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SuperScalar Processor w/ ROB
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• Provide a set of “physical registers” and a mapping table mapping 
“architectural registers” to “physical registers” 

• Allocate a physical register for a new output 
• Eliminate all false dependencies 
• Stages 

• Dispatch (D) — allocate a “physical” for the output of a decoded 
instruction 

• Issue (I) — collect pending values/branch outcome from common data bus 
• Execute (INT, AQ/AQ/MEM, M1/M2/M3, BR) — send the instruction to its 
corresponding pipeline if no structural hazards 

• Write Back (WB) — broadcast the result through CDB
4

Recap: Register renaming



Recap: What about “linked list”
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LOOP: ld   X10, 8(X10) 
      addi  X7, X7, 1 
      bne  X10, X0, LOOP  

Static instructions Dynamic instructions
① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP
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• perf is a tool that captures performance counters of your 
processors and can generate results like branch mis-prediction 
rate, cache miss rates and ILP.
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Demo: ILP within a program



Simultaneous multithreading
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• The processor can schedule instructions from different 
threads/processes/programs 

• Fetch instructions from different threads/processes to fill the 
not utilized part of pipeline 
• Exploit “thread level parallelism” (TLP) to solve the problem of 
insufficient ILP in a single thread 

• You need to create an illusion of multiple processors for OSs
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Simultaneous multithreading



Simultaneous multithreading
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① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP

① ld   X1, 0(X10) 
② addi X10, X10, 8 
③ add  X20, X20, X1 
④ bne  X10, X2, LOOP 
⑤ ld   X1, 0(X10) 
⑥ addi X10, X10, 8 
⑦ add  X20, X20, X1 
⑧ bne  X10, X2, LOOP 
⑨ ld   X1, 0(X10) 
ɩ addi X10, X10, 8 
ꋷ add  X20, X20, X1 
ꋸ bne  X10, X2, LOOP
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• To create an illusion of a multi-core processor and allow the core to run instructions 
from multiple threads concurrently, how many of the following units in the processor 
must be duplicated/extended? 
! Program counter 
" Register mapping tables 
# Physical registers 
$ ALUs 
% Data cache 
& Reorder buffer/Instruction Queue 
A. 2 
B. 3 
C. 4 
D. 5 
E. 6

10

Architectural support for simultaneous multithreading
https://www.pollev.com/hungweitseng close in 
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Architectural support for simultaneous multithreading

— you need to have one for each context
— you need to have one for each context

— you can share
— you can share
— you can share

— you need to indicate which context the instruction is from



SuperScalar Processor w/ ROB
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SMT SuperScalar Processor w/ ROB
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• How many of the following about SMT are correct? 
! SMT makes processors with deep pipelines more tolerable to mis-predicted 

branches 
" SMT can improve the throughput of a single-threaded application 
# SMT processors can better utilize hardware during cache misses comparing with 

superscalar processors with the same issue width 
$ SMT processors can have higher cache miss rates comparing with superscalar 

processors with the same cache sizes when executing the same set of applications. 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

17

SMT
https://www.pollev.com/hungweitseng close in 
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SMT

hurt, b/c you are sharing resource with other threads.
We can execute from other threads/contexts instead of the current one

We can execute from other threads/
contexts instead of the current one

b/c we’re sharing the cache



• Improve the throughput of execution 
• May increase the latency of a single thread 

• Less branch penalty per thread 
• Increase hardware utilization 
• Simple hardware design: Only need to duplicate PC/Register 
Files 

• Real Case: 
• Intel HyperThreading (supports up to two threads per core) 

• Intel Pentium 4, Intel Atom, Intel Core i7 
• AMD RyZen (Zen microarchitecture)

22

SMT



SMT SuperScalar Processor w/ ROB
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Wider-issue processors won’t give you much more

24



The case for a Single-Chip Multiprocessor
Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung 

Chang
Stanford University
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Wide-issue SS processor v.s. multiple narrower-issue SS processors
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6-way SS processor — 
3 INT ALUs, 3 FP ALUs

I-cache: 32KB, D-cache: 32KB
4 2-issue SS processor — 
4* (1 INT ALUs, 1 FP ALUs

I-cache: 8KB, D-cache: 8KB)



Recap: Power Density of Processors
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• The power consumption due to the switching of transistor states 
• Dynamic power per transistor:

 
• α: average switches per cycle 
• C: capacitance 
• V: voltage 
• f: frequency, usually linear with V 
• N: the number of transistors 

• Power density:

Pdynamic ∼ α × C × V2 × f × N

28

Recap: Power consumption & power density 

Moore’s Law makes this smaller

Moore’s Law allows higher 
frequencies as transistors are smallerPdensity = P

area

We cannot make 
chips always 

operating at very 
high frequencies



The “power” of doubling the clocking rate v.s. doubling the number of cores
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Powernew = Powerold × ( fnew

fold
)3

Powernew = Powerold × (2)3 = Powerold × 8

Powernew = Powerold × number_of_cores = Powerold × 2

Doubling the clocking rate:

Doubling the number of cores:

Pdynamic ∼ α × C × V2 × f × N



Intel SkyLake
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Concept of CMP

32

Processor

Last-level $ (LLC)

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$

Core
Registers
L1-$

L2-$



Performance of CMP
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• An SMT processor is basically a SuperScalar processor with multiple instruction front-end. Assume 
within the same chip area, we can build an SMT processor supporting 4 threads, with 6-issue pipeline, 
64KB cache or — a CMP with 4x 2-issue pipeline & 16KB cache in each core. Please identify how many 
of the following statements are/is correct when running programs on these processors. 
! If we are just running one program in the system, the program will perform better on an SMT processor 
" If we are running 4 applications simultaneously, the cache miss rates will be higher in the SMT processor 
# If we are running 4 applications simultaneously, the branch mis-prediction will be higher in the SMT processor 
$ If we are running one program with 4 parallel threads, the cache miss rates will be higher in the SMT 

processor 
% If we are running one program with 4 parallel threads simultaneously, the branch mis-prediction will be longer 

in the SMT processor 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5

34

SMT v.s. CMP
https://www.pollev.com/hungweitseng close in 
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SMT v.s. CMP

— you have more resources for the program
— it depends!
— it depends!

— it depends!

— it depends!

The only thing we know for sure — if we don’t parallel the program, it won’t get any faster on CMP



Helper thread
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Architectural Support for Parallel 
Programming

40



• To exploit parallelism you need to break your computation into multiple 
“processes” or multiple “threads” 

• Processes (in OS/software systems) 
• Separate programs actually running (not sitting idle) on your computer at the same 
time. 

• Each process will have its own virtual memory space and you need explicitly exchange 
data using inter-process communication APIs 

• Threads (in OS/software systems) 
• Independent portions of your program that can run in parallel 
• All threads share the same virtual memory space 

• We will refer to these collectively as “threads” 
• A typical user system might have 1-8 actively running threads. 
• Servers can have more if needed (the sysadmins will hopefully configure it that way)

41

Parallel programming



What software thinks about “multiprogramming” hardware
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What software thinks about “multiprogramming” hardware
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Shared Memory
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for(i=0;i<size/4;i++) 
    sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++) 
    sum += a[i]; for(i=size/2;i<3*size/4;i++) 

    sum += a[i];

for(i=3*size/4;i<size;i++) 
    sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF

Others do not see the updated value in the 
cache and keep working — incorrect result!



• Coherency — Guarantees all processors see the same value 
for a variable/memory address in the system when the 
processors need the value at the same time 
• What value should be seen 

• Consistency — All threads see the change of data in the same 
order 
• When the memory operation should be done

44

Coherency & Consistency



• Snooping protocol 
• Each processor broadcasts / listens to cache misses 

• State associate with each block (cacheline) 
• Invalid 

• The data in the current block is invalid 
• Shared 

• The processor can read the data 
• The data may also exist on other processors 

• Exclusive 
• The processor has full permission on the data 
• The processor is the only one that has up-to-date data

45

Simple cache coherency protocol



1 1 0x29 IIJJKKLLMMNNOOPP
1 1 0xDE QQRRSSTTUUVVWWXX
1 0 0x10 YYZZAABBCCDDEEFF
0 1 0x8A AABBCCDDEEGGFFHH
1 1 0x60 IIJJKKLLMMNNOOPP
1 1 0x70 QQRRSSTTUUVVWWXX
0 1 0x10 QQRRSSTTUUVVWWXX
0 1 0x11 YYZZAABBCCDDEEFF

Coherent way-associative cache
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Snooping Protocol
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What happens when we write in coherent caches?
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Observer
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thread 1 thread 2
int loop; 
 
int main() 
{ 
  pthread_t thread; 
  loop = 1; 
   
  pthread_create(&thread, NULL, modifyloop, 
NULL); 
  while(loop == 1) 
  { 
    continue; 
  } 
  pthread_join(thread, NULL);  
  fprintf(stderr,"User input: %d\n", loop); 
  return 0; 
}

void* modifyloop(void *x) 
{ 
  sleep(1); 
  printf("Please input a number:\n"); 
  scanf("%d",&loop); 
  return NULL; 
}



Observer
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thread 1 thread 2
volatile int loop; 
 
int main() 
{ 
  pthread_t thread; 
  loop = 1; 
   
  pthread_create(&thread, NULL, modifyloop, 
NULL); 
  while(loop == 1) 
  { 
    continue; 
  } 
  pthread_join(thread, NULL);  
  fprintf(stderr,"User input: %d\n", loop); 
  return 0; 
}

void* modifyloop(void *x) 
{ 
  sleep(1); 
  printf("Please input a number:\n"); 
  scanf("%d",&loop); 
  return NULL; 
}

prevents the compiler from putting the variable “loop" in the “register”



• Project due next Monday 
• Last reading quiz due next Monday 
• Assignment #4 due next Wednesday 
• iEVAL, starting tomorrow until 12/3 

• Please fill the survey to let us know your opinion! 
• Don’t forget to take a screenshot of your submission and submit through iLearn — it 
counts as a full credit assignment 

• We will drop your lowest 2 assignment grades 
• Final Exam 

• Starting from 12/6 to 12/10 12:00pm, any consecutive 180 minutes you pick 
• Similar to the midterm, but more time and about 1.5x longer 
• Two of the questions will be comprehensive exam questions 
• Will release a sample final at the end of the last lecture

74

Announcement
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Simultaneous multithreading:
maximizing on-chip parallelism

Dean M. Tullsen, Susan J. Eggers, Henry M. Levy
Department of Computer Science and Engineering, University of Washington
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• The processor can schedule instructions from different 
threads/processes/programs 

• Fetch instructions from different threads/processes to fill the 
not utilized part of pipeline 
• Exploit “thread level parallelism” (TLP) to solve the problem of 
insufficient ILP in a single thread 

• You need to create an illusion of multiple processors for OSs

77

Simultaneous multithreading



Simultaneous multithreading

78

Ins
tru

cti
on

 Qu
eu

e

1 2

5

1 2
3 4
5 6
7 8

3 4

76

8

① ld   X10, 8(X10) 
② addi  X7, X7, 1 
③ bne  X10, X0, LOOP 
④ ld   X10, 8(X10) 
⑤ addi  X7, X7, 1 
⑥ bne  X10, X0, LOOP 
⑦ ld   X10, 8(X10) 
⑧ addi  X7, X7, 1 
⑨ bne  X10, X0, LOOP

① ld   X1, 0(X10) 
② addi X10, X10, 8 
③ add  X20, X20, X1 
④ bne  X10, X2, LOOP 
⑤ ld   X1, 0(X10) 
⑥ addi X10, X10, 8 
⑦ add  X20, X20, X1 
⑧ bne  X10, X2, LOOP 
⑨ ld   X1, 0(X10) 
ɩ addi X10, X10, 8 
ꋷ add  X20, X20, X1 
ꋸ bne  X10, X2, LOOP
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7 8

9 10 9 10
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• To create an illusion of a multi-core processor and allow the core to run instructions 
from multiple threads concurrently, how many of the following units in the processor 
must be duplicated/extended? 
! Program counter 
" Register mapping tables 
# Physical registers 
$ ALUs 
% Data cache 
& Reorder buffer/Instruction Queue 
A. 2 
B. 3 
C. 4 
D. 5 
E. 6

79

Architectural support for simultaneous multithreading
Poll close in
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• To create an illusion of a multi-core processor and allow the core to run instructions 
from multiple threads concurrently, how many of the following units in the processor 
must be duplicated/extended? 
! Program counter 
" Register mapping tables 
# Physical registers 
$ ALUs 
% Data cache 
& Reorder buffer/Instruction Queue 
A. 2 
B. 3 
C. 4 
D. 5 
E. 6
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Architectural support for simultaneous multithreading

— you need to have one for each context
— you need to have one for each context

— you can share
— you can share
— you can share

— you need to indicate which context the instruction is from



SuperScalar Processor w/ ROB
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SMT SuperScalar Processor w/ ROB
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• How many of the following about SMT are correct? 
! SMT makes processors with deep pipelines more tolerable to mis-predicted 

branches 
" SMT can improve the throughput of a single-threaded application 
# SMT processors can better utilize hardware during cache misses comparing with 

superscalar processors with the same issue width 
$ SMT processors can have higher cache miss rates comparing with superscalar 

processors with the same cache sizes when executing the same set of applications. 
A. 0 
B. 1 
C. 2 
D. 3 
E. 4

84
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• How many of the following about SMT are correct? 
! SMT makes processors with deep pipelines more tolerable to mis-predicted 

branches 
" SMT can improve the throughput of a single-threaded application 
# SMT processors can better utilize hardware during cache misses comparing with 

superscalar processors with the same issue width 
$ SMT processors can have higher cache miss rates comparing with superscalar 

processors with the same cache sizes when executing the same set of applications. 
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SMT

hurt, b/c you are sharing resource with other threads.
We can execute from other threads/contexts instead of the current one

We can execute from other threads/
contexts instead of the current one

b/c we’re sharing the cache


