Aligned — if an instruction accesses an object of size n at address
X, the access is aligned if X mod n = 0.

• Some architecture/processor does not support aligned access at all
• Therefore, compilers only allocate objects on “aligned” address

74

Memory addressing/alignment

Array of structures or structure of arrays

76

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

ID *homework average ID *homework average
ID ID ID

homework homework homework
average average average

79

What data structure is performing better

• Considering your workload would like to calculate the average score of one of
the homework for all students, which data structure would deliver better
performance?

A. Array of objects
B. Object of arrays

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

What if we want to calculate average scores for each student?

• If you’re designing an in-memory database system, will you be using

• column-store — stores data tables column by column
10:001,12:002,11:003,22:004;
Smith:001,Jones:002,Johnson:003,Jones:004;
Joe:001,Mary:002,Cathy:003,Bob:004;
40000:001,50000:002,44000:003,55000:004;

• row-store — stores data tables row by row

001:10,Smith,Joe,40000;
002:12,Jones,Mary,50000;
003:11,Johnson,Cathy,44000;
004:22,Jones,Bob,55000;

80

Column-store or row-store
RowId EmpId Lastname Firstname Salary

1 10 Smith Joe 40000
2 12 Jones Mary 50000
3 11 Johnson Cathy 44000
4 22 Jones Bob 55000

if the most frequently used query looks like —
select Lastname, Firstname from table

Loop interchange/fission/fusion

81

Demo — programmer & performance

82

 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

O(n2) O(n2)Complexity
Instruction Count?Same Same

Clock RateSame Same

A B
CPIBetter Worse

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 32-bit address.
int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++) {
 c[i] = a[i] + b[i];
 //load a, b, and then store to c
}

What’s the data cache miss rate for this code?
A. 6.25%
B. 56.25%
C. 66.67%
D. 68.75%
E. 100%

83

AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits

Loop Fusion

87

/* Before */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 {
 a[i][j] = 1/b[i][j] * c[i][j];

 d[i][j] = a[i][j] + c[i][j];
 }

2 misses per access to a & c vs. one miss per access

Blocking

88

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

Case study: Matrix Multiplication

89

Algorithm class tells you it’s O(n3)
If n=1024, it takes about 1 sec

How long is it take when n=2048?

• If each dimension of your matrix is 2048
• Each row takes 2048*8 bytes = 16KB
• The L1 $ of intel Core i7 is 32KB, 8-way, 64-byte blocked
• You can only hold at most 2 rows/columns of each matrix!
• You need the same row when j increase!

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

90

Matrix Multiplication

c a b

Very likely a miss if
array is large

• Discover the cache miss rate
• valgrind --tool=cachegrind cmd

• cachegrind is a tool profiling the cache performance
• Performance counter

• Intel® Performance Counter Monitor http://www.intel.com/software/pcm/

91

Block algorithm for matrix multiplication

http://www.intel.com/software/pcm/

Block algorithm for matrix multiplication

92

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

c a b

You only need to hold these
sub-matrices in your cache

Matrix Transpose

96

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 // Compute on b_t
 c[ii][jj] += a[ii][kk]*b_t[jj][kk];
 }
 }
 }

 // Transpose matrix b into b_t
 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 b_t[i][j] += b[j][i];
 }
 }

Prefetching

100

Characteristic of memory accesses

101

D[0]
CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) {
 D[i] = rand();
}

time

time

timeL2 access
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]

miss

L2 access
for D[8] - D[15]

D[9]D[10]

Prefetching

102

D[0]
CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) {
 D[i] = rand();
 // prefetch D[i+8] if i % 8 == 0
}

time

time

timeL2 access
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]D[9]D[10]

prefetch

miss

L2 access
for D[8] - D[15]

prefetch

miss

L2 access
for D[16] - D[23]

D[11] D[12] D[13] D[14] D[15] D[16]

prefetch

• Identify the access pattern and proactively fetch data/
instruction before the application asks for the data/instruction
• Trigger the cache miss earlier to eliminate the miss when the

application needs the data/instruction
• Hardware prefetch

• The processor can keep track the distance between misses. If there
is a pattern, fetch miss_data_address+distance for a miss

• Software prefetch
• Load data into X0
• Using prefetch instructions

103

Prefetching

• x86 provide prefetch instructions
• As a programmer, you may insert _mm_prefetch in x86

programs to perform software prefetch for your code
• gcc also has a flag “-fprefetch-loop-arrays” to automatically

insert software prefetch instructions

104

Demo

Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffers
Norman P. Jouppi

108

• A small cache that captures the
evicted blocks

• Can be built as fully associative
since it’s small

• Consult when there is a miss
• Swap the entry if hit in victim cache
• Athlon has an 8-entry victim cache

• Reduce conflict misses
• Jouppi [1990]: 4-entry victim

cache removed 20% to 95% of
conflicts for a 4 KB direct mapped
data cache

•

110

Victim cache

CPU

L1 $

L2 $

miss?

access tag index offset

Victim $

tag index 0

~

tag index B-1

• Both of them improves conflict misses
• Victim cache can use cache block more efficiently — swaps when miss

• Miss caching maintains a copy of the missing data — the cache block can both in L1 and miss cache
• Victim cache only maintains a cache block when the block is kicked out

• Victim cache captures conflict miss better
• Miss caching captures every missing block

111

Victim cache v.s. miss caching

Advanced Hardware Techniques in
Improving Memory Performance

113

Without banks

114

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block
0xDEADBE fetch block

 0xDEAEBE
return block
0xDEAEBE

Multibanks & non-blocking caches

115

RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block
0xDEADBE fetch block

 0xDEAEBE
return block
0xDEAEBE

118

Pipelined access and multi-banked caches

Bank #1
Bank #2

Bank #3
Bank #4

Request #1
Request #2

Request #3
Request #4

Baseline

Multi-
banked

Memory
Request #1

Memory
Request #2

Memory
Request #3

Memory

• Don’t wait for full block to be loaded before restarting CPU
• Early restart—As soon as the requested word of the block arrives,

send it to the CPU and let the CPU continue execution
• Critical Word First—Request the missed word first from memory

and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block. Also called
wrapped fetch and requested word first

• Most useful with large blocks
• Spatial locality is a problem; often we want the next sequential

word soon, so not always a benefit (early restart).
120

Early Restart and Critical Word First

• Processor sends load request to L1-$
• if read hit — return data
• if write hit — set dirty and update in the block
• if miss

• Select a victim block
• If the target “set” is not full — select an empty/invalidated block

as the victim block
• If the target “set is full — select a victim block using some policy
• LRU is preferred — to exploit temporal locality!

• If the victim block is “dirty” & “valid”
• Write back the block to lower-level memory hierarchy

• Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

• If write-back or fetching causes any miss, repeat the same
process

121

What happens when we access data
Processor

Core
Registers

L1 $
ld/sd 0xDEADBEEFoffsetindextag

L2 $

DRAM

hit

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block
0xDEADBE

• Every write to lower memory will first write to a small SRAM buffer.
• store does not incur data hazards, but the pipeline has to stall if the write misses
• The write buffer will continue writing data to lower-level memory
• The processor/higher-level memory can response as soon as the data is written to write buffer.

• Write merge
• Since application has locality, it’s highly possible the evicted data have neighboring addresses.

Write buffer delays the writes and allows these neighboring data to be grouped together.

122

Can we avoid the “double penalty”?
L1 $

L2 $
fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block
0xDEADBE

Write Buffer

write back
 0x????BEindextag

fetch block
 0xDEADBEindextag

return block
0xDEADBE

write back
0x????BE

whenthere is no request
between L1/L2

indextag

