
Multithreaded Architectures and
Programming on Multithreaded

Architectures
Hung-Wei Tseng

SuperScalar Processor w/ ROB

2

Instruction
Queue

Fetch/decode instruction
Unresolved

Branch

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

lue

physical
register #X1

X2
X3
…Register

mapping table

Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

Back-end

MUL/DIV
1

ALU

FP1

Address
Resolution

Recap: Pipeline SuperScalar/OoO/ROB

3

Front-end

Register
renaming

logic
Issue/

Schedule

Address
Queue

ROBInstruction
Fetch

Instruction
Decode

Branch
predictor

FP2

MEM

MUL/DIV
2

• Provide a set of “physical registers” and a mapping table mapping
“architectural registers” to “physical registers”

• Allocate a physical register for a new output
• Eliminate all false dependencies
• Stages

• Dispatch (D) — allocate a “physical” for the output of a decoded
instruction

• Issue (I) — collect pending values/branch outcome from common data bus
• Execute (INT, AQ/AQ/MEM, M1/M2/M3, BR) — send the instruction to its
corresponding pipeline if no structural hazards

• Write Back (WB) — broadcast the result through CDB
4

Recap: Register renaming

Recap: What about “linked list”

5

LOOP: ld X10, 8(X10)
 addi X7, X7, 1
 bne X10, X0, LOOP

Static instructions Dynamic instructions
① ld X10, 8(X10)
② addi X7, X7, 1
③ bne X10, X0, LOOP
④ ld X10, 8(X10)
⑤ addi X7, X7, 1
⑥ bne X10, X0, LOOP
⑦ ld X10, 8(X10)
⑧ addi X7, X7, 1
⑨ bne X10, X0, LOOP

Ins
tru

cti
on

 Qu
eu

e

1

3

2

5

7

1 2
3 4
5 6
7 8
9 4

6

8

910

11ILP is low because of data
dependencies

Wasted slots

Wasted slots
Wasted slots

Wasted slots

Wasted slots
Wasted slots

• perf is a tool that captures performance counters of your
processors and can generate results like branch mis-prediction
rate, cache miss rates and ILP.

6

Demo: ILP within a program

Simultaneous multithreading

7

• The processor can schedule instructions from different
threads/processes/programs

• Fetch instructions from different threads/processes to fill the
not utilized part of pipeline
• Exploit “thread level parallelism” (TLP) to solve the problem of
insufficient ILP in a single thread

• You need to create an illusion of multiple processors for OSs

8

Simultaneous multithreading

Simultaneous multithreading

9

Ins
tru

cti
on

 Qu
eu

e

1 2

5

1 2
3 4
5 6
7 8

3 4

76

8

① ld X10, 8(X10)
② addi X7, X7, 1
③ bne X10, X0, LOOP
④ ld X10, 8(X10)
⑤ addi X7, X7, 1
⑥ bne X10, X0, LOOP
⑦ ld X10, 8(X10)
⑧ addi X7, X7, 1
⑨ bne X10, X0, LOOP

① ld X1, 0(X10)
② addi X10, X10, 8
③ add X20, X20, X1
④ bne X10, X2, LOOP
⑤ ld X1, 0(X10)
⑥ addi X10, X10, 8
⑦ add X20, X20, X1
⑧ bne X10, X2, LOOP
⑨ ld X1, 0(X10)
ɩ addi X10, X10, 8
ꋷ add X20, X20, X1
ꋸ bne X10, X2, LOOP

1 2
3 4
5 6
7 8

9 10 9 10

1 2

3

54

6

11 12 11 12

9

7

8 9

• To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?
! Program counter
" Register mapping tables
Physical registers
$ ALUs
% Data cache
& Reorder buffer/Instruction Queue
A. 2
B. 3
C. 4
D. 5
E. 6

10

Architectural support for simultaneous multithreading
https://www.pollev.com/hungweitseng close in

• To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?
! Program counter
" Register mapping tables
Physical registers
$ ALUs
% Data cache
& Reorder buffer/Instruction Queue
A. 2
B. 3
C. 4
D. 5
E. 6

14

Architectural support for simultaneous multithreading

— you need to have one for each context
— you need to have one for each context

— you can share
— you can share
— you can share

— you need to indicate which context the instruction is from

SuperScalar Processor w/ ROB

15

Instruction
Queue

Fetch/decode instruction
Unresolved

Branch

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

lue

physical
register #X1

X2
X3
…Register

mapping table

Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

SMT SuperScalar Processor w/ ROB

16

Instruction
Queue

Fetch/
decode

instruction

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

luephysical register #X1
X2
X3
…
Register

mapping table #1Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…
Register

mapping table #2

PC #1
PC #2

• How many of the following about SMT are correct?
! SMT makes processors with deep pipelines more tolerable to mis-predicted

branches
" SMT can improve the throughput of a single-threaded application
SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width
$ SMT processors can have higher cache miss rates comparing with superscalar

processors with the same cache sizes when executing the same set of applications.
A. 0
B. 1
C. 2
D. 3
E. 4

17

SMT
https://www.pollev.com/hungweitseng close in

• How many of the following about SMT are correct?
! SMT makes processors with deep pipelines more tolerable to mis-predicted

branches
" SMT can improve the throughput of a single-threaded application
SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width
$ SMT processors can have higher cache miss rates comparing with superscalar

processors with the same cache sizes when executing the same set of applications.
A. 0
B. 1
C. 2
D. 3
E. 4

21

SMT

hurt, b/c you are sharing resource with other threads.
We can execute from other threads/contexts instead of the current one

We can execute from other threads/
contexts instead of the current one

b/c we’re sharing the cache

• Improve the throughput of execution
• May increase the latency of a single thread

• Less branch penalty per thread
• Increase hardware utilization
• Simple hardware design: Only need to duplicate PC/Register
Files

• Real Case:
• Intel HyperThreading (supports up to two threads per core)

• Intel Pentium 4, Intel Atom, Intel Core i7
• AMD RyZen (Zen microarchitecture)

22

SMT

SMT SuperScalar Processor w/ ROB

23

Instruction
Queue

Fetch/
decode

instruction

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

luephysical register #X1
X2
X3
…
Register

mapping table #1Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…
Register

mapping table #2

PC #1
PC #2

O(IW4)

Wider-issue processors won’t give you much more

24

The case for a Single-Chip Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung

Chang
Stanford University

25

Wide-issue SS processor v.s. multiple narrower-issue SS processors

26

6-way SS processor —
3 INT ALUs, 3 FP ALUs

I-cache: 32KB, D-cache: 32KB
4 2-issue SS processor —
4* (1 INT ALUs, 1 FP ALUs

I-cache: 8KB, D-cache: 8KB)

Recap: Power Density of Processors

27

Po
we

r D
en

sit
y (

W/
cm

^2
)

1

10

100

1000

10000

1971 1981 1991 2001 2011 2021

• The power consumption due to the switching of transistor states
• Dynamic power per transistor:

• α: average switches per cycle
• C: capacitance
• V: voltage
• f: frequency, usually linear with V
• N: the number of transistors

• Power density:

Pdynamic ∼ α × C × V2 × f × N

28

Recap: Power consumption & power density

Moore’s Law makes this smaller

Moore’s Law allows higher
frequencies as transistors are smallerPdensity = P

area

We cannot make
chips always

operating at very
high frequencies

The “power” of doubling the clocking rate v.s. doubling the number of cores

29

Powernew = Powerold × (fnew

fold
)3

Powernew = Powerold × (2)3 = Powerold × 8

Powernew = Powerold × number_of_cores = Powerold × 2

Doubling the clocking rate:

Doubling the number of cores:

Pdynamic ∼ α × C × V2 × f × N

Intel SkyLake

30

Core
L2 $

Core
L2 $

Core
L2 $

Core
L2 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Sh
are

d L
3 $

Core

Core

Core

Core

Core

Core

Core

Core

31

L3 $L3 $ L2
 $

L2
 $ L2 $

L2 $L2
 $

L2
 $ L2 $

L2 $

Concept of CMP

32

Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Performance of CMP

33

• An SMT processor is basically a SuperScalar processor with multiple instruction front-end. Assume
within the same chip area, we can build an SMT processor supporting 4 threads, with 6-issue pipeline,
64KB cache or — a CMP with 4x 2-issue pipeline & 16KB cache in each core. Please identify how many
of the following statements are/is correct when running programs on these processors.
! If we are just running one program in the system, the program will perform better on an SMT processor
" If we are running 4 applications simultaneously, the cache miss rates will be higher in the SMT processor
If we are running 4 applications simultaneously, the branch mis-prediction will be higher in the SMT processor
$ If we are running one program with 4 parallel threads, the cache miss rates will be higher in the SMT

processor
% If we are running one program with 4 parallel threads simultaneously, the branch mis-prediction will be longer

in the SMT processor
A. 1
B. 2
C. 3
D. 4
E. 5

34

SMT v.s. CMP
https://www.pollev.com/hungweitseng close in

• An SMT processor is basically a SuperScalar processor with multiple instruction front-end. Assume
within the same chip area, we can build an SMT processor supporting 4 threads, with 6-issue pipeline,
64KB cache or — a CMP with 4x 2-issue pipeline & 16KB cache in each core. Please identify how many
of the following statements are/is correct when running programs on these processors.
! If we are just running one program in the system, the program will perform better on an SMT processor
" If we are running 4 applications simultaneously, the cache miss rates will be higher in the SMT processor
If we are running 4 applications simultaneously, the branch mis-prediction will be higher in the SMT processor
$ If we are running one program with 4 parallel threads, the cache miss rates will be higher in the SMT

processor
% If we are running one program with 4 parallel threads simultaneously, the branch mis-prediction will be longer

in the SMT processor
A. 1
B. 2
C. 3
D. 4
E. 5

38

SMT v.s. CMP

— you have more resources for the program
— it depends!
— it depends!

— it depends!

— it depends!

The only thing we know for sure — if we don’t parallel the program, it won’t get any faster on CMP

Helper thread

39

Architectural Support for Parallel
Programming

40

• To exploit parallelism you need to break your computation into multiple
“processes” or multiple “threads”

• Processes (in OS/software systems)
• Separate programs actually running (not sitting idle) on your computer at the same
time.

• Each process will have its own virtual memory space and you need explicitly exchange
data using inter-process communication APIs

• Threads (in OS/software systems)
• Independent portions of your program that can run in parallel
• All threads share the same virtual memory space

• We will refer to these collectively as “threads”
• A typical user system might have 1-8 actively running threads.
• Servers can have more if needed (the sysadmins will hopefully configure it that way)

41

Parallel programming

What software thinks about “multiprogramming” hardware

42

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

What software thinks about “multiprogramming” hardware

43

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

for(i=0;i<size/4;i++)
 sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++)
 sum += a[i]; for(i=size/2;i<3*size/4;i++)

 sum += a[i];

for(i=3*size/4;i<size;i++)
 sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF

Others do not see the updated value in the
cache and keep working — incorrect result!

• Coherency — Guarantees all processors see the same value
for a variable/memory address in the system when the
processors need the value at the same time
• What value should be seen

• Consistency — All threads see the change of data in the same
order
• When the memory operation should be done

44

Coherency & Consistency

• Snooping protocol
• Each processor broadcasts / listens to cache misses

• State associate with each block (cacheline)
• Invalid

• The data in the current block is invalid
• Shared

• The processor can read the data
• The data may also exist on other processors

• Exclusive
• The processor has full permission on the data
• The processor is the only one that has up-to-date data

45

Simple cache coherency protocol

1 1 0x29 IIJJKKLLMMNNOOPP
1 1 0xDE QQRRSSTTUUVVWWXX
1 0 0x10 YYZZAABBCCDDEEFF
0 1 0x8A AABBCCDDEEGGFFHH
1 1 0x60 IIJJKKLLMMNNOOPP
1 1 0x70 QQRRSSTTUUVVWWXX
0 1 0x10 QQRRSSTTUUVVWWXX
0 1 0x11 YYZZAABBCCDDEEFF

Coherent way-associative cache

46

1 1 0x00 AABBCCDDEEGGFFHH
1 1 0x10 IIJJKKLLMMNNOOPP
1 0 0xA1 QQRRSSTTUUVVWWXX
0 1 0x10 YYZZAABBCCDDEEFF
1 1 0x31 AABBCCDDEEGGFFHH
1 1 0x45 IIJJKKLLMMNNOOPP
0 1 0x41 QQRRSSTTUUVVWWXX
0 1 0x68 YYZZAABBCCDDEEFF

datatagdatatag

memory address: 0x0 8 2 4
memory address: 0b0000100000100100

block
offset

set
indextag

=? =?0x1 0
hit? hit?

V DV D
01
01
01
00
10
10
10
10

01
01
01
00
10
10
10
10

St
ate

s

St
ate

s

Snooping Protocol

47

Invalid Shared

Exclusive

read miss(processor)

wr
ite

 m
iss

(p

roc
es

so
r)

write miss(bus)

write
requ

est(
proc

ess
or)

wr
ite

 m
iss

(b
us

)
wr

ite
 ba

ck
 da

ta

read
 miss(

bus
)

write
bac

k da
ta

read
miss/hit

read/write
miss (bus)

write hit

What happens when we write in coherent caches?

48

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

for(i=0;i<size/4;i++)
 sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++)
 sum += a[i]; for(i=size/2;i<3*size/4;i++)

 sum += a[i];

for(i=3*size/4;i<size;i++)
 sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF write miss/
invalidate

sum = 0 sum = 0 sum = 0

read miss

sum = 0xDEADBEEF

write back
sum = 0xDEADBEEFsum = 0xDEADBEEF

Observer

49

thread 1 thread 2
int loop;

int main()
{
 pthread_t thread;
 loop = 1;

 pthread_create(&thread, NULL, modifyloop,
NULL);
 while(loop == 1)
 {
 continue;
 }
 pthread_join(thread, NULL);
 fprintf(stderr,"User input: %d\n", loop);
 return 0;
}

void* modifyloop(void *x)
{
 sleep(1);
 printf("Please input a number:\n");
 scanf("%d",&loop);
 return NULL;
}

Observer

50

thread 1 thread 2
volatile int loop;

int main()
{
 pthread_t thread;
 loop = 1;

 pthread_create(&thread, NULL, modifyloop,
NULL);
 while(loop == 1)
 {
 continue;
 }
 pthread_join(thread, NULL);
 fprintf(stderr,"User input: %d\n", loop);
 return 0;
}

void* modifyloop(void *x)
{
 sleep(1);
 printf("Please input a number:\n");
 scanf("%d",&loop);
 return NULL;
}

prevents the compiler from putting the variable “loop" in the “register”

• Project due next Monday
• Last reading quiz due next Monday
• Assignment #4 due next Wednesday
• iEVAL, starting tomorrow until 12/3

• Please fill the survey to let us know your opinion!
• Don’t forget to take a screenshot of your submission and submit through iLearn — it
counts as a full credit assignment

• We will drop your lowest 2 assignment grades
• Final Exam

• Starting from 12/6 to 12/10 12:00pm, any consecutive 180 minutes you pick
• Similar to the midterm, but more time and about 1.5x longer
• Two of the questions will be comprehensive exam questions
• Will release a sample final at the end of the last lecture

74

Announcement

75
ͺͻͥ

Computer
Science &
Engineering

203

Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington

76

• The processor can schedule instructions from different
threads/processes/programs

• Fetch instructions from different threads/processes to fill the
not utilized part of pipeline
• Exploit “thread level parallelism” (TLP) to solve the problem of
insufficient ILP in a single thread

• You need to create an illusion of multiple processors for OSs

77

Simultaneous multithreading

Simultaneous multithreading

78

Ins
tru

cti
on

 Qu
eu

e

1 2

5

1 2
3 4
5 6
7 8

3 4

76

8

① ld X10, 8(X10)
② addi X7, X7, 1
③ bne X10, X0, LOOP
④ ld X10, 8(X10)
⑤ addi X7, X7, 1
⑥ bne X10, X0, LOOP
⑦ ld X10, 8(X10)
⑧ addi X7, X7, 1
⑨ bne X10, X0, LOOP

① ld X1, 0(X10)
② addi X10, X10, 8
③ add X20, X20, X1
④ bne X10, X2, LOOP
⑤ ld X1, 0(X10)
⑥ addi X10, X10, 8
⑦ add X20, X20, X1
⑧ bne X10, X2, LOOP
⑨ ld X1, 0(X10)
ɩ addi X10, X10, 8
ꋷ add X20, X20, X1
ꋸ bne X10, X2, LOOP

1 2
3 4
5 6
7 8

9 10 9 10

1 2

3

54

6

11 12 11 12

9

7

8 9

• To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?
! Program counter
" Register mapping tables
Physical registers
$ ALUs
% Data cache
& Reorder buffer/Instruction Queue
A. 2
B. 3
C. 4
D. 5
E. 6

79

Architectural support for simultaneous multithreading
Poll close in

• To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?
! Program counter
" Register mapping tables
Physical registers
$ ALUs
% Data cache
& Reorder buffer/Instruction Queue
A. 2
B. 3
C. 4
D. 5
E. 6

80

Architectural support for simultaneous multithreading
Poll close in

• To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?
! Program counter
" Register mapping tables
Physical registers
$ ALUs
% Data cache
& Reorder buffer/Instruction Queue
A. 2
B. 3
C. 4
D. 5
E. 6

81

Architectural support for simultaneous multithreading

— you need to have one for each context
— you need to have one for each context

— you can share
— you can share
— you can share

— you need to indicate which context the instruction is from

SuperScalar Processor w/ ROB

82

Instruction
Queue

Fetch/decode instruction
Unresolved

Branch

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

lue

physical
register #X1

X2
X3
…Register

mapping table

Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

SMT SuperScalar Processor w/ ROB

83

Instruction
Queue

Fetch/
decode

instruction

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

luephysical register #X1
X2
X3
…
Register

mapping table #1Renaming
logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…
Register

mapping table #2

PC #1
PC #2

• How many of the following about SMT are correct?
! SMT makes processors with deep pipelines more tolerable to mis-predicted

branches
" SMT can improve the throughput of a single-threaded application
SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width
$ SMT processors can have higher cache miss rates comparing with superscalar

processors with the same cache sizes when executing the same set of applications.
A. 0
B. 1
C. 2
D. 3
E. 4

84

SMTPoll close in

• How many of the following about SMT are correct?
! SMT makes processors with deep pipelines more tolerable to mis-predicted

branches
" SMT can improve the throughput of a single-threaded application
SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width
$ SMT processors can have higher cache miss rates comparing with superscalar

processors with the same cache sizes when executing the same set of applications.
A. 0
B. 1
C. 2
D. 3
E. 4

85

SMTPoll close in

• How many of the following about SMT are correct?
! SMT makes processors with deep pipelines more tolerable to mis-predicted

branches
" SMT can improve the throughput of a single-threaded application
SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width
$ SMT processors can have higher cache miss rates comparing with superscalar

processors with the same cache sizes when executing the same set of applications.
A. 0
B. 1
C. 2
D. 3
E. 4

86

SMT

hurt, b/c you are sharing resource with other threads.
We can execute from other threads/contexts instead of the current one

We can execute from other threads/
contexts instead of the current one

b/c we’re sharing the cache

