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Recap: Pipelining
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Recap: Pipelining
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add x1, x2, x3 
ld  x4, 0(x5) 
sub x6, x7, x8 
sub x9,x10,x11 
sd  x1, 0(x12) 
xor x13,x14,x15 
and x16,x17,x18 
add x19,x20,x21 
sub x22,x23,x24 
ld  x25, 4(x26) 
sd  x27, 0(x28)
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After this point, 
we are completing an 
instruction each cycle!

Cycles
Instruction = 1



• Structural hazards — resource conflicts cannot support 
simultaneous execution of instructions in the pipeline 

• Control hazards — the PC can be changed by an instruction in 
the pipeline 

• Data hazards — an instruction depending on a the result that’s 
not yet generated or propagated when the instruction needs 
that
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Recap: Three pipeline hazards



• Each instruction has to go through all 5 pipeline stages: IF, ID, EXE, MEM, 
WB in order — only valid if it’s single-issue, RISC-V 5-stage pipeline 

• An instruction can enter the next pipeline stage in the next cycle if 
• No other instruction is occupying the next stage 
• This instruction has completed its own work in the current stage 
• The next stage has all its inputs ready and it can retrieve those inputs 

• Fetch a new instruction only if 
• We know the next PC to fetch 
• We can predict the next PC 
• Flush an instruction if the branch resolution says it’s mis-predicted. 

• Review your undergraduate architecture materials 
— http://cseweb.ucsd.edu/classes/su19_2/cse141-a/
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Recap: Tips of drawing a pipeline diagram

http://cseweb.ucsd.edu/classes/su19_2/cse141-a/


• Structural hazards 
• Stall 
• Modify hardware design 

• Control hazards 
• Stall 
• Static prediction 
• Dynamic prediction
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Recap: addressing hazards



• Local predictor — every branch instruction has its own state 
• 2-bit — each state is described using 2 bits 
• Change the state based on actual outcome 
• If we guess right — no penalty 
• If we guess wrong — flush (clear pipeline 
registers) for mis-predicted instructions 
that are currently in IF and ID stages and 
reset the PC

7

Recap: 2-bit/Bimodal local predictor
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Recap: Global history (GH) predictor
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Recap: gshare predictor
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0x400048 0x400032 1
0x400080 0x400068 1
0x401080 0x401100 1
0x4000F8 0x400100 0

branch PC    target PC St
ate

Recap: tournament Predictor
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Recap: TAGE
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• Inputs (x’s) are from branch 
history and are -1 or +1 

•  n + 1 small integer weights 
(w’s) learned by on-line 
training 

•  Output (y) is dot product of 
x’s and w’s; predict taken if y  
0 

•  Training finds correlations 
between history and outcome
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Recap: Mapping Branch Prediction to NN (cont.)
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• Which of the following implementations will perform the best on modern pipeline 
processors? 

•
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Four implementations

inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B
inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     for (uint64_t i = 0; i < 16; i++)  
     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

D



• How many of the following statements explains the reason why B 
outperforms A with compiler optimizations 
! B has lower dynamic instruction count than A 
" B has significantly lower branch mis-prediction rate than A 
# B has significantly fewer branch instructions than A 
$ B can incur fewer data memory accesses  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is B better than A?

inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A
inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

https://www.pollev.com/hungweitseng close in 



Why is B better than A?
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inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A

inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
bne  x1, x0, LOOP
4*n instructions
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
and  x2, x1, 1 
add  x3, x3, x2 
shr  x1, x1, 1 
bne  x1, x0, LOOP

and  x2, x1, 1 
shr  x4, x1, 1 
shr  x5, x1, 2 
shr  x6, x1, 3 
shr  x1, x1, 4 
and  x7, x4, 1 
and  x8, x5, 1 
and  x9, x6, 1 
add  x3, x3, x2 
add  x3, x3, x7 
add  x3, x3, x8 
add  x3, x3, x9 
bne  x1, x0, LOOP

Only one branch for four iterations in A
13*(n/4) = 3.25*n instructions



• How many of the following statements explains the reason why B 
outperforms A with compiler optimizations 
! B has lower dynamic instruction count than A 
" B has significantly lower branch mis-prediction rate than A 
# B has significantly fewer branch instructions than A 
$ B can incur fewer data memory accesses  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is B better than A?

inline int popcount(uint64_t x){ 
 int c=0; 
 while(x)  { 
       c += x & 1; 
       x = x >> 1; 
    } 
    return c; 
}

A
inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B



• How many of the following statements explains the reason why C 
outperforms B with compiler optimizations 
! C has lower dynamic instruction count than B 
" C has significantly lower branch mis-prediction rate than B 
# C has significantly fewer branch instructions than B 
$ C can incur fewer data memory accesses  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

20

Why is C better than B?
https://www.pollev.com/hungweitseng close in 

inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C



• How many of the following statements explains the reason why C 
outperforms B with compiler optimizations 
! C has lower dynamic instruction count than B 
" C has significantly lower branch mis-prediction rate than B 
# C has significantly fewer branch instructions than B 
$ C can incur fewer data memory accesses  
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is C better than B?

— C only needs one load, one add, one shift, the same amount of iterations

— the same number being predicted.— the same amount of branches
inline int popcount(uint64_t x) { 
   int c = 0; 
   while(x)     { 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
     c += x & 1; 
     x = x >> 1; 
   } 
   return c; 
}

B

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

— Probably not. In fact, the load may have negative 
effect without architectural supports



• How many of the following statements explains the main reason why 
D outperforms C with compiler optimizations 
! D has lower dynamic instruction count than C 
" D has significantly lower branch mis-prediction rate than C 
# D has significantly fewer branch instructions than C 
$ D can incur fewer memory accesses than C 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is D better than C?

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     for (uint64_t i = 0; i < 16; i++)  
     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

D

https://www.pollev.com/hungweitseng close in 



• How many of the following statements explains the main reason why 
D outperforms C with compiler optimizations 
! D has lower dynamic instruction count than C 
" D has significantly lower branch mis-prediction rate than C 
# D has significantly fewer branch instructions than C 
$ D can incur fewer memory accesses than C 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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Why is D better than C?

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     while(x)     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

C

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
     for (uint64_t i = 0; i < 16; i++)  
     { 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     } 
     return c; 
}

D

— Compiler can do loop unrolling — no branches

— Could be

— maybe eliminated through loop unrolling…
— about the same



All branches are gone with loop unrolling

30

inline int popcount(uint64_t x) { 
     int c = 0; 
     int table[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
        c += table[(x & 0xF)]; 
        x = x >> 4; 
     return c; 
}



• Data hazards 
• Tomasulo’s algorithm

31

Outline



•

• Both version A and B swaps content pointed by a and b 
correctly. Which version of code would have better 
performance? 
A. Version A 
B. Version B 
C. They are about the same (sometimes A is faster, sometimes B is)
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Recap: Which swap is faster?
void regswap(int* a, int* b) { 
    int temp = *a; 
    *a = *b; 
    *b = temp; 
}

A
void xorswap(int* a, int* b) { 
    *a ^= *b; 
    *b ^= *a; 
    *a ^= *b; 
}

B



Data hazards

33



• An instruction currently in the pipeline cannot receive the 
“logically” correct value for execution 

• Data dependencies 
• The output of an instruction is the input of a later instruction 
• May result in data hazard if the later instruction that consumes the 
result is still in the pipeline

34

Data hazards



• How many pairs of data dependences are there in the following RISC-V instructions? 

ld    X6, 0(X10) 
ld    X7, 0(X11) 
add   X8, X6, X0 
add   X6, X7, X0 
add   X7, X8, X0 
sd    X6, 0(X10) 
sd    X7, 0(X11)

A. 1 
B. 2 
C. 3 
D. 4 
E. 5

35

How many dependencies do we have?

    int temp = *a; 
    *a = *b; 
    *b = temp;



• How many pairs of data dependences are there in the following RISC-V instructions? 

ld    X6, 0(X10) 
ld    X7, 0(X11) 
add   X8, X6, X0 
add   X6, X7, X0 
add   X7, X8, X0 
sd    X6, 0(X10) 
sd    X7, 0(X11)

A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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How many dependencies do we have?

    int temp = *a; 
    *a = *b; 
    *b = temp;



• Whenever the input is not ready when the consumer is 
decoding, just stall — the consumer stays at ID.

41

Solution 1: Let’s try “stall” again



• How many pairs of instructions in the following RISC-V instructions will results in data hazards/stalls 
in a basic 5-stage RISC-V pipeline? 

ld    X6, 0(X10) 
ld    X7, 0(X11) 
add   X8, X6, X0 
add   X6, X7, X0 
add   X7, X8, X0 
sd    X6, 0(X10) 
sd    X7, 0(X11)

A. 1 
B. 2 
C. 3 
D. 4 
E. 5

42

How many of data hazards?
https://www.pollev.com/hungweitseng close in 



• How many pairs of instructions in the following RISC-V instructions will results in data hazards/stalls 
in a basic 5-stage RISC-V pipeline? 

ld    X6, 0(X10) 
ld    X7, 0(X11) 
add   X8, X6, X0 
add   X6, X7, X0 
add   X7, X8, X0 
sd    X6, 0(X10) 
sd    X7, 0(X11)

A. 1 
B. 2 
C. 3 
D. 4 
E. 5
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How many of data hazards?

IF ID
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• Add logics/wires to forward the desired values to the 
demanding instructions 

• In our five stage pipeline — if the instruction entering the EXE 
stage consumes a result from a previous instruction that is 
entering MEM stage or WB stage 
• A source of the instruction entering EXE stage is the destination of 
an instruction entering MEM/WB stage 

• The previous instruction must be an instruction that updates 
register file

47

Solution 2: Data forwarding
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• How many pairs of instructions in the following RISC-V instructions will results in data hazards/stalls 
in a basic 5-stage RISC-V pipeline with “full” data forwarding? 

ld    X6, 0(X10) 
ld    X7, 0(X11) 
add   X8, X6, X0 
add   X6, X7, X0 
add   X7, X8, X0 
sd    X6, 0(X10) 
sd    X7, 0(X11)

A. 0 
B. 1 
C. 2 
D. 3 
E. 4

50

How many of data hazards w/ Data Forwarding?
https://www.pollev.com/hungweitseng close in 



• How many pairs of instructions in the following RISC-V instructions will results in data hazards/stalls 
in a basic 5-stage RISC-V pipeline with “full” data forwarding? 

ld    X6, 0(X10) 
ld    X7, 0(X11) 
add   X8, X6, X0 
add   X6, X7, X0 
add   X7, X8, X0 
sd    X6, 0(X10) 
sd    X7, 0(X11)

A. 0 
B. 1 
C. 2 
D. 3 
E. 4

54

How many of data hazards w/ Data Forwarding?
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• How many pairs of instructions in the following RISC-V instructions will results in data hazards/stalls 
in a basic 5-stage RISC-V pipeline with “full” data forwarding? 

ld    X6, 0(X10) 
ld    X7, 0(X11) 
xor   X6, X6, X7 
xor   X7, X7, X6 
xor   X6, X6, X7 
sd    X6, 0(X10) 
sd    X7, 0(X11)

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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How many of data hazards w/ Data Forwarding?
https://www.pollev.com/hungweitseng close in 



• How many pairs of instructions in the following RISC-V instructions will results in data hazards/stalls 
in a basic 5-stage RISC-V pipeline with “full” data forwarding? 

ld    X6, 0(X10) 
ld    X7, 0(X11) 
xor   X6, X6, X7 
xor   X7, X7, X6 
xor   X6, X6, X7 
sd    X6, 0(X10) 
sd    X7, 0(X11)

A. 0 
B. 1 
C. 2 
D. 3 
E. 4

59

How many of data hazards w/ Data Forwarding?
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IF

WB
EXE MEM

IF

ID
IF

EXE

ID
ID

MEM
EXE

EXE MEM
MEM

WB

WB
WB

WB



• How many pairs of instructions in the following RISC-V instructions will results in data 
hazards/stalls in a basic 5-stage RISC-V pipeline with “full” data forwarding? 

ld   X6,0(X10) 
add  X7,X6,X12 
sd   X7,0(X10) 
addi X10,X10, 8 
bne  X10,X5, LOOP

A. 0 
B. 1 
C. 2 
D. 3 
E. 4
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How many of data hazards w/ Data Forwarding?

IF ID
IF

EX
ID
IF

MEM
EX

IF
ID

EX

WB
MEM

IF

MEM
ID

MEM
WBIF

WB
EX
ID

WB

MEM
EX
ID

WB



• By reordering which pair of the following instruction stream can we 
eliminate all stalls without affecting the correctness of the code? 
① ld   X6,0(X10) 
② add  X7,X6, X12 
③ sd   X7,0(X10) 
④ addi X10,X10, 8 
⑤ bne  X10,X5, LOOP 
A. (1) & (2) 
B. (2) & (3) 
C. (3) & (4) 
D. (4) & (5) 
E. None of the pairs can be reordered
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The effect of code optimization
https://www.pollev.com/hungweitseng close in 



• By reordering which pair of the following instruction stream can we 
eliminate all stalls without affecting the correctness of the code? 
① ld   X6,0(X10) 
② add  X7,X6, X12 
③ sd   X7,0(X10) 
④ addi X10,X10, 8 
⑤ bne  X10,X5, LOOP 
A. (1) & (2) 
B. (2) & (3) 
C. (3) & (4) 
D. (4) & (5) 
E. None of the pairs can be reordered
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The effect of code optimization
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If we can predict the future …
https://www.pollev.com/hungweitseng close in 

• Consider the following dynamic instructions: 
① ld   X6,0(X10) 
② add  X7,X6, X12 
③ sd   X7,0(X10) 
④ addi X10,X10, 8 
⑤ bne  X10,X5, LOOP 
⑥ ld   X6,0(X10) 
⑦ add  X7,X6, X12 
⑧ sd   X7,0(X10) 
⑨ addi X10,X10, 8 
ɩ bne  X10,X5, LOOP 

Which of the following pair can we reorder without affecting the correctness if the branch prediction is perfect? 
A. (2) and (4) 
B. (3) and (5) 
C. (5) and (6) 
D. (6) and (9) 
E. (9) and (10)



• Consider the following dynamic instructions: 
① ld   X6,0(X10) 
② add  X7,X6, X12 
③ sd   X7,0(X10) 
④ addi X10,X10, 8 
⑤ bne  X10,X5, LOOP 
⑥ ld   X6,0(X10) 
⑦ add  X7,X6, X12 
⑧ sd   X7,0(X10) 
⑨ addi X10,X10, 8 
ɩ bne  X10,X5, LOOP 

Which of the following pair can we reorder without affecting the correctness if the branch prediction is perfect? 
A. (2) and (4) 
B. (3) and (5) 
C. (5) and (6) 
D. (6) and (9) 
E. (9) and (10)
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If we can predict the future …

Can we use “branch 
prediction” to predict the 

future and reorder instructions 
across the branch?



Dynamic instruction scheduling/
Out-of-order (OoO) execution
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• Each instruction has to go through all 5 pipeline stages: IF, ID, EXE, 
MEM, WB in order — only valid if it’s single-issue, RISC-V 5-stage 
pipeline 

• An instruction can enter the next pipeline stage in the next cycle if 
• No other instruction is occupying the next stage 
• This instruction has completed its own work in the current stage 
• The next stage has all its inputs ready 

• Fetch a new instruction only if 
• We know the next PC to fetch 
• We can predict the next PC 
• Flush an instruction if the branch resolution says it’s mis-predicted.
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Tips of drawing a pipeline diagram



• Whenever the instruction is decoded — put decoded 
instruction somewhere 

• Whenever the inputs are ready — all data dependencies are 
resolved 

• Whenever the target functional unit is available
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What do you need to execution an instruction?



• Draw the data dependency graph, put an arrow if an instruction depends on the other.  
① ld   X6,0(X10) 
② add  X7,X6,X12 
③ sd   X7,0(X10) 
④ addi X10,X10,8 
⑤ bne  X10,X5,LOOP 
⑥ ld   X6,0(X10) 
⑦ add  X7,X6,X12 
⑧ sd   X7,0(X10) 
⑨ addi X10,X10,8 
ɩ bne  X10,X5,LOOP 

• In theory, instructions without dependencies can be executed in parallel or out-of-order 
• Instructions with dependencies can never be reordered
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Scheduling instructions: based on data dependencies
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• Consider the following dynamic instructions: 
① ld   X6,0(X10) 
② add  X7,X6, X12 
③ sd   X7,0(X10) 
④ addi X10,X10, 8 
⑤ bne  X10,X5, LOOP 
⑥ ld   X6,0(X10) 
⑦ add  X7,X6, X12 
⑧ sd   X7,0(X10) 
⑨ addi X10,X10, 8 
ɩ bne  X10,X5, LOOP 

Which of the following pair can we reorder without affecting the correctness if the branch prediction is perfect? 
A. (2) and (4) 
B. (3) and (5) 
C. (5) and (6) 
D. (6) and (9) 
E. (9) and (10)
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If we can predict the future …

We still can only reorder (5) and (6) 
even though (2) & (4) are not 
depending on each other!
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• Assignment #3 due next Wednesday 
• Reading Quiz due 11/22 
• Project is released 

• Please check website to the link of GitHub repo 
• You may discuss, but each needs an individual/distinguishable version of code 
• You need to write a brief report 
• Grading rubrics 

• 20% — report 
• 20% — if you code can compile and run 
• 60% — performance based. The sample prefetcher is the baseline. We calculate your 
score at this part using min(Speedup-1, 1). If you can speedup by 2, you score full credits in 
this part 

• Due 11/29 — no extension
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