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Recap: Register renaming

- Provide a set of “physical registers” and a mapping table mapping
"architectural registers” to "physical registers”

- Allocate a physical register for a new output
- Eliminate all false dependencies

. Stages

- Dispatch (D) — allocate a "physical” for the output of a decoded
Instruction

- Issue (l) — collect pending values/branch outcome from common data bus

- Execute (INT, AQ/AQ/MEM, M1/M2/M3, BR) — send the instruction to its
corresponding pipeline if no structural hazards

- Write Back (WB) — broadcast the result through CDB
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m‘m Gl
Static instructions  Dynamic instructions e 9 Qm

LOOP: 1d  X10, 8(X10) | o X10, 8(X10) | Wasjeqgslots ¢
addi X7, X7, 1 ILP is low becausg of data ME (17

bne X10, X0, LOOP dependencies | Sy At sl PO
1d  X1@, 8(X10) | [Wasteqsiots

addi X7, X7, 1
bne X10, X0, LOOP
1d X106, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP
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Demo: ILP within a program

- perf is a tool that captures performance counters of your
processors and can generate results like branch mis-prediction
rate, cache miss rates and ILP.



Simultaneous multithreading




Simultaneous multithreading

- The processor can schedule instructions from different
threads/processes/programs

- Fetch instructions from different threads/processes to fill the
not utilized part of pipeline

- Exploit "thread level parallelism” (TLP) to solve the problem of
iInsufficient ILP in a single thread

- You need to create an illusion of multiple processors for OSs
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Simultaneous multithreading

1d X10, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP

1d X1, 9(X10)
addi X10, X10, 8
add X20, X20, X1
bne X10, X2, LOOP
1d X1, 0(X19)
addi X10, X10, 8
add X20, X20, X1
bne X100, X2, LOOP
1d X1, 0(X19)
addi X190, X10, 8
add X20, X20, X1
bne X10, X2, LOOP
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Architectural support for simultaneous multithreading

- To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?

® Program counter

@ Register mapping tables

® Physical registers

@ ALUs

® Data cache

® Reorder buffer/Instruction Queue )

A 2 ) SMT
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Architectural support for simultaneous multithreading

- To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?

® Program counter — you need to have one for each context
@ Register mapping tables — you need to have one for each context

® Physical registers — you can share

@ ALUs — you can share

® Data cache — you can share

® Reorder buffer/Instruction Queue

A 2 — you heed to indicate which context the instruction is from
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SMT

- How many of the following about SMT are correct?

® SMT makes processors with deep pipelines more tolerable to mis-predicted
branches

@ SMT can improve the throughput of a single-threaded application

® SMT processors can better utilize hardware during cache misses comparing with
superscalar processors with the same issue width

@ SMT processors can have higher cache miss rates comparing with superscalar
processors with the same cache sizes when executing the same set of applications.

SMT2
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SMT

- How many of the following about SMT are correct?

@ SMT makes processors with deep pipelines more tolerable to mis-predicted
branche SWe can execute from other threads/contexts instead of the current one

hurt, b/c you are sharing resource with other threads.

@ SMT canimprove the throughput of a single-threaded application

® SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width We can execute from other threads/
contexts instead of the current one

@ SMT processors can have higher cache miss rates comparing with superscalar
processors with the same cache sizes when executing the same set of applications.

b/c we're sharing the cache
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SMT

- Improve the throughput of execution
- May increase the latency of a single thread

- Less branch penalty per thread
- Increase hardware utilization

- Simple hardware design: Only need to duplicate PC/Register
Files
- Real Case:

- Intel HyperThreading (supports up to two threads per core)
- Intel Pentium 4, Intel Atom, Intel Core i/

- AMD RyZen (Zen microarchitecture)
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Wider-issue processors won't give you much more

BP Rate I cache D cache { L2 cache BP Rate I cache D cache L2 cache
Program IPC % %MPCl | %MPCl | %MPCI Program 1PC % Z%MPCI % MPCI % MPCI
compress 09 85.9 0.0 3.5 1.0 compress 1.2 86.4 0.0 3.9 1.1
eqntott 1.3 79.8 0.0 0.8 0.7 egntott 1.8 80.0 0.0 1.1 1.1
m88ksim 14 91.7 2.2 0.4 0.0 mB88ksim 2.3 92.6 0.1 0.0 0.0
MPsim 08 78.7 5.1 2.3 23 MPsim 1.2 81.6 34 1.7 2.3
applu 0.9 79.2 0.0 20 1.7 applu 1.7 79.7 0.0 2.8 2.8
apsi 0.6 95.1 1.0 4.1 2.1 apsi 1.2 95.6 0.2 3.1 2.6
swim 0.9 99.7 0.0 1.2 1.2 swim 2.2 99.8 0.0 2.3 2.5
fomcatv 0.8 99.6 0.0 7.9 2.2 tomcaty 1.3 997 0.0 472 43
pmake 1.0 86.2 2.3 21 0.4 pmake 1.4 82.7 ¢.7 1.0 0.6

Table 5. Performance of a single 2-issue superscalar processor. Table 6. Performance of the 6-issue superscalar processor.
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The case for a Single-Chip Multiprocessor

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung
Chang
Stanford University
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Wide-issue SS processor v.s. multiple narrower-issue SS processors

- 21 mm - - 21 mm »
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Power Density (W/cm*”2)

Recap: Power Density of Processors
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Recap: Power consumption & power density

- The power consumption due to the switching of transistor states
- Dynamic power per transistor:

2
denamic ~aXxXC X N
- a: average switches per cycle We cannot make
- (C: capacitance chips always

V" voltage - operating at very
f. frequency, usually linear with V . .
high frequencies

- N:the number of transistors

- Power. density: / Moore's Law allows higher
P frequencies as transistors are smaller

density — greq Moore's Law makes this smaller
28




The “power"” of doubling the clocking rate v.s. doubling the number of cores

denamic ~aXC ‘

Doubling the clocking rate:

Power,,, = Power,;; X (

Power,,, = Power, ;X (2)° = Power,;,; X 8

Doubling the number of cores:

Power, , = Power,,, X number_of_cores = Power,;; X 2

29
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Concept of CMP

Processor

Core Core Core Core

Registers Registers Registers Registers
L1-$ L1-$ L1-$ L1-$

LY LY LY LY
L2-$ L2-$ L2-$ L2-$

Last-level $ (LLC)
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Performance of CMP
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SMT v.s.CMP

- An SMT processor is basically a SuperScalar processor with multiple instruction front-end. Assume
within the same chip area, we can build an SMT processor supporting 4 threads, with 6-issue pipeline,
64KB cache or — a CMP with 4x 2-issue pipeline & 16KB cache in each core. Please identify how many
of the following statements are/is correct when running programs on these processors.

® If we are just running one program in the system, the program will perform better on an SMT processor

@ If we are running 4 applications simultaneously, the cache miss rates will be higher in the SMT processor

® If we are running 4 applications simultaneously, the branch mis-prediction will be higher in the SMT processor

@ If we are running one program with 4 parallel threads, the cache miss rates will be higher in the SMT
processor

® If we are running one program with 4 parallel threads simultaneously, the branch mis-prediction will be longer
in the SMT processor )

A ) SMTCMP

B. 2

C. 3

D. 4

E. 5




SMT v.s.CMP

- An SMT processor is basically a SuperScalar processor with multiple instruction front-end. Assume
within the same chip area, we can build an SMT processor supporting 4 threads, with 6-issue pipeline,
64KB cache or — a CMP with 4x 2-issue pipeline & 16KB cache in each core. Please identify how many
of the following statements are/is correct when running programs on these processors.

©@ OO0

moow»
ONWN =

If we are just running one program in the system, the program V\‘i1|| erform better on an %MT rocessor
, o , — yQUu have mm)e resource og’\t/ﬁe program
If we are running 4 applications simultaneously, the cache miss rates will be higher in the Procéssor

— I
If we are running 4 applications simultaneously, the branch mis-prediction will be higher in the SMT pm(!:tegse(?rends.
If we are running one program with 4 parallel threads, the cache miss rates will be higher in the SMT It depends!
processor — jt depends!

If we are running one program with 4 parallel threads simultaneously, the branch mis-prediction will be longer
in the SMT processor — it depends!

The only thing we know for sure — if we don't parallel the program, it won't get any faster on CMP
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Helper thread

Helper Thread Prefetching
for Loosely-Coupled Multiprocessor Systems”

Changhee Jung'!, Daeseob Lim?!, Jaejin Lee®, and Yan Solihin*f
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00 long refresh potantial

01
02
03
04
06
06
07
08
09
10
11
12
13
14
16
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 )

(nelworx_L # nel) {

nodae_t * node, = tmp;

... // some computation

while {(node !'= root) {

while (node) {
if(node->orientation

== UP){
ncde->potential
= node->basic.arc->cost
+ node=>pred=>polLential;
} else {
ncde->potential
= node->pred->potential
- node->basic.arc->cost;
checlsum++;
h
tmp = nade;
node = node->child;
h
node = tmp;
while (node=>pred) {

tmp = nade->sibling;
if(tmp) {

node = tmp:

break;

} else

nade = node->pred;

h
t

(a)

long refresh potential
(network_t # net) {
node_t * nade, * tmp;

while (node '= root) {
while {(node) {
pref(nade) ;
pref(node->pred) ;
pref(node->kesic_arc);
tmr = node
node = node=>child;
)

node = tmp;

while (node->pred) {
tmr = node->sibling;

if Cump) {
nade = tmp;
break;

} else

node = node->pred;

J

}
}

(b)

Figure 3. Constructing a prefetching helper thread:
(a) the original application thread, and (b) the con-
structed helper thread. The prefetching section Is
the refresh potential () subroutine In mcf.




Architectural Support for Parallel
Programming




Parallel programming

- To exploit parallelism you need to break your computation into multiple
"processes” or multiple "threads”
- Processes (in OS/software systems)

- Separate programs actually running (not sitting idle) on your computer at the same
time.

- Each process will have its own virtual memory space and you need explicitly exchange
data using inter-process communication APls

- Threads (in OS/software systems)
- Independent portions of your program that can run in parallel
- All threads share the same virtual memory space

- We will refer to these collectively as “threads”
- A typical user system might have 1-8 actively running threads.
- Servers can have more if needed (the sysadmins will hopefully configure it that way)

41



What software thinks about “multiprogramming” hardware

Thread Thread Thread Thread

L1-$

L1-$ L1-$
A A A
L2-$ L2-$ L2-$
SR SR SR
Shared Virtual Address Space
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What software thinks about “multiprogramming” hardware

for(i=3%size/4;1i<size;1

for(i=0;i<size/4;i++)for(i=size/4;i<size/2;i+§ .. > : sum += alil:
sum += alil; sum += ali]; for(1=si1ze/2;1<3%s1ze/4 @ ++

sum += al[il;

Ilsl:r: Others do not see the updated value inthe  [:f:1s)
cache and keep working — incorrect result!

EF Li=r g
S S

-5
S
L2-$ L2-$ L2-$ L2-$

SR SR SR SR
sun = o Ohared Virtual Address Space
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Coherency & Consistency

. Coherency — Guarantees all processors see the same value
for a variable/memory address in the system when the
processors need the value at the same time

- What value should be seen

- Consistency — All threads see the change of data in the same
order

- When the memory operation should be done

44



Simple cache coherency protocol

- Snooping protocol
- Each processor broadcasts / listens to cache misses

- State associate with each block (cacheline)

- Invalid
- The data in the current block is invalid

- Shared

- The processor can read the data
- The data may also exist on other processors

- Exclusive
- The processor has full permission on the data
- The processor is the only one that has up-to-date data

45



Coherent way-assomatlve cache
memory address: Ox0 t aSg 2msde ;X ffset
memory address: @b@@@@l@@@@@l@‘@l@@
g g
© ©
oD tag data & D tag data
01 |1 0x29 I1IJIJKKELMMNNOOPP 01]|1 0x00 AABBCCDDEEGGFFHH
01 |1 OxDE QQRRSSTTUUVVWWXX 01]|1 0x10 I1IJIJKKEEMMNNOOPP
01 |0 0x10 YYZZAABBCCDDEEFF 011|0 OxAl QQRRSSTTUUVVWWXX
00 |1 Ox8A AABBCCDDEEGGFFHH 00 |1 0x10 YYZZAABBCCDDEEFF
10 |1 Ox60 I1TJIJKKEEMMNNOOPP 10 |1 Ox31 AABBCCDDEEGGFFHH
10 |1 0x70 QQRRSSTTUUVVWWXX 10 |1 Ox45 ITJIJKKEEMMNNOOPP
10 |1 0x10 QQRRSSTTUUVVWWXX 10 |1 Ox41l QQRRSSTTUUVVWWXX
10 |1 Ox11 YYZZAABBCCDDEEFF 10 |1 0x68 YYZZAABBCCDDEEFF

hit?

46

e




Snooping Protocol

read/write
miss (bus)

read
miss/hit

read miss(processor)

write miss(bus)

p—
~| 5
26| 2l
o—m w
E8| aff
GJQ E
=0 o
hh q,-l:
= o| 2|
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write hit



What happens when we write in coherent caches?

for(i=3%size/4;1i<size;1

for(i=0;i<size/4;i++)for(i=size/4;i<size/2;i+§ .. > : sum += alil:
sum += alil; sum += ali]; for(1=si1ze/2;1<3%s1ze/4 @ ++

sum += al[il;

Thread Thread Thread Thread

sum = @xDEADBEEF _|sum = @ sum = OxDEADBEEF Mite miss/

~invalidate

sum = expoaaked Virtual Address Space

48



Observer

int loop; void*x modifyloop(void x)
{
int main() sleep(1);
{ printf("Please input a number:\n");
pthread_t thread; scanf("%d",&loop);
loop = 1; return NULL;
¥
pthread_create(&thread, NULL, modifyloop,
NULL)
while(loop == 1)
{
continue;
¥

pthread_join(thread, NULL);
fprintf(stderr, "User input: %d\n", loop);
return 0;

49



Observer

prevents the compiler from putting the variable “loop" in the "register”

thread 1 thread 2
volatile int loop; void*x modifyloop(void x)
{
int main() sleep(1);
{ printf("Please input a number:\n");
pthread_t thread; scanf("%d",&loop);
loop = 1; return NULL;
¥
pthread_create(&thread, NULL, modifyloop,
NULL)
while(loop == 1)
{
continue;
¥

pthread_join(thread, NULL);
fprintf(stderr, "User input: %d\n", loop);
return 0;

50



Announcement

- Project due next Monday
- Last reading quiz due next Monday
- Assignment #4 due next Wednesday

- IEVAL, starting tomorrow until 12/3
- Please fill the survey to let us know your opinion!

- Don't forget to take a screenshot of your submission and submit through iLearn — it
counts as a full credit assignment

- We will drop your lowest 2 assignment grades

- Final Exam

- Starting from 12/6 to 12/10 12:00pm, any consecutive 180 minutes you pick
- Similar to the midterm, but more time and about 1.5x longer

- Two of the questions will be comprehensive exam guestions

- Will release a sample final at the end of the last lecture
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Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington
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Simultaneous multithreading

- The processor can schedule instructions from different
threads/processes/programs

- Fetch instructions from different threads/processes to fill the
not utilized part of pipeline

- Exploit "thread level parallelism” (TLP) to solve the problem of
iInsufficient ILP in a single thread

- You need to create an illusion of multiple processors for OSs

77
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Simultaneous multithreading

1d X10, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP

1d X1, 9(X10)
addi X10, X10, 8
add X20, X20, X1
bne X10, X2, LOOP
1d X1, 0(X19)
addi X10, X10, 8
add X20, X20, X1
bne X100, X2, LOOP
1d X1, 0(X19)
addi X190, X10, 8
add X20, X20, X1
bne X10, X2, LOOP
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Architectural support for simultaneous multithreading

- To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?

® Program counter

@ Register mapping tables

® Physical registers

@ ALUs

® Data cache

® Reorder buffer/Instruction Queue
A. 2

moow
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Architectural support for simultaneous multithreg

AR
— RSt

- To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?

® Program counter

@ Register mapping tables

® Physical registers

@ ALUs

® Data cache

® Reorder buffer/Instruction Queue
A. 2

moow

3
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5
6
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Architectural support for simultaneous multithreading

- To create an illusion of a multi-core processor and allow the core to run instructions
from multiple threads concurrently, how many of the following units in the processor
must be duplicated/extended?

® Program counter — you need to have one for each context
@ Register mapping tables — you need to have one for each context

® Physical registers — you can share

@ ALUs — you can share

® Data cache — you can share

® Reorder buffer/Instruction Queue

A 2 — you heed to indicate which context the instruction is from
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SuperScalar Processor w/ BDB
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SMT SuperScalar Processor w/RO
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SMT

- How many of the following about SMT are correct?

® SMT makes processors with deep pipelines more tolerable to mis-predicted
branches

@ SMT can improve the throughput of a single-threaded application

® SMT processors can better utilize hardware during cache misses comparing with
superscalar processors with the same issue width

@ SMT processors can have higher cache miss rates comparing with superscalar
processors with the same cache sizes when executing the same set of applications.
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SMT

- How many of the following about SMT are correct?

® SMT makes processors with deep pipelines more tolerable to mis-predicted
branches

@ SMT can improve the throughput of a single-threaded application

® SMT processors can better utilize hardware during cache misses comparing with
superscalar processors with the same issue width

@ SMT processors can have higher cache miss rates comparing with superscalar
processors with the same cache sizes when executing the same set of applications.
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SMT

- How many of the following about SMT are correct?

@ SMT makes processors with deep pipelines more tolerable to mis-predicted
branche SWe can execute from other threads/contexts instead of the current one

hurt, b/c you are sharing resource with other threads.

@ SMT canimprove the throughput of a single-threaded application

® SMT processors can better utilize hardware during cache misses comparing with

superscalar processors with the same issue width We can execute from other threads/
contexts instead of the current one

@ SMT processors can have higher cache miss rates comparing with superscalar
processors with the same cache sizes when executing the same set of applications.

b/c we're sharing the cache
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