
Basic Pipelined Processor
Hung-Wei Tseng

• Pipelining
• Pipeline Hazards
• Structural Hazards
• Control Hazards
• Dynamic Branch Predictions

2

Outline

• Instruction Fetch (IF) — fetch the instruction from memory
• Instruction Decode (ID)

• Decode the instruction for the desired operation and operands
• Reading source register values

• Execution (EX)
• ALU instructions: Perform ALU operations
• Conditional Branch: Determine the branch outcome (taken/not taken)
• Memory instructions: Determine the effective address for data memory access

• Data Memory Access (MEM) — Read/write memory
• Write Back (WB) — Present ALU result/read value in the target register
• Update PC

• If the branch is taken — set to the branch target address
• Otherwise — advance to the next instruction — current PC + 4

3

Tasks in RISC-V ISA

Simple implementation w/o branch

4

add x1, x2, x3

ld x4, 0(x5)

sub x6, x7, x8

sub x9,x10,x11

sd x1, 0(x12)

t

IF ID EX WB

IF ID EX MEM WB

IF ID EX WB

IF ID

Pipelining

5

Pipelining

6

• Different parts of the processor works on different instructions
simultaneously

• A clock signal controls and synchronize the beginning and the
end of each part of the work

• A pipeline register between different parts of the processor to
keep intermediate results necessary for the upcoming work

7

Pipelining

Pipelining

8

Pipelining

9

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)
xor x13,x14,x15
and x16,x17,x18
add x19,x20,x21
sub x22,x23,x24
ld x25, 4(x26)
sd x27, 0(x28)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM WB
EX MEM WB
ID EX MEM

t

After this point,
we are completing an
instruction each cycle!

Cycles
Instruction = 1

Draw the pipeline diagrams

12

add x1, x2, x3
ld x4, 0(x1)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

IF ID
IF

EX
ID
IF

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9, x1, x10
sd x11, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
bne x0, x7, L
sub x9,x10,x11
sd x1, 0(x12)

The desired value of
x1 is not ready yet

IF ID
IF

EX
ID
IF

MEM
EX
ID

Both instructions
need x1

Doesn’t know
what to fetch
at this moment

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID

WB
MEM
EX

WB
MEM WB

IF

Pipeline hazards

14

• Structural hazards — resource conflicts cannot support
simultaneous execution of instructions in the pipeline

• Control hazards — the PC can be changed by an instruction in
the pipeline

• Data hazards — an instruction depending on a the result that’s
not yet generated or propagated when the instruction needs
that

15

Three pipeline hazards

Structural Hazards

17

• The same register cannot be read/written at the same cycle
• Solution: insert no-ops (e.g, add x0,x0,x0) between them
• Drawback

• If the number of pipeline stages changes, the code won’t work
• Slow

18

Dealing with the conflicts between ID/WB

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
add x0, x0, x0
sub x9, x1, x10
sd x11, 0(x12)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX

IF
ID

WB
MEM

ID
IF

EX
WB

EX
ID

MEM
MEM
EX MEM

WB
WB

WB

• The same register cannot be read/written at the same cycle
• Solution: stall the later instruction, allowing the write to present
the change in the register and the later can get the desired
value

• Drawback: slow

19

Dealing with the conflicts between ID/WB

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9, x1, x10
sd x11, 0(x12)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
ID
IF

WB
EX
ID

MEM
EX MEM

WB
WB

• The same register cannot be read/written at the same cycle
• Better solution: write early, read late

• Writes occur at the clock edge and complete long enough before
the end of the clock cycle.

• This leaves enough time for outputs to settle for reads
• The revised register file is the default one from now!

20

Dealing with the conflicts between ID/WB

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9, x1, x10
sd x11, 0(x12)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID

WB
MEM
EX
ID
IF

WB
MEM
EX

WB
MEM WB

• Stall can address the issue — but slow
• Improve the pipeline unit design to allow parallel execution

24

Structural Hazards

Control Hazards

25

Dynamic Branch Prediction

32

• How many of the following statements are true regarding why we have to stall for
each branch in the current pipeline processor
! The target address when branch is taken is not available for instruction fetch stage of

the next cycle
" The target address when branch is not-taken is not available for instruction fetch

stage of the next cycle
The branch outcome cannot be decided until the comparison result of ALU is not out
$ The next instruction needs the branch instruction to write back its result
A. 0
B. 1
C. 2
D. 3
E. 4

33

Why can’t we proceed without stalls/no-ops?

You need a cheatsheet for that — branch target buffer

You need to predict that — history/states

A basic dynamic branch predictor

34

PC

4
MU
X

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC target PC St
ate

Branch Target Buffer

• Local predictor — every branch instruction has its own state
• 2-bit — each state is described using 2 bits
• Change the state based on actual outcome
• If we guess right — no penalty
• If we guess wrong — flush (clear pipeline
registers) for mis-predicted instructions
that are currently in IF and ID stages and
reset the PC

35

2-bit/Bimodal local predictor

0x400048 0x400032 10
0x400080 0x400068 11
0x401080 0x401100 00
0x4000F8 0x400100 01

branch PC target PC St
ate

Strong
Not Taken
00 (0)

Weak
Not Taken

01 (1)

Strong
Taken
11 (3)

Weak
Taken
10 (2)Taken Taken

Taken
Taken

Not taken
Not taken

Not taken

Not taken

Predict Taken

2-bit local predictor

36

i = 0;
do {
 sum += a[i];
} while(++i < 10);

i state predict actual
1 10 T T
2 11 T T
3 11 T T

4-9 11 T T
10 11 T NT

Strong
Not Taken
00 (0)

Weak
Not Taken

01 (1)

Strong
Taken
11 (3)

Weak
Taken
10 (2)Taken Taken

Taken
Taken

Not taken
Not taken

Not taken

Not taken

90% accuracy!
CPIaverage = 1 + 20% × 10% × 2 = 1.04

Two-level global predictor

40

Reading: Scott McFarling. Combining Branch Predictors. Technical report WRL-TN-36, 1993.

• What’s the overall branch prediction (include both branches) accuracy for this nested for
loop?
i = 0;
do {
 if(i % 2 != 0) // Branch X, taken if i % 2 == 0
 a[i] *= 2;
 a[i] += i;
} while (++i < 100)// Branch Y

(assume all states started with 00)
A. ~25%
B. ~33%
C. ~50%
D. ~67%
E. ~75%

41

2-bit local predictor

i branch? state prediction actual
0 X 00 NT T
0 Y 00 NT T
1 X 01 NT NT
1 Y 01 NT T
2 X 00 NT T
2 Y 10 T T
3 X 01 NT NT
3 Y 11 T T
4 X 00 NT T
4 Y 11 T T
5 X 01 NT NT
5 Y 11 T T
6 X 00 NT T
6 Y 11 T T

For branch Y, almost 100%,
For branch X, only 50%

This pattern
repeats all the time!

Global history (GH) predictor

42

PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Taken

=(NT, T,NT,NT)

Performance of GH predictor

43

i = 0;
do {
 if(i % 2 != 0) // Branch X, taken if i % 2 == 0
 a[i] *= 2;
 a[i] += i;
} while (++i < 100)// Branch Y

i branch? GHR state prediction actual
0 X 000 00 NT T
0 Y 001 00 NT T
1 X 011 00 NT NT
1 Y 110 00 NT T
2 X 101 00 NT T
2 Y 011 00 NT T
3 X 111 00 NT NT
3 Y 110 01 NT T
4 X 101 01 NT T
4 Y 011 01 NT T
5 X 111 00 NT NT
5 Y 110 10 T T
6 X 101 10 T T
6 Y 011 10 T T
7 X 111 00 NT NT
7 Y 110 11 T T
8 X 101 11 T T
8 Y 011 11 T T
9 X 111 00 NT NT
9 Y 110 11 T T
10 X 101 11 T T
10 Y 011 11 T T

Near perfect after this

Hybrid predictors

47

gshare predictor

48

PC

4

MU
X

0x400048 0x400032
0x400080 0x400068
0x401080 0x401100
0x4000F8 0x400100

branch PC target PC

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 pa

tte
rn 00

01
10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Not Taken

=(NT, T,NT,NT)

⊕ 1100

0100

1000

• Allowing the predictor to identify both branch address but also
use global history for more accurate prediction

49

gshare predictor

0x400048 0x400032 1
0x400080 0x400068 1
0x401080 0x401100 1
0x4000F8 0x400100 0

branch PC target PC St
ate

Tournament Predictor

50

PC

4
MU
X

Branch Target Buffer

0100

Global
History
Register

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

0x400048 1000
0x400080 0110
0x401080 1010
0x4000F8 0110

branch PC local history

Local
History
Predictor

St
ate

s a
ss

oc
iat

ed
 w

ith
 hi

sto
ry 0001

10
11
10
11
10
11
10
00
00
00
11
10
01
00

Predict Taken

• The state predicts “which predictor is better”
• Local history
• Global history

• The predicted predictor makes the prediction

51

Tournament Predictor

• The Intel Pentium MMX, Pentium II, and Pentium III have local
branch predictors with a local 4-bit history and a local pattern
history table with 16 entries for each conditional jump.

• Global branch prediction is used in Intel Pentium M, Core, Core
2, and Silvermont-based Atom processors.

• Tournament predictor is used in DEC Alpha, AMD Athlon
processors

• The AMD Ryzen multi-core processor's Infinity Fabric and the
Samsung Exynos processor include a perceptron based neural
branch predictor.

52

Branch predictor in processors

• Project is up — check the website
• Assignment #3 due next Monday
• Midterm

• Release Tuesday 0:00am, turn in before next Friday 11:59pm
• You can only open it once and you have to finish a total of 30 questions within 80 minutes.
• You may open book, but you have to bare the risks of not being able to finish them

• Attendance
• The attendance throughout the quarter count as one assignment
• You only need to answer 50% of the Zoom polls to receive full credits

• Please don’t email me for absence — we count only 50% to give you flexibility
• If you just login but never answer questions, you won’t receive any.

• Reading Quizzes — 2 attempts, average
• Office Hours on Zoom (the office hour link, not the lecture one)

• Hung-Wei/Prof. Usagi: M 8p-10p (make up for the last week), W 2p-3p
• Quan Fan: F 1p-3p

53

Announcement

54
ͺͻͥ

Computer
Science &
Engineering

203

