
Basic Pipelined Processor
Hung-Wei Tseng

Recap: von Neumman Architecture

2

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

• Basic Pipeline Processor Design
• Pipeline Hazards

• Structural Hazards
• Control Hazards
• Data Hazards

• Dynamic Branch Predictions

3

Outline

•

• Both version A and B produces the same output. Without
compiler optimization, which version of code would have better
performance?
A. Version A
B. Version B
C. They are about the same (less than 5% difference)

4

Which version is faster?
https://www.pollev.com/hungweitseng close in

 for(i=0;i<1000000000;i++)
 {
 sum+=data[(i*15) & 131071];
 }

 for(i=0;i<1000000000;i++)
 {
 sum+=data[((i << 4) - i) & 131071];
 }

A B

•

• Both version A and B produces the same output. Without
compiler optimization, which version of code would have better
performance?
A. Version A
B. Version B
C. They are about the same (less than 5% difference)

8

Which version is faster?
 for(i=0;i<1000000000;i++)
 {
 sum+=data[(i*15) & 131071];
 }

 for(i=0;i<1000000000;i++)
 {
 sum+=data[((i << 4) - i) & 131071];
 }

A B

•

• Both version A and B swaps content pointed by a and b
correctly. Which version of code would have better
performance?
A. Version A
B. Version B
C. They are about the same (sometimes A is faster, sometimes B is)

9

Which swap is faster?
https://www.pollev.com/hungweitseng close in

void regswap(int* a, int* b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

A
void xorswap(int* a, int* b) {
 *a ^= *b;
 *b ^= *a;
 *a ^= *b;
}

B

•

• Both version A and B swaps content pointed by a and b
correctly. Which version of code would have better
performance?
A. Version A
B. Version B
C. They are about the same (sometimes A is faster, sometimes B is)

13

Which swap is faster?
void regswap(int* a, int* b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

A
void xorswap(int* a, int* b) {
 *a ^= *b;
 *b ^= *a;
 *a ^= *b;
}

B

• Why the sorting the array speed up the code despite the increased
instruction count?

14

Recap: Why adding a sort makes it faster

 if(option)
 std::sort(data, data + arraySize);

 for (unsigned i = 0; i < 100000; ++i) {
 int threshold = std::rand();
 for (unsigned i = 0; i < arraySize; ++i) {
 if (data[i] >= threshold)
 sum ++;
 }
 }

15

Recap: Adding a sort…

 if(option)
 std::sort(data, data + arraySize);

 for (unsigned c = 0; c < arraySize*1000; ++c) {
 if (data[c%arraySize] >= INT_MAX/2)
 sum ++;
 }
 }

Basic Processor Design

16

von Neumman Architecture

17

Processor

Memory
Storage

Program
0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27
509cbd23
00005d24
0000bd24
2ca422a0
130020e4
00003d24
2ca4e2b3Ins

tru
cti

on
s 00c2e800

00000008
00c2f000
00000008
00c2f800
00000008
00c30000
00000008

Da
ta

0f00bb27

00c2e800

509cbd23

• Instruction Fetch (IF) — fetch the instruction from memory
• Instruction Decode (ID)

• Decode the instruction for the desired operation and operands
• Reading source register values

• Execution (EX)
• ALU instructions: Perform ALU operations
• Conditional Branch: Determine the branch outcome (taken/not taken)
• Memory instructions: Determine the effective address for data memory access

• Data Memory Access (MEM) — Read/write memory
• Write Back (WB) — Present ALU result/read value in the target register
• Update PC

• If the branch is taken — set to the branch target address
• Otherwise — advance to the next instruction — current PC + 4

18

Tasks in RISC-V ISA

Simple implementation w/o branch

19

add x1, x2, x3

ld x4, 0(x5)

sub x6, x7, x8

sub x9,x10,x11

sd x1, 0(x12)

t

IF ID EX WB

IF ID EX MEM WB

IF ID EX WB

IF ID

Pipelining

20

Pipelining

21

• Different parts of the processor works on different instructions
simultaneously

• A clock signal controls and synchronize the beginning and the
end of each part of the work

• A pipeline register between different parts of the processor to
keep intermediate results necessary for the upcoming work

22

Pipelining

Pipelining

23

Pipelining

24

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)
xor x13,x14,x15
and x16,x17,x18
add x19,x20,x21
sub x22,x23,x24
ld x25, 4(x26)
sd x27, 0(x28)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM WB
EX MEM WB
ID EX MEM

t

After this point,
we are completing an
instruction each cycle!

Cycles
Instruction = 1

• Given a simple pipelined RISC-V processor that we discussed so far, how
many of the following code snippets can be executed with expected outcome?

A. 0
B. 1
C. 2
D. 3
E. 4

25

Can we get them right?

I II III IV

a
b
c
d
e

add x1, x2, x3
ld x4, 0(x1)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9, x1, x10
sd x11, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
bne x0, x7, L
sub x9,x10,x11
sd x1, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

https://www.pollev.com/hungweitseng close in

Draw the pipeline diagrams

29

add x1, x2, x3
ld x4, 0(x1)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

IF ID
IF

EX
ID
IF

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9, x1, x10
sd x11, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
bne x0, x7, L
sub x9,x10,x11
sd x1, 0(x12)

The desired value of
x1 is not ready yet

IF ID
IF

EX
ID
IF

MEM
EX
ID

Both instructions
need x1

Doesn’t know
what to fetch
at this moment

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
EX
ID

WB
MEM
EX

WB
MEM WB

IF

• Given a simple pipelined RISC-V processor that we discussed so far, how
many of the following code snippets can be executed with expected outcome?

A. 0
B. 1
C. 2
D. 3
E. 4

30

Can we get them right?

I II III IV

a
b
c
d
e

add x1, x2, x3
ld x4, 0(x1)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9, x1, x10
sd x11, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
bne x0, x7, L
sub x9,x10,x11
sd x1, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

b cannot get x1
produced by a
before WB

both a and d are
accessing x1 at the

5th cycle

We don’t know if d & e
will be executed or not

until c finishes

Pipeline hazards

31

• Structural hazards — resource conflicts cannot support
simultaneous execution of instructions in the pipeline

• Control hazards — the PC can be changed by an instruction in
the pipeline

• Data hazards — an instruction depending on a the result that’s
not yet generated or propagated when the instruction needs
that

32

Three pipeline hazards

• Given a simple pipelined RISC-V processor that we discussed so far, how
many of the following code snippets can be executed with expected outcome?

A. 0
B. 1
C. 2
D. 3
E. 4

33

Can we get them right?

I II III IV

a
b
c
d
e

add x1, x2, x3
ld x4, 0(x1)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9, x1, x10
sd x11, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
bne x0, x7, L
sub x9,x10,x11
sd x1, 0(x12)

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9,x10,x11
sd x1, 0(x12)

b cannot get x1
produced by a
before WB

both a and d are
accessing x1 at the

5th cycle

We don’t know if d & e
will be executed or not

until c finishes
Data

Hazard
Structural
Hazard

Control
Hazard

Structural Hazards

34

• The same register cannot be read/written at the same cycle
• Solution: insert no-ops (e.g, add x0,x0,x0) between them
• Drawback

• If the number of pipeline stages changes, the code won’t work
• Slow

35

Dealing with the conflicts between ID/WB

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
add x0, x0, x0
sub x9, x1, x10
sd x11, 0(x12)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX

IF
ID

WB
MEM

ID
IF

EX
WB

EX
ID

MEM
MEM
EX MEM

WB
WB

WB

• The same register cannot be read/written at the same cycle
• Solution: stall the later instruction, allowing the write to present
the change in the register and the later can get the desired
value

• Drawback: slow

36

Dealing with the conflicts between ID/WB

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9, x1, x10
sd x11, 0(x12)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

WB
MEM
ID
IF

WB
EX
ID

MEM
EX MEM

WB
WB

• The same register cannot be read/written at the same cycle
• Better solution: write early, read late

• Writes occur at the clock edge and complete long enough before
the end of the clock cycle.

• This leaves enough time for outputs to settle for reads
• The revised register file is the default one from now!

37

Dealing with the conflicts between ID/WB

add x1, x2, x3
ld x4, 0(x5)
sub x6, x7, x8
sub x9, x1, x10
sd x11, 0(x12)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID

WB
MEM
EX
ID
IF

WB
MEM
EX

WB
MEM WB

• Modern processors typically adopts a split L1 cache design that separates the
instruction access from data accesses. What pair of
instructions will be problematic if we don’t use a split
cache?

A. a & b
B. a & c
C. b & e
D. c & e
E. None

38

Why “split L1” cache

a: ld x1, 0(x2)
b: add x3, x4, x5
c: sub x6, x7, x8
d: sub x9,x10,x11
e: sd x1, 0(x12)

Processor
Core

Registers

D-L1 $I-L1 $
instruction fetch data access

L2 $

L3 $

DRAM

https://www.pollev.com/hungweitseng close in

• Modern processors typically adopts a split L1 cache design that separates the
instruction access from data accesses. What pair of
instructions will be problematic if we don’t use a split
cache?

A. a & b
B. a & c
C. b & e
D. c & e
E. None

42

Why “split L1” cache

a: ld x1, 0(x2)
b: add x3, x4, x5
c: sub x6, x7, x8
d: sub x9,x10,x11
e: sd x1, 0(x12)

Processor
Core

Registers

D-L1 $I-L1 $
instruction fetch data access

L2 $

L3 $

DRAM

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
MEM
EX
ID
IF

• What pair of instructions will be problematic if we allow ALU instructions
to skip the “MEM” stage?

A. a & b
B. a & c
C. b & e
D. c & e
E. None

43

Why always 5 stages

a: ld x1, 0(x2)
b: add x3, x4, x5
c: sub x6, x7, x8
d: sub x9,x10,x11
e: sd x1, 0(x12)

https://www.pollev.com/hungweitseng close in

• What pair of instructions will be problematic if we allow ALU instructions
to skip the “MEM” stage?

A. a & b
B. a & c
C. b & e
D. c & e
E. None

47

Why always 5 stages

a: ld x1, 0(x2)
b: add x3, x4, x5
c: sub x6, x7, x8
d: sub x9,x10,x11
e: sd x1, 0(x12)

IF ID
IF

EX
ID
IF

MEM
EX
ID
IF

WB
WB
EX
ID
IF

• Stall can address the issue — but slow
• Improve the pipeline unit design to allow parallel execution

• Write-first, read later register files
• Split L1-Cache
• All instructions need to go through 5 stages

48

Structural Hazards

Control Hazards

49

• Assuming that we have an application with 20% of branch
instructions and the instruction stream incurs no data hazards.
When there is a branch, we disable the instruction fetch and insert
no-ops until we can determine the PC (happens in the EXE stage).
What’s the average CPI if we execute this program on the 5-stage
RISC-V pipeline?
A. 1
B. 1.2
C. 1.4
D. 1.6
E. 1.8

50

The impact of control hazards
https://www.pollev.com/hungweitseng close in

• Assuming that we have an application with 20% of branch
instructions and the instruction stream incurs no data hazards.
When there is a branch, we disable the instruction fetch and insert
no-ops until we can determine the PC (happens in the EXE stage).
What’s the average CPI if we execute this program on the 5-stage
RISC-V pipeline?
A. 1
B. 1.2
C. 1.4
D. 1.6
E. 1.8

54

The impact of control hazards

MEM
EX
ID

IF ID EX
IF ID

IF

add x1, x2, x3
ld x4, 0(x5)
bne x0, x7, L
add x0, x0, x0 IF

WB
MEM
EX
ID

add x0, x0, x0 IF

WB

ID EX MEM WB
IF ID EX MEM WB

MEM WB

WB
MEM

IF

EX
ID EX MEM WB

1 + 20% × 2 = 1.4

sub x9,x10,x11
sd x1, 0(x12)

• How many of the following statements are true regarding why we have to stall for
each branch in the current pipeline processor
! The target address when branch is taken is not available for instruction fetch stage of

the next cycle
" The target address when branch is not-taken is not available for instruction fetch

stage of the next cycle
The branch outcome cannot be decided until the comparison result of ALU is not out
$ The next instruction needs the branch instruction to write back its result
A. 0
B. 1
C. 2
D. 3
E. 4

55

Why can’t we proceed without stalls/no-ops?
https://www.pollev.com/hungweitseng close in

• How many of the following statements are true regarding why we have to stall for
each branch in the current pipeline processor
! The target address when branch is taken is not available for instruction fetch stage of

the next cycle
" The target address when branch is not-taken is not available for instruction fetch

stage of the next cycle
The branch outcome cannot be decided until the comparison result of ALU is not out
$ The next instruction needs the branch instruction to write back its result
A. 0
B. 1
C. 2
D. 3
E. 4

59

Why can’t we proceed without stalls/no-ops?

• Average is 72 (last year was 66, online, open-book)
• Your overall grade decides your final letter grade,
not just the midterm

• We still have 45% of the grades to be offered
• Pick up outside of Hung-Wei’s office @ WCH 406

85

Midterm

Current “Total” in eLearn and “Projected” Letter Grades

0.00
20.00
40.00
60.00
80.00

100.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

A+ A A- B+ B B-

• Reading quiz due next Monday
• Project is released

• Please check website to the link of GitHub repo
• You may discuss, but each needs an individual/distinguishable
version of code

• You need to write a brief report
• Due 11/29 — no extension

86

Announcements

