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By loading different programs into memory, 
your computer can perform different functions



Performance gap between Processor/Memory
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Performance of modern DRAM
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Thinking about water
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Alternatives?
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Fast, but expensive $$$
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L1? L2? L3?
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Why adding small SRAMs would 
work?
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• Spatial locality — application tends to visit nearby stuffs in the 
memory 
• Code — the current instruction, and then PC + 4 
• Data — the current element in an array, then the next  

• Temporal locality — application revisit the same thing again 
and again 
• Code — loops, frequently invoked functions 
• Data — the same data can be read/write many times

21

Locality

Most of time, your program is just visiting a 
very small amount of data/instructions within 

a given window



Architecting the Cache
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How to tell who is there?
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How to tell who is there?
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 2

The complexity of search the matching tag—
O(n)— will be slow if our cache size grows!

load 0x404A

0x404 not found,  
go to lower-level memory

Can we search things faster?
O(1)—hash table!

block offset
tag
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t Tell if the block here can be used

Dir
ty 

Bit Tell if the block here is modified



1 1
1 1
1 0
0 1
1 1
1 1
0 1
0 1
1 1
1 1
0 1
0 1
1 1
1 1
1 0
0 1

Hash-like structure — direct-mapped cache
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1 1 0x29 r Architecture!
1 1 0xDE This is CS 203: 
1 0 0x10 Advanced Compute
0 1 0x8A r Architecture!
1 1 0x60 This is CS 203: 
1 1 0x70 Advanced Compute
0 1 0x10 r Architecture!
0 1 0x11 This is CS 203: 

Way-associative cache
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1 1 0x00 This is CS 203: 
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1 0 0xA1 r Architecture!
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1 1 0x45 r Architecture!
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datatagdatatag

memory address:      0x0   8   2   4

memory address:      0b0000100000100100

block
offset

set
indextag

=? =?0x1   0
hit? hit?
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• C: Capacity in data arrays 
• A:  Way-Associativity — how many blocks within a set 

• N-way: N blocks in a set, A = N 
• 1 for direct-mapped cache 

• B: Block Size (Cacheline) 
• How many bytes in a block 

• S: Number of Sets: 
• A set contains blocks sharing the same index 
• 1 for fully associate cache
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C = ABS



• number of bits in block offset — lg(B) 
• number of bits in set index: lg(S) 
• tag bits: address_length - lg(S) - lg(B) 

• address_length is 32 bits for 32-bit machine 
• (address / block_size) % S = set index
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Corollary of C = ABS

memory address:      0b0000100000100100

block
offset

set
indextag



Put everything all together:
How cache interacts with CPU
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• Processor sends load request to L1-$ 
• if hit 

• return data  
• if miss 

• Select a victim block 
• If the target “set” is not full — select an empty/invalidated block 

as the victim block 
• If the target “set is full — select a victim block using some 

policy 
• LRU is preferred — to exploit temporal locality! 

• If the victim block is “dirty” & “valid” 
• Write back the block to lower-level memory hierarchy 

• Fetch the requesting block from lower-level memory hierarchy 
and place in the victim block 

• If write-back or fetching causes any miss, repeat the same 
process

38

What happens when we read data
Processor 

Core
Registers

L1 $
ld 0xDEADBEEFoffsetindextag

L2 $

DRAM

hit

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block 
0xDEADBE



• Processor sends load request to L1-$ 
• if hit 

• return data — set DIRTY  
• if miss 

• Select a victim block 
• If the target “set” is not full — select an empty/invalidated block 

as the victim block 
• If the target “set is full — select a victim block using some policy 
• LRU is preferred — to exploit temporal locality! 

• If the victim block is “dirty” & “valid” 
• Write back the block to lower-level memory hierarchy 

• Fetch the requesting block from lower-level memory hierarchy 
and place in the victim block 

• If write-back or fetching causes any miss, repeat the same 
process 

• Present the write “ONLY” in L1 and set DIRTY
39

What happens when we write data
Processor 

Core
Registers

L1 $
sd 0xDEADBEEFoffsetindextag

L2 $

DRAM

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

Write & Set dirty
Write &Set dirty



Simulate the cache!
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• Consider a direct mapped (1-way) cache with 256 bytes total capacity, a 
block size of 16 bytes, and the application repeatedly reading the following 
memory addresses: 

• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100, 
0b1100010000

41

Simulate a direct-mapped cache

• lg(16) = 4 : 4 bits are used for the index 
• lg(16) = 4 : 4 bits are used for the byte offset 
• The tag is 48 - (4 + 4) = 40 bits 
• For example: 0b1000 0000 0000 0000 0000 0000 1000 0000

tag

ind
ex

off
se

t

• C = A B S
• S=256/(16*1) = 16



tag index

Simulate a direct-mapped cache
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• Consider a 2-way cache with 256 bytes total capacity, a block 
size of 16 bytes, and the application repeatedly reading the 
following memory addresses: 
• 0b1000000000, 0b1000001000, 0b1000010000, 

0b1000010100, 0b1100010000
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Simulate a 2-way cache

• 8 = 2^3 : 3 bits are used for the index 
• 16 = 2^4 : 4 bits are used for the byte offset 
• The tag is 32 - (3 + 4) = 25 bits 
• For example: 0b1000 0000 0000 0000 0000 0000 0001 0000

tag

ind
ex

off
se

t

• C = A B S• S=256/(16*2) = 8



tag index

Simulate a 2-way cache
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V D Tag Data
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Cause of cache misses
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• Compulsory miss 
• Cold start miss. First-time access to a block 

• Capacity miss 
• The working set size of an application is bigger than cache size 

• Conflict miss 
• Required data replaced by block(s) mapping to the same set 
• Similar collision in hash

56

3Cs of misses



• Consider a direct mapped (1-way) cache with 256 bytes total capacity, a 
block size of 16 bytes, and the application repeatedly reading the following 
memory addresses: 

• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100, 
0b1100010000
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Simulate a direct-mapped cache

• lg(16) = 4 : 4 bits are used for the index 
• lg(16) = 4 : 4 bits are used for the byte offset 
• The tag is 48 - (4 + 4) = 40 bits 
• For example: 0b1000 0000 0000 0000 0000 0000 1000 0000

tag

ind
ex

off
se

t

• C = A B S
• S=256/(16*1) = 16



tag index

Simulate a direct-mapped cache
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• Consider a 2-way cache with 256 bytes total capacity, a block 
size of 16 bytes, and the application repeatedly reading the 
following memory addresses: 
• 0b1000000000, 0b1000001000, 0b1000010000, 

0b1000010100, 0b1100010000
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Simulate a 2-way cache

• 8 = 2^3 : 3 bits are used for the index 
• 16 = 2^4 : 4 bits are used for the byte offset 
• The tag is 32 - (3 + 4) = 25 bits 
• For example: 0b1000 0000 0000 0000 0000 0000 0001 0000

tag

ind
ex

off
se

t

• C = A B S• S=256/(16*2) = 8



tag index

Simulate a 2-way cache
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Improving 3Cs
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• 3Cs and A, B, C of caches 
• Compulsory miss 

• Increase B: increase miss penalty (more data must be fetched from lower 
hierarchy) 

• Capacity miss 
• Increase C: increase cost, access time, power 

• Conflict miss 
• Increase A: increase access time and power 

• Or modify the memory access pattern of your program!

71

Improvement of 3Cs



Programming and memory 
performance

72



Data layout

73



• Almost every popular ISA architecture uses “byte-addressing” 
to access memory locations 

• Instructions generally work faster when the given memory 
address is aligned 
• Aligned — if an instruction accesses an object of size n at address 
X, the access is aligned if X mod n = 0. 

• Some architecture/processor does not support aligned access at all 
• Therefore, compilers only allocate objects on “aligned” address

74

Memory addressing/alignment



Array of structures or structure of arrays
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Array of objects object of arrays
struct grades 
{ 
  int id; 
  double *homework; 
  double average; 
}; 

struct grades 
{ 
  int *id; 
  double **homework; 
  double *average; 
};

average of each 
homework

for(i=0;i<homework_items; i++) 
{  
gradesheet[total_number_students].homework[i] = 0.0; 
   for(j=0;j<total_number_students;j++)  
gradesheet[total_number_students].homework[i] 
+=gradesheet[j].homework[i]; 
   gradesheet[total_number_students].homework[i] /= 
(double)total_number_students; 
}

for(i = 0;i < homework_items; i++) 
{ 
  gradesheet.homework[i][total_number_students] = 0.0; 
  for(j = 0; j <total_number_students;j++) 
  { 
      gradesheet.homework[i][total_number_students] += 
gradesheet.homework[i][j]; 
  } 
      gradesheet.homework[i][total_number_students] /= 
total_number_students; 
}

ID *homework average ID *homework average
ID ID ID

homework homework homework
average average average
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What data structure is performing better

• Considering your workload would like to calculate the average score of one of 
the homework for all students, which data structure would deliver better 
performance? 

A. Array of objects 
B. Object of arrays

Array of objects object of arrays
struct grades 
{ 
  int id; 
  double *homework; 
  double average; 
}; 

struct grades 
{ 
  int *id; 
  double **homework; 
  double *average; 
};

average of each 
homework

for(i=0;i<homework_items; i++) 
{  
gradesheet[total_number_students].homework[i] = 0.0; 
   for(j=0;j<total_number_students;j++)  
gradesheet[total_number_students].homework[i] 
+=gradesheet[j].homework[i]; 
   gradesheet[total_number_students].homework[i] /= 
(double)total_number_students; 
}

for(i = 0;i < homework_items; i++) 
{ 
  gradesheet.homework[i][total_number_students] = 0.0; 
  for(j = 0; j <total_number_students;j++) 
  { 
      gradesheet.homework[i][total_number_students] += 
gradesheet.homework[i][j]; 
  } 
      gradesheet.homework[i][total_number_students] /= 
total_number_students; 
}

What if we want to calculate average scores for each student?



• If you’re designing an in-memory database system, will you be using

• column-store — stores data tables column by column 
10:001,12:002,11:003,22:004; 
Smith:001,Jones:002,Johnson:003,Jones:004; 
Joe:001,Mary:002,Cathy:003,Bob:004; 
40000:001,50000:002,44000:003,55000:004; 

• row-store — stores data tables row by row
 
001:10,Smith,Joe,40000; 
002:12,Jones,Mary,50000; 
003:11,Johnson,Cathy,44000; 
004:22,Jones,Bob,55000;

80

Column-store or row-store
RowId EmpId Lastname Firstname Salary

1 10 Smith Joe 40000
2 12 Jones Mary 50000
3 11 Johnson Cathy 44000
4 22 Jones Bob 55000

if the most frequently used query looks like —  
select Lastname, Firstname from table



Loop interchange/fission/fusion

81



Demo — programmer & performance
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    for(i = 0; i < ARRAY_SIZE; i++) 
    { 
      for(j = 0; j < ARRAY_SIZE; j++) 
      { 
        c[i][j] = a[i][j]+b[i][j]; 
      } 
    }

    for(j = 0; j < ARRAY_SIZE; j++) 
    { 
      for(i = 0; i < ARRAY_SIZE; i++) 
      { 
        c[i][j] = a[i][j]+b[i][j]; 
      } 
    }

O(n2) O(n2)Complexity
Instruction Count?Same Same

Clock RateSame Same

A B
CPIBetter Worse



• D-L1 Cache configuration of AMD Phenom II 
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate, 

write-back, and assuming 32-bit address. 
int a[16384], b[16384], c[16384]; 
/* c = 0x10000, a = 0x20000, b = 0x30000 */ 
for(i = 0; i < 512; i++) { 
    c[i] = a[i] + b[i]; 
    //load a, b, and then store to c 
} 

What’s the data cache miss rate for this code? 
A. 6.25% 
B. 56.25% 
C. 66.67% 
D. 68.75% 
E. 100%
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AMD Phenom II

C = ABS
64KB = 2 * 64 * S

S = 512
offset = lg(64) = 6 bits
index = lg(512) = 9 bits

tag = 64 - lg(512) - lg(64) = 49 bits



Loop Fusion
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/* Before */ 

for (i = 0; i < N; i = i+1) 

    for (j = 0; j < N; j = j+1) 

        a[i][j] = 1/b[i][j] * c[i][j]; 

for (i = 0; i < N; i = i+1) 

    for (j = 0; j < N; j = j+1) 

        d[i][j] = a[i][j] + c[i][j];

/* After */ 

for (i = 0; i < N; i = i+1) 

    for (j = 0; j < N; j = j+1) 

    { 
      a[i][j] = 1/b[i][j] * c[i][j]; 

         d[i][j] = a[i][j] + c[i][j]; 
    }

2 misses per access to a & c vs. one miss per access



Blocking
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for(i = 0; i < ARRAY_SIZE; i++) { 
  for(j = 0; j < ARRAY_SIZE; j++) { 
    for(k = 0; k < ARRAY_SIZE; k++) { 
      c[i][j] += a[i][k]*b[k][j]; 
    } 
  } 
}

Case study: Matrix Multiplication

89

Algorithm class tells you it’s O(n3)
If n=1024, it takes about 1 sec

How long is it take when n=2048?



• If each dimension of your matrix is 2048 
• Each row takes 2048*8 bytes = 16KB 
• The L1 $ of intel Core i7 is 32KB, 8-way, 64-byte blocked 
• You can only hold at most 2 rows/columns of each matrix! 
• You need the same row when j increase!

for(i = 0; i < ARRAY_SIZE; i++) { 
  for(j = 0; j < ARRAY_SIZE; j++) { 
    for(k = 0; k < ARRAY_SIZE; k++) { 
      c[i][j] += a[i][k]*b[k][j]; 
    } 
  } 
}

90

Matrix Multiplication

c a b

Very likely a miss if 
array is large



• Discover the cache miss rate 
• valgrind --tool=cachegrind cmd 

• cachegrind is a tool profiling the cache performance 
• Performance counter 

• Intel® Performance Counter Monitor http://www.intel.com/software/pcm/

91

Block algorithm for matrix multiplication

http://www.intel.com/software/pcm/


Block algorithm for matrix multiplication
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for(i = 0; i < ARRAY_SIZE; i++) { 
  for(j = 0; j < ARRAY_SIZE; j++) { 
    for(k = 0; k < ARRAY_SIZE; k++) { 
      c[i][j] += a[i][k]*b[k][j]; 
    } 
  } 
}

  for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) { 
    for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) { 
      for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {         
          for(ii = i; ii < i+(ARRAY_SIZE/n); ii++) 
            for(jj = j; jj < j+(ARRAY_SIZE/n); jj++) 
              for(kk = k; kk < k+(ARRAY_SIZE/n); kk++) 
                c[ii][jj] += a[ii][kk]*b[kk][jj]; 
      } 
    } 
  }

c a b

You only need to hold these 
sub-matrices in your cache



Matrix Transpose
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  for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) { 
    for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) { 
      for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {         
          for(ii = i; ii < i+(ARRAY_SIZE/n); ii++) 
            for(jj = j; jj < j+(ARRAY_SIZE/n); jj++) 
              for(kk = k; kk < k+(ARRAY_SIZE/n); kk++) 
                c[ii][jj] += a[ii][kk]*b[kk][jj]; 
      } 
    } 
  }

  for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) { 
    for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) { 
      for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {         
          for(ii = i; ii < i+(ARRAY_SIZE/n); ii++) 
            for(jj = j; jj < j+(ARRAY_SIZE/n); jj++) 
              for(kk = k; kk < k+(ARRAY_SIZE/n); kk++) 
                // Compute on b_t 
                c[ii][jj] += a[ii][kk]*b_t[jj][kk]; 
      } 
    } 
  }

  // Transpose matrix b into b_t 
  for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) { 
    for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) { 
        b_t[i][j] += b[j][i]; 
    } 
  }



Prefetching
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Characteristic of memory accesses
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L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) { 
     D[i] = rand(); 
}
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time

timeL2 access
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]

miss

L2 access
for D[8] - D[15]

D[9]D[10]



Prefetching
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L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) { 
     D[i] = rand(); 
     // prefetch D[i+8] if i % 8 == 0 
}

time

time

timeL2 access 
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]D[9]D[10]

prefetch

miss
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for D[8] - D[15]

prefetch

miss

L2 access 
for D[16] - D[23]
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• Identify the access pattern and proactively fetch data/
instruction before the application asks for the data/instruction 
• Trigger the cache miss earlier to eliminate the miss when the 

application needs the data/instruction 
• Hardware prefetch 

• The processor can keep track the distance between misses. If there 
is a pattern, fetch miss_data_address+distance for a miss 

• Software prefetch 
• Load data into X0 
• Using prefetch instructions
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Prefetching



• x86 provide prefetch instructions 
• As a programmer, you may insert _mm_prefetch in x86 

programs to perform software prefetch for your code 
• gcc also has a flag “-fprefetch-loop-arrays” to automatically 

insert software prefetch instructions
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Demo



Improving Direct-Mapped Cache 
Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffers
Norman P. Jouppi
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• A small cache that captures the 
evicted blocks 

• Can be built as fully associative 
since it’s small 

• Consult when there is a miss 
• Swap the entry if hit in victim cache 
• Athlon has an 8-entry victim cache 

• Reduce conflict misses  
• Jouppi [1990]: 4-entry victim 

cache removed 20% to 95% of 
conflicts for a 4 KB direct mapped 
data cache

•
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• Both of them improves conflict misses 
• Victim cache can use cache block more efficiently — swaps when miss 

• Miss caching maintains a copy of the missing data — the cache block can both in L1 and miss cache 
• Victim cache only maintains a cache block when the block is kicked out 

• Victim cache captures conflict miss better 
• Miss caching captures every missing block
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Victim cache v.s. miss caching



Advanced Hardware Techniques in 
Improving Memory Performance
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Without banks
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RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block 
0xDEADBE fetch block

 0xDEAEBE
return block 
0xDEAEBE



Multibanks & non-blocking caches
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RAM RAM RAM RAM

fetch block
 0xDEADBE

$
return block 
0xDEADBE fetch block

 0xDEAEBE
return block 
0xDEAEBE
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Pipelined access and multi-banked caches
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Request #1
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Request #1

Memory 
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Memory 
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Memory 



• Don’t wait for full block to be loaded before restarting CPU 
• Early restart—As soon as the requested word of the block arrives, 

send it to the CPU and let the CPU continue execution 
• Critical Word First—Request the missed word first from memory 

and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block. Also called 
wrapped fetch and requested word  first 

• Most useful with large blocks 
• Spatial locality is a problem; often we want the next sequential 

word soon, so not always a benefit (early restart).
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Early Restart and Critical Word First 



• Processor sends load request to L1-$ 
• if read hit — return data  
• if write hit — set dirty and update in the block 
• if miss 

• Select a victim block 
• If the target “set” is not full — select an empty/invalidated block 

as the victim block 
• If the target “set is full — select a victim block using some policy 
• LRU is preferred — to exploit temporal locality! 

• If the victim block is “dirty” & “valid” 
• Write back the block to lower-level memory hierarchy 

• Fetch the requesting block from lower-level memory hierarchy 
and place in the victim block 

• If write-back or fetching causes any miss, repeat the same 
process
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What happens when we access data
Processor 

Core
Registers

L1 $
ld/sd 0xDEADBEEFoffsetindextag

L2 $

DRAM

hit

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block 
0xDEADBE



• Every write to lower memory will first write to a small SRAM buffer. 
• store does not incur data hazards, but the pipeline has to stall if the write misses 
• The write buffer will continue writing data to lower-level memory 
• The processor/higher-level memory can response as soon as the data is written to write buffer. 

• Write merge 
• Since application has locality, it’s highly possible the evicted data have neighboring addresses. 

Write buffer delays the writes and allows these neighboring data to be grouped together.
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Can we avoid the “double penalty”?
L1 $

L2 $
fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

return block 
0xDEADBE

Write Buffer

write back
 0x????BEindextag

fetch block
 0xDEADBEindextag

return block 
0xDEADBE

write back  
0x????BE 

whenthere is no request 
between L1/L2

indextag


