
Thread-Level Parallelism —
Simultaneous MultiThreading (SMT)

& Chip Multi-Processors (CMP)
Hung-Wei

SuperScalar Processor w/ ROB

2

Instruction
Queue

Fetch/decode instruction
Unresolved

Branch

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

lue

physical
register #X1

X2
X3
…Register

mapping table

Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

Recap: What about “linked list”

3

LOOP: ld X10, 8(X10)
 addi X7, X7, 1
 bne X10, X0, LOOP

Static instructions Dynamic instructions
① ld X10, 8(X10)
② addi X7, X7, 1
③ bne X10, X0, LOOP
④ ld X10, 8(X10)
⑤ addi X7, X7, 1
⑥ bne X10, X0, LOOP
⑦ ld X10, 8(X10)
⑧ addi X7, X7, 1
⑨ bne X10, X0, LOOP

Ins
tru

cti
on

 Qu
eu

e

1

3

2

5

7

1 2
3 4
5 6
7 8
9 4

6

8

910

11ILP is low because of data
dependencies

Wasted slots

Wasted slots
Wasted slots

Wasted slots

Wasted slots
Wasted slots

• perf is a tool that captures performance counters of your
processors and can generate results like branch mis-prediction
rate, cache miss rates and ILP.

4

Demo: ILP within a program

Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington

5

• The processor can schedule instructions from different
threads/processes/programs

• Fetch instructions from different threads/processes to fill the
not utilized part of pipeline
• Exploit “thread level parallelism” (TLP) to solve the problem of

insufficient ILP in a single thread
• You need to create an illusion of multiple processors for OSs

6

Simultaneous multithreading

Simultaneous multithreading

7

Ins
tru

cti
on

 Qu
eu

e

1 2

5

1 2
3 4
5 6
7 8

3 4

76

8

① ld X10, 8(X10)
② addi X7, X7, 1
③ bne X10, X0, LOOP
④ ld X10, 8(X10)
⑤ addi X7, X7, 1
⑥ bne X10, X0, LOOP
⑦ ld X10, 8(X10)
⑧ addi X7, X7, 1
⑨ bne X10, X0, LOOP

① ld X1, 0(X10)
② addi X10, X10, 8
③ add X20, X20, X1
④ bne X10, X2, LOOP
⑤ ld X1, 0(X10)
⑥ addi X10, X10, 8
⑦ add X20, X20, X1
⑧ bne X10, X2, LOOP
⑨ ld X1, 0(X10)
ɩ addi X10, X10, 8
ꋷ add X20, X20, X1
ꋸ bne X10, X2, LOOP

1 2
3 4
5 6
7 8

9 10 9 10

1 2

3

54

6

11 12 11 12

9

7

8 9

SuperScalar Processor w/ ROB

11

Instruction
Queue

Fetch/decode instruction
Unresolved

Branch

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

lue

physical
register #X1

X2
X3
…Register

mapping table

Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

SMT SuperScalar Processor w/ ROB

12

Instruction
Queue

Fetch/
decode

instruction

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

luephysical register #X1
X2
X3
…

Register
mapping table #1Renaming

logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…

Register
mapping table #2

PC #1
PC #2

• Improve the throughput of execution
• May increase the latency of a single thread

• Less branch penalty per thread
• Increase hardware utilization
• Simple hardware design: Only need to duplicate PC/Register

Files
• Real Case:

• Intel HyperThreading (supports up to two threads per core)
• Intel Pentium 4, Intel Atom, Intel Core i7

• AMD RyZen
16

SMT

SMT SuperScalar Processor w/ ROB

17

Instruction
Queue

Fetch/
decode

instruction

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

luephysical register #X1
X2
X3
…

Register
mapping table #1Renaming

logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…

Register
mapping table #2

PC #1
PC #2

O(IW4)

Wider-issue processors won’t give you much more

18

The case for a Single-Chip Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung

Chang
Stanford University

19

Wide-issue SS processor v.s. multiple narrower-issue SS processors

20

6-way SS processor —
3 INT ALUs, 3 FP ALUs

I-cache: 32KB, D-cache: 32KB
4 2-issue SS processor —
4* (1 INT ALUs, 1 FP ALUs

I-cache: 8KB, D-cache: 8KB)

Intel SkyLake

21

Core
L2 $

Core
L2 $

Core
L2 $

Core
L2 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Core

Core

Core

Core

Core

Core

Core

Core

22

L3 $L3 $ L2
 $

L2
 $ L2 $

L2 $L2
 $

L2
 $ L2 $

L2 $

Concept of CMP

23

Processor

Last-level $ (LLC)

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Performance of CMP

24

Architectural Support for Parallel
Programming

28

• To exploit parallelism you need to break your computation into multiple
“processes” or multiple “threads”

• Processes (in OS/software systems)
• Separate programs actually running (not sitting idle) on your computer at the same

time.
• Each process will have its own virtual memory space and you need explicitly exchange

data using inter-process communication APIs
• Threads (in OS/software systems)

• Independent portions of your program that can run in parallel
• All threads share the same virtual memory space

• We will refer to these collectively as “threads”
• A typical user system might have 1-8 actively running threads.
• Servers can have more if needed (the sysadmins will hopefully configure it that way)

29

Parallel programming

What software thinks about “multiprogramming” hardware

30

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

What software thinks about “multiprogramming” hardware

31

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

for(i=0;i<size/4;i++)
 sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++)
 sum += a[i]; for(i=size/2;i<3*size/4;i++)

 sum += a[i];

for(i=3*size/4;i<size;i++)
 sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF

Others do not see the updated value in the
cache and keep working — incorrect result!

• Coherency — Guarantees all processors see the same value
for a variable/memory address in the system when the
processors need the value at the same time
• What value should be seen

• Consistency — All threads see the change of data in the same
order
• When the memory operation should be done

32

Coherency & Consistency

• Snooping protocol
• Each processor broadcasts / listens to cache misses

• State associate with each block (cacheline)
• Invalid

• The data in the current block is invalid
• Shared

• The processor can read the data
• The data may also exist on other processors

• Exclusive
• The processor has full permission on the data
• The processor is the only one that has up-to-date data

33

Simple cache coherency protocol

1 1 0x29 IIJJKKLLMMNNOOPP
1 1 0xDE QQRRSSTTUUVVWWXX
1 0 0x10 YYZZAABBCCDDEEFF
0 1 0x8A AABBCCDDEEGGFFHH
1 1 0x60 IIJJKKLLMMNNOOPP
1 1 0x70 QQRRSSTTUUVVWWXX
0 1 0x10 QQRRSSTTUUVVWWXX
0 1 0x11 YYZZAABBCCDDEEFF

Coherent way-associative cache

34

1 1 0x00 AABBCCDDEEGGFFHH
1 1 0x10 IIJJKKLLMMNNOOPP
1 0 0xA1 QQRRSSTTUUVVWWXX
0 1 0x10 YYZZAABBCCDDEEFF
1 1 0x31 AABBCCDDEEGGFFHH
1 1 0x45 IIJJKKLLMMNNOOPP
0 1 0x41 QQRRSSTTUUVVWWXX
0 1 0x68 YYZZAABBCCDDEEFF

datatagdatatag

memory address: 0x0 8 2 4
memory address: 0b0000100000100100

block
offset

set
indextag

=? =?0x1 0
hit? hit?

V DV D
01
01
01
00
10
10
10
10

01
01
01
00
10
10
10
10

St
ate

s

St
ate

s

Snooping Protocol

35

Invalid Shared

Exclusive

read miss(processor)

wr
ite

 m
iss

(p

roc
es

so
r)

write miss(bus)

write request(processor)

wr
ite

 m
iss

(b
us

)
wr

ite
 ba

ck
 da

ta

read miss(bus)

write back data

read
miss/hit

read/write
miss (bus)

write hit

What happens when we write in coherent caches?

36

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

for(i=0;i<size/4;i++)
 sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++)
 sum += a[i]; for(i=size/2;i<3*size/4;i++)

 sum += a[i];

for(i=3*size/4;i<size;i++)
 sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF write miss/
invalidate

sum = 0 sum = 0 sum = 0

read miss

sum = 0xDEADBEEF

write back
sum = 0xDEADBEEFsum = 0xDEADBEEF

Cache coherency

40

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0]=0

A[0] = 0xDEADBEEF
A[1] = 0
A[2] = 0
A[3] = 0 write miss/

invalidate

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

read miss

A[0]=0xDEADBEEF

write back

A[0] = 0xDEADBEEF
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0xDEADBEEF
A[1] = 0
A[2] = 0
A[3] = 0

• 3Cs:
• Compulsory, Conflict, Capacity

• Coherency miss:
• A “block” invalidated because of the sharing among processors.

44

4Cs of cache misses

• True sharing
• Processor A modifies X, processor B also want to access X.

• False sharing
• Processor A modifies X, processor B also want to access Y.

However, Y is invalidated because X and Y are in the same block!

45

False sharing

• x86 provides an “mfence” instruction to prevent reordering
across the fence instruction

• x86 only supports this kind of “relaxed consistency” model.
You still have to be careful enough to make sure that your code
behaves as you expected

52

fence instructions

thread 1 thread 2

 a=1;

 x=b;

 b=1;

 y=a;
a=1 must occur/update before mfence b=1 must occur/update before mfencemfence mfence

• Processor behaviors are non-deterministic
• You cannot predict which processor is going faster
• You cannot predict when OS is going to schedule your thread

• Cache coherency only guarantees that everyone would
eventually have a coherent view of data, but not when

• Cache consistency is hard to support

53

Take-aways of parallel programming

