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SuperScalar Processor w/ ROB
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Recap: What about “linked list”
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LOOP: ld   X10, 8(X10) 
      addi  X7, X7, 1 
      bne  X10, X0, LOOP  

Static instructions Dynamic instructions
① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP
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• perf is a tool that captures performance counters of your 
processors and can generate results like branch mis-prediction 
rate, cache miss rates and ILP.
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Demo: ILP within a program



Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington
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• The processor can schedule instructions from different 
threads/processes/programs 

• Fetch instructions from different threads/processes to fill the 
not utilized part of pipeline 
• Exploit “thread level parallelism” (TLP) to solve the problem of 

insufficient ILP in a single thread 
• You need to create an illusion of multiple processors for OSs
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Simultaneous multithreading



Simultaneous multithreading
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① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP

① ld   X1, 0(X10) 
② addi X10, X10, 8 
③ add  X20, X20, X1 
④ bne  X10, X2, LOOP 
⑤ ld   X1, 0(X10) 
⑥ addi X10, X10, 8 
⑦ add  X20, X20, X1 
⑧ bne  X10, X2, LOOP 
⑨ ld   X1, 0(X10) 
ɩ addi X10, X10, 8 
ꋷ add  X20, X20, X1 
ꋸ bne  X10, X2, LOOP
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SuperScalar Processor w/ ROB
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SMT SuperScalar Processor w/ ROB
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• Improve the throughput of execution 
• May increase the latency of a single thread 

• Less branch penalty per thread 
• Increase hardware utilization 
• Simple hardware design: Only need to duplicate PC/Register 

Files 
• Real Case: 

• Intel HyperThreading (supports up to two threads per core) 
• Intel Pentium 4, Intel Atom, Intel Core i7 

• AMD RyZen
16

SMT



SMT SuperScalar Processor w/ ROB
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Wider-issue processors won’t give you much more
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The case for a Single-Chip Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung 

Chang
Stanford University
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Wide-issue SS processor v.s. multiple narrower-issue SS processors

20

6-way SS processor — 
3 INT ALUs, 3 FP ALUs

I-cache: 32KB, D-cache: 32KB
4 2-issue SS processor — 
4* (1 INT ALUs, 1 FP ALUs

I-cache: 8KB, D-cache: 8KB)



Intel SkyLake
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Concept of CMP
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Performance of CMP
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Architectural Support for Parallel 
Programming
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• To exploit parallelism you need to break your computation into multiple 
“processes” or multiple “threads” 

• Processes (in OS/software systems) 
• Separate programs actually running (not sitting idle) on your computer at the same 

time. 
• Each process will have its own virtual memory space and you need explicitly exchange 

data using inter-process communication APIs 
• Threads (in OS/software systems) 

• Independent portions of your program that can run in parallel 
• All threads share the same virtual memory space 

• We will refer to these collectively as “threads” 
• A typical user system might have 1-8 actively running threads. 
• Servers can have more if needed (the sysadmins will hopefully configure it that way)
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Parallel programming



What software thinks about “multiprogramming” hardware

30

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$



What software thinks about “multiprogramming” hardware
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Shared Memory
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for(i=0;i<size/4;i++) 
    sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++) 
    sum += a[i]; for(i=size/2;i<3*size/4;i++) 

    sum += a[i];

for(i=3*size/4;i<size;i++) 
    sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF

Others do not see the updated value in the 
cache and keep working — incorrect result!



• Coherency — Guarantees all processors see the same value 
for a variable/memory address in the system when the 
processors need the value at the same time 
• What value should be seen 

• Consistency — All threads see the change of data in the same 
order 
• When the memory operation should be done

32

Coherency & Consistency



• Snooping protocol 
• Each processor broadcasts / listens to cache misses 

• State associate with each block (cacheline) 
• Invalid 

• The data in the current block is invalid 
• Shared 

• The processor can read the data 
• The data may also exist on other processors 

• Exclusive 
• The processor has full permission on the data 
• The processor is the only one that has up-to-date data
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Simple cache coherency protocol



1 1 0x29 IIJJKKLLMMNNOOPP
1 1 0xDE QQRRSSTTUUVVWWXX
1 0 0x10 YYZZAABBCCDDEEFF
0 1 0x8A AABBCCDDEEGGFFHH
1 1 0x60 IIJJKKLLMMNNOOPP
1 1 0x70 QQRRSSTTUUVVWWXX
0 1 0x10 QQRRSSTTUUVVWWXX
0 1 0x11 YYZZAABBCCDDEEFF

Coherent way-associative cache
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1 1 0x00 AABBCCDDEEGGFFHH
1 1 0x10 IIJJKKLLMMNNOOPP
1 0 0xA1 QQRRSSTTUUVVWWXX
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1 1 0x31 AABBCCDDEEGGFFHH
1 1 0x45 IIJJKKLLMMNNOOPP
0 1 0x41 QQRRSSTTUUVVWWXX
0 1 0x68 YYZZAABBCCDDEEFF
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Snooping Protocol
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What happens when we write in coherent caches?
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for(i=0;i<size/4;i++) 
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Cache coherency
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• 3Cs: 
• Compulsory, Conflict, Capacity 

• Coherency miss: 
• A “block” invalidated because of the sharing among processors.
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4Cs of cache misses



• True sharing 
• Processor A modifies X, processor B also want to access X.  

• False sharing 
• Processor A modifies X, processor B also want to access Y.  

However, Y is invalidated because X and Y are in the same block!
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False sharing



• x86 provides an “mfence” instruction to prevent reordering 
across the fence instruction 

• x86 only supports this kind of “relaxed consistency” model. 
You still have to be careful enough to make sure that your code 
behaves as you expected
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fence instructions

thread 1 thread 2

  a=1; 

  x=b;

  b=1; 

  y=a;
a=1 must occur/update before mfence b=1 must occur/update before mfencemfence mfence



• Processor behaviors are non-deterministic  
• You cannot predict which processor is going faster 
• You cannot predict when OS is going to schedule your thread 

• Cache coherency only guarantees that everyone would 
eventually have a coherent view of data, but not when 

• Cache consistency is hard to support
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Take-aways of parallel programming


