
Virtual Memory (cont.)
Hung-Wei Tseng

Performance gap between Processor/Memory

2

Processor
Recap: Memory Hierarchy

3

DRAM

Storage

SRAM $

Processor
Core

Registers

larger

fastest

< 1ns

tens of ns

32 or 64 words

a few ns KBs ~ MBs

GBs

TBs

L1 $
L2 $
L3 $

fastest

larger

us/ms

• Processor sends load request to L1-$
• if hit

• return data
• if miss

• Select a victim block
• If the target “set” is not full — select an empty/invalidated block

as the victim block
• If the target “set is full — select a victim block using some

policy
• LRU is preferred — to exploit temporal locality!

• If the victim block is “dirty” & “valid”
• Write back the block to lower-level memory hierarchy

• Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

• If write-back or fetching causes any miss, repeat the same
process

4

What happens when we read data
Processor

Core
Registers

L1 $
ld 0xDEADBEEFoffsetindextag

L2 $

DRAM

hit

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block
0xDEADBE

• Processor sends load request to L1-$
• if hit

• return data — set DIRTY
• if miss

• Select a victim block
• If the target “set” is not full — select an empty/invalidated block

as the victim block
• If the target “set is full — select a victim block using some policy
• LRU is preferred — to exploit temporal locality!

• If the victim block is “dirty” & “valid”
• Write back the block to lower-level memory hierarchy

• Fetch the requesting block from lower-level memory hierarchy
and place in the victim block

• If write-back or fetching causes any miss, repeat the same
process

• Present the write “ONLY” in L1 and set DIRTY
5

What happens when we write data
Processor

Core
Registers

L1 $
sd 0xDEADBEEFoffsetindextag

L2 $

DRAM

fetch block
 0xDEADBEindextag

fetch block
 0xDEADBEindextag

return block
0xDEADBE

write back
 0x????BEindextag

write back
 0x????BEindextag

return block
0xDEADBE

Write & Set dirty
Write &Set dirty

Recap: Matrix Multiplication

6

 // blocking algorithm
 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 // Compute on b_t
 c[ii][jj] += a[ii][kk]*b_t[jj][kk];
 }
 }
 }

 // Transpose matrix b into b_t
 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 b_t[i][j] += b[j][i];
 }
 }

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

• Software
• Data layout — capacity miss, conflict miss, compulsory miss
• Blocking — capacity miss/conflict miss
• Transpose — conflict miss
• Loop fission — conflict miss — when $ has limited way associativity
• Loop fusion — capacity miss — when $ has enough way associativity
• Loop interchange — conflict/capacity miss

• Hardware
• Prefetch — compulsory miss
• Write buffer — miss penalty
• Bank/pipeline — miss penalty
• Critical word first and early restart — miss panelty

7

Recap: Summary of Optimizations

• An abstraction of memory space available for programs/
software/programmer

• Programs execute using virtual memory address
• The operating system and hardware work together to handle

the mapping between virtual memory addresses and real/
physical memory addresses

• Virtual memory organizes memory locations into “pages”

8

Recap: Virtual memory

Recap: Demo revisited

9

#define _GNU_SOURCE
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <sched.h>
#include <sys/syscall.h>
#include <time.h>

double a;

int main(int argc, char *argv[])
{
 int i, number_of_total_processes=4;
 number_of_total_processes = atoi(argv[1]);
 for(i = 0; i< number_of_total_processes-1 && fork(); i++);
 srand((int)time(NULL)+(int)getpid());
 fprintf(stderr, "\nProcess %d. Value of a is %lf and address of a is %p\n”,getpid(), a, &a);
 sleep(10);
 fprintf(stderr, "\nProcess %d. Value of a is %lf and address of a is %p\n”,getpid(), a, &a);
 return 0;
}

Process B

Process A
&a = 0x601090

Process A’s
Virtual

Memory Space

Process B’s
Virtual

Memory Space

• Allowing multiple applications to share physical main memory
• Memory protection/isolation among programs/processes is

automatically achieved
• Allowing applications to work even the installed physical memory

or available physical memory is smaller than the working set of
the application
• Programmer does not need to worry about the physical memory

capacity of different machines — make compiled program compatible
• Multiple programs can work concurrently even through their total

memory demand is larger than the installed physical memory

10

Recap: Why Virtual memory?

• Virtual memory
• Architectural support for virtual memory
• Advanced hardware support for virtual memory

11

Outline

Virtual Memory (cont.)

12

page offsetphysical page number

page offsetvirtual page number

0x D E A D B

• Processor receives virtual addresses
from the running code, main memory
uses physical memory addresses

• Virtual address space is organized
into “pages”

• The system references the page
table to translate addresses
• Each process has its own

page table
• The page table

content is maintained
by OS

13

Address translation
Virtual

address 0x 0 0 0 0 B E E F

va
lid

Physical
address E E F

Page
table

• Assume that we have 64-bit virtual address space, each page
is 4KB, each page table entry is 8 Bytes, what magnitude in
size is the page table for a process?

A. MB — 220 Bytes
B. GB — 230 Bytes
C. TB — 240 Bytes
D. PB — 250 Bytes
E. EB — 260 Bytes

14

Size of page table
https://www.pollev.com/hungweitseng close in

• Assume that we have 64-bit virtual address space, each page
is 4KB, each page table entry is 8 Bytes, what magnitude in
size is the page table for a process?

A. MB — 220 Bytes
B. GB — 230 Bytes
C. TB — 240 Bytes
D. PB — 250 Bytes
E. EB — 260 Bytes

18

Size of page table

If you still don’t know why — you need to take CS202

264 Bytes
4 KB × 8 Bytes = 255 Bytes = 32 PB

Conventional page table

19

Virtual Address Space

0x0 0xFFFFFFFFFFFFFFFF

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1

 page table entries/leaf nodes264 B
212 B

— must be consecutive in the physical memory
— need a big segment! — difficult to find a spot
— simply too big to fit in memory if address space is large!

Do we really need a large table?

20

Virtual Address Space

0x0 0xFFFFFFFFFFFFFFFF

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1

 page table entries/leaf nodes264 B
212 B

code static
data heap stack

1TB — only
0.000006% of

264 Bytes Your program probably
never uses this huge area!

Dynamic allocated
data: malloc()

Local variables,
arguments

Why bother presenting these nodes?

“Paged” page table

21

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 11 1 0 1 1 1 0 1 0 0 1 1

Virtual Address SpaceCode Data Heap Stack

0x0 0xFFFFFFFFFFFFFFFF

These are nodes are not presented
if they are not referenced at all — save space

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1

Break up entries into pages!
Each of these occupies exactly a page
— PTEs per node212 B

23 B
= 29

Otherwise, you always need to find more
than one consecutive pages — difficult!

1 1 0 1 1 1 0 1 0 0 1 1

Allocate page table entry nodes “on demand”

Question:
These nodes are spread out,
how to locate them in the memory?

B-tree

22

https://en.wikipedia.org/wiki/B-tree#/media/File:B-tree.svg

https://en.wikipedia.org/wiki/B-tree%23/media/File:B-tree.svg

Hierarchical Page Table

23

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 11 1 0 1 1 1 0 1 0 0 1 1

 page table entries/leaf nodes (worst case)264 B
212 B

1 1 0 1 1 1 0 1 0 0 1 1

1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1

1 1 0 1 1 1 0 1 0 0 1 11 1 0 1 1 1 0 1 0 0 1 1

Virtual Address SpaceCode Data Heap Stack

0x0 0xFFFFFFFFFFFFFFFF

 levels⌈log29
264 B
212 B

⌉ = ⌈log29252⌉ = 6

These are nodes are not presented
as they are not referenced at all.

Address translation in x86-64

24

63:48 (16
bits)

47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
SignExt L4 index L3 index L2 index L1 index page offset

X86
Processor

CR3 Reg.

……
…512 entries

……
…512 entries

……
…512 entries

……
…512 entries

11:0 (12 bits)
physical page # page offset

Translation Caching: Skip, Don’t Walk (the Page Table). Thomas W. Barr, Alan L. Cox, Scott Rixner

• If an x86 processor supports virtual memory through the basic
format of the page table as shown in the previous slide, how
many memory accesses can a mov instruction that access
data memory once incur?

A. 2
B. 4
C. 6
D. 8
E. 10

25

When we have virtual memory…
https://www.pollev.com/hungweitseng close in

Address translation in x86-64

29

63:48 (16
bits)

47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
SignExt L4 index L3 index L2 index L1 index page offset

X86
Processor

……
…512 entries

……
…512 entries

……
…512 entries

11:0 (12 bits)
physical page # page offset

May have 10 memory accesses for a “MOV” instruction!
— 5 for instruction fetch and 5 for data access

CR3 Reg.

……
…512 entries

• If an x86 processor supports virtual memory through the basic
format of the page table as shown in the previous slide, how
many memory accesses can a mov instruction that access
data memory once incur?

A. 2
B. 4
C. 6
D. 8
E. 10

30

When we have virtual memory…

Avoiding the address translation
overhead

31

• TLB — a small SRAM stores
frequently used page table
entries

• Good — A lot faster than having
everything going to the DRAM

• Bad — Still on the critical path

32

TLB: Translation Look-aside Buffer
Processor

Core
Registers

L1 $
ld/sd 0xDEADBEEFoffsetindextag

L2 $

hit

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

TLB
ld/sd 0x0000BEEF

• L1 $ accepts virtual address — you
don’t need to translate

• Good — you can access both TLB and
L1-$ at the same time and physical
address is only needed if L1-$ misses

• Bad — it doesn’t work in practice
• Many applications have the same virtual

address but should be pointing different
physical addresses

• An application can have “aliasing virtual
addresses” pointing to the same
physical address

33

TLB + Virtual cache
Processor

Core
Registers

L1 $
ld/sd 0xDEADBEEFoffsetindextag

L2 $

hit

fetch block
 0xDEADBEindextag

write back
 0x????BEindextag

TLB
ld/sd 0x0000BEEFoffsetindextag

You really need
“physical address” to

judge if that’s what
you want

• Can we find physical address
directly in the virtual address
— Not everything — but the
page offset isn’t changing!

• Can we indexing the cache
using the “partial physical
address”?
— Yes — Just make set
index + block set to be
exactly the page offset

34

Virtually indexed, physically tagged cache

page offsetphysical page number

page offsetvirtual page number

0x D E A D B

Virtual
address

0x 0 0 0 0 B E E F

va
lid

Physical
address E E F

Page
table

block
offset

set
index

block
offset

set
indextag

Virtually indexed, physically tagged cache

35

1 0x29 0x45
1 0xDE 0x68
1 0x10 0xA1
0 0x8A 0x98

1 1 0x00 AABBCCDDEEGGFFHH
1 1 0x10 IIJJKKLLMMNNOOPP
1 0 0xA1 QQRRSSTTUUVVWWXX
0 1 0x10 YYZZAABBCCDDEEFF
1 1 0x31 AABBCCDDEEGGFFHH
1 1 0x45 IIJJKKLLMMNNOOPP
0 1 0x41 QQRRSSTTUUVVWWXX
0 1 0x68 YYZZAABBCCDDEEFF

datatag
physical page #virtual page #

memory address: 0x0 8 2 4

memory address: 0b0000100000100100

block
offset

set
indexvirtual page #

=?0xA 1
hit?

V D
V

• If page size is 4KB —

36

Virtually indexed, physically tagged cache

page offsetphysical page number

page offsetvirtual page number

0x D E A D B

Virtual
address

0x 0 0 0 0 B E E F

va
lid

Physical
address E E F

Page
table

block
offset

set
index

block
offset

set
indextag

C = ABS
lg(B) + lg(S) = lg(4096) = 12

C = A × 212

if A = 1
C = 4KB

• If you want to build a virtual indexed, physical tagged cache
with 32KB capacity, which of the following configuration is
possible? Assume the operating system use 4K pages.

A. 32B blocks, 2-way
B. 32B blocks, 4-way
C. 64B blocks, 4-way
D. 64B blocks, 8-way

37

Virtual indexed, physical tagged cache limits the cache size
https://www.pollev.com/hungweitseng close in

• If you want to build a virtual indexed, physical tagged cache
with 32KB capacity, which of the following configuration is
possible? Assume the operating system use 4K pages.

A. 32B blocks, 2-way
B. 32B blocks, 4-way
C. 64B blocks, 4-way
D. 64B blocks, 8-way

41

Virtual indexed, physical tagged cache limits the cache size

Exactly how Core i7 configures
its own cache

C = ABS
lg(B) + lg(S) = lg(4096) = 12

32KB = A × 212

A = 8

Efficient Virtual Memory for Big Memory
Servers

Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill and
Michael M. Swift

49

• Mapping part of a process’s linear virtual address to a “direct
segment” rather than a page

• Direct segment
• Similar to classic segmentation: adding base, offset, limit registers

to each core
• If the virtual address falls in the range between base and limit, no

TLB access is necessary
• Virtual memory outside a direct segment still uses conventional

demand paging

53

What this paper proposed?

Direct Segment

54

Process Virtual
Address Space Direct Segment

Physical
Memory

Direct Segment on
physical memory

base limit

offset

Architecture overview

55

va
lid tag datadir
ty

=?

hit? miss?

tag index block
offset

0000 0000 0000 0010 00001 0

memory address: 1000 0000 0000 0000 0000 0001 0101 1000

page number page offset

0000 0000 0000 0010 00001000 0000 0000 0000 0000

TLB
Cache array

virtual page # physical page #

TLB hitTLB miss — MMU
walks through the

page table

>= base < limit

offset

Nvidia’s unified virtual memory

56

Process Virtual
Address Space GPU virtual address

Physical
Memory

GPU
physical memory

GPU
memory

About midterm

58

• Multiple choices * 15 — like your poll/reading quizzes multiple
choices questions

• Short answer questions * 4
• Homework style free-answer questions * 3

• You need to clearly write down the original form of the applied
equation/formula

• You need to replace each term accordingly with numbers
• You will have some credits for right equations even though the final

number isn’t correct
• You will receive 0 credits if we only see the numbers

59

Format of the midterm

Sample Midterm

60

• Why does an Intel Core i7 @ 3.5 GHz usually perform better than an Intel
Core i5 @ 3.5 GHz or AMD FX-8350@4GHz?

A. Because the instruction count of the program are different
B. Because the clock rate of AMD FX is higher
C. Because the CPI of Core i7 is better
D. Because the clock rate of AMD FX is higher and CPI of Core i7 is better
E. None of the above

61

Identify the performance bottleneck

Sysbench 2014 from http://www.anandtech.com/

http://www.anandtech.com

• Regarding Amdahl’s Law on multicore architectures, how many of the following statements
is/are correct?
! If we have unlimited parallelism, the performance of each parallel piece does not matter as long

as the performance slowdown in each piece is bounded
" With unlimited amount of parallel hardware units, single-core performance does not matter

anymore
With unlimited amount of parallel hardware units, the maximum speedup will be bounded by

the fraction of parallel parts
$ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange

overhead is minor
A. 0
B. 1
C. 2
D. 3
E. 4

62

Amdahl’s Law on Multicore Architectures

• Performance equation consists of the following three factors
! IC
" CPI
CT

 How many can a programmer affect?
A. 0
B. 1
C. 2
D. 3

63

How programmer affects performance?

• How many of the following make(s) the performance of A better than
B?
! IC
" CPI
CT
A. 0
B. 1
C. 2
D. 3 64

Demo — programmer & performance
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }

A B

• How many of the following comparisons are fair?
! Comparing the frame rates of Halo 5 on AMD RyZen 1600X and civilization on

Intel Core i7 7700X
" Using bit torrent to compare the network throughput on two machines
Comparing the frame rates of Halo 5 using medium settings on AMD RyZen

1600X and low settings on Intel Core i7 7700X
$ Using the peak floating point performance to judge the gaming performance of

machines using AMD RyZen 1600X and Intel Core i7 7700X
A. 0
B. 1
C. 2
D. 3
E. 4

65

Fair comparison

• Which description about locality of arrays sum and A in the following
code is the most accurate?
for(i = 0; i< 100000; i++)
{
 sum[i%10] += A[i];
}

A. Access of A has temporal locality, sum has spatial locality
B. Both A and sum have temporal locality, and sum also has spatial locality
C. Access of A has spatial locality, sum has temporal locality
D. Both A and sum have spatial locality
E. Both A and sum have spatial locality, and sum also has temporal locality

66

Locality

• Regarding 3Cs: compulsory, conflict and capacity misses and
A, B, C: associativity, block size, capacity
How many of the following are correct?
! Increasing associativity can reduce conflict misses
" Increasing associativity can reduce hit time
Increasing block size can increase the miss penalty
$ Increasing block size can reduce compulsory misses
A. 0
B. 1
C. 2
D. 3
E. 4

67

3Cs and A, B, C

• L1 data (D-L1) cache configuration of Core i7
• Size 32KB, 8-way set associativity, 64B block
• Assume 64-bit memory address
• Which of the following is NOT correct?

A. Tag is 52 bits
B. Index is 6 bits
C. Offset is 6 bits
D. The cache has 128 sets

68

intel Core i7

• If you want to build a virtual indexed, physical tagged cache
with 32KB capacity, which of the following configuration is
possible? Assume the system use 4K pages.

A. 32B blocks, 2-way
B. 32B blocks, 4-way
C. 64B blocks, 4-way
D. 64B blocks, 8-way

69

Virtual indexed, physical tagged cache limits the cache size

• In a modern x86-64 processor supports virtual memory
through, how many memory accesses can an instruction incur?

A. 2
B. 4
C. 6
D. 8
E. More than 10

70

When we have virtual memory…

• Final Fantasy XV spends lots of time loading a
map — within which period that 95% of the time
on the accessing the H.D.D., the rest in the
operating system, file system and the I/O protocol.
If we replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

71

Practicing Amdahl’s Law (2)

• D-L1 Cache configuration of AMD Phenom II
• Size 64KB, 2-way set associativity, 64B block, LRU policy, write-allocate,

write-back, and assuming 64-bit address.
int a[16384], b[16384], c[16384];
/* c = 0x10000, a = 0x20000, b = 0x30000 */
for(i = 0; i < 512; i++) {
 c[i] = a[i] + b[i];
 //load a, b, and then store to c
}

How many of the cache misses are conflict misses?
A. 6.25%
B. 66.67%
C. 68.75%
D. 93.75%
E. 100%

72

AMD Phenom II

• Consider the following data structure:

What’s the output of
printf(“%lu\n”,sizeof(struct student))?

A. 20
B. 28
C. 32
D. 36
E. 40

73

The result of sizeof(struct student)
struct student {
 int id;
 double *homework;
 int participation;
 double midterm;
 double average;
};

• By transposing a matrix, the performance of matrix multiplication can be further
improved. What kind(s) of cache misses does matrix transpose help to remove?

A. Compulsory miss
B. Capacity miss
C. Conflict miss
D. Capacity & conflict miss
E. Compulsory & conflict miss

74

What kind(s) of misses can matrix transpose remove?

 // Transpose matrix b into b_t
 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 b_t[i][j] += b[j][i];
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 // Compute on b_t
 c[ii][jj] += a[ii][kk]*b_t[jj][kk];
 }
 }
 }

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

Blo
ck

 +
Tra

ns
po

se

Blo
ck

75

What data structure is performing better

• Considering your workload would like to calculate the average score of one of
the homework for all students, which data structure would deliver better
performance?

A. Array of objects
B. Object of arrays

Array of objects object of arrays
struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of each
homework

for(i=0;i<homework_items; i++)
{
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

• How many of the following schemes mentioned in “improving direct-mapped
cache performance by the addition of a small fully-associative cache and
prefetch buffers” would help AMD Phenom II for the code in vector addition code?
! Missing cache
" Victim cache
Prefetch
$ Stream buffer
A. 0
B. 1
C. 2
D. 3
E. 4

76

Which of the following schemes can help Phenom II?

• What are the limitations of compiler optimizations? Can you list two?
• Please define Amdahl’s Law and explain each term in it
• Please define the CPU performance equation and explain each

term.
• Can you list two things affecting each term in the performance

equation?
• What’s the difference between latency and throughput? When

should you use latency or throughput to judge performance?
• What’s “benchmark” suite? Why is it important?
• Why TFLOPS or inferences per second is not a good metrics?

77

Sample short answer questions (< 30 words)

• Assume that memory access takes 30% of execution time.
• Cache can speedup 80% of memory operation by a factor of 4
• L2 cache can speedup 50% of the remaining 20% by a factor of 2

• What’s the total speedup?

78

Amdahl’s Law for multiple optimizations

• Consider the same program on the following two machines, X
and Y. By how much Y is faster than X?

79

Speedup of Y over X

Clock
Rate Instructions Percentage

of Type-A
Insts.

CPI of
Type-A

Insts.

Percentage
of Type-B

Insts.

CPI of
Type-B

Insts.

Percentage
of Type-C

Insts.

CPI of
Type-C

Insts.Machine X 3 GHz 5000000000 20% 8 20% 4 60% 1

Machine Y 5 GHz 5000000000 20% 13 20% 4 60% 1

• Consider the following cache configuration on RISC-V processor:

The application has 20% branches, 10% loads/stores, 70% integer instructions.
Assume that TLB miss rate is 2% and it requires 100 cycles to handle a TLB miss. Also assume
that the branch predictor has a hit rate of 87.5%, what’s the CPI of branch, L/S, and integer
instructions? What is the average CPI?

80

Performance evaluation with cache
I-L1 D-L1 L2 DRAM

size 32K 32K 256K Big enough
block size 64 Bytes 64 Bytes 64 Bytes 4KB pages
associativity 2-way 2-way 8-way
access time 1 cycle (no penalty

if it’s a hit)
1 cycle (no penalty
if it’s a hit) 10 cycles 100 cycles

local
miss rate 2% 10%, 20% dirty 15% (i.e., 15% of L1 misses,

also miss in the L2), 30% dirty
Write policy N/A Write-back, write allocate
Replacement LRU replacement policy

• The processor has a 8KB, 256B blocked, 2-way L1 cache. Consider the following
code:
for(i=0;i<256;i++) {
 a[i] = b[i] + c[i];
// load a[i] and load b[i], store to c[i]
// &a[0] = 0x10000, &b[0] = 0x20000, &c[0] = 0x30000
}

• What’s the total miss rate? How many of the misses are compulsory misses? How
many of the misses are conflict misses?

• How can you improve the cache performance of the above code through changing
hardware?

• How can you improve the performance without changing hardware?

81

Cache simulation

• Assignment #2 due this Wednesday
• Midterm next Monday

• Will release a sample midterm this Wednesday
• You may review/focus on the materials/topics covered in lectures
• You should review your assignments
• Cover topics including this Wednesday

• Project will be up by the end of the week

82

Announcement

