Multithreaded Architectures and
Programming on Multithreaded
Architectures (ll)

Hung-Wel Tseng

m‘m Gl
Static instructions Dynamic instructions e 9 Qm

LOOP: 1d X10, 8(X10) | o X10, 8(X10) | Wasjeqgslots ¢
addi X7, X7, 1 ILP is low becausg of data ME (17

bne X10, X0, LOOP dependencies | Sy At sl PO
1d X1@, 8(X10) | [Wasteqsiots

addi X7, X7, 1
bne X10, X0, LOOP
1d X106, 8(X10)
addi X7, X7, 1
bne X10, X0, LOOP

ONONONONONONONONO

Recap: SMT SuperScalar Processar w/ ROB
) Fetch/ st 'EU

decode | Renaming Reglster
M|nstructlo logic mapping table #1
 Pivecalieg PS hysical

valu

E - Register - Registers
—Instruction — mapping table #2 - | |
= Queue =
Address Integer Floating- Floating- I 1
Resolution ALU Point Adder Point Mul/Div
Sv&8 g
— Load — — Store

— Queue - — Queue -
Address

ONONONONONBONONONOC

Recap: Simultaneous multithreading

1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP
1d X10, 8(X10)
addi X7, X7, 1
bne X100, X0, LOOP

1d X1, 9(X10)
addi X10, X10, 8
add X20, X20, X1
bne X10, X2, LOOP
1d X1, 0(X19)
addi X10, X10, 8
add X20, X20, X1
bne X100, X2, LOOP
1d X1, 0(X19)
addi X190, X10, 8
add X20, X20, X1
bne X10, X2, LOOP

Q
-
Q
-
O
o
R,
]
Q
-
-
ajd
(/p)
=

Recap: SMT

- Improve the throughput of execution
- May increase the latency of a single thread

- Less branch penalty per thread
- Increase hardware utilization

- Simple hardware design: Only need to duplicate PC/Register
Files
- Real Case:

- Intel HyperThreading (supports up to two threads per core)
- Intel Pentium 4, Intel Atom, Intel Core i/

- AMD RyZen (Zen microarchitecture)

5

Wide-issue SS processor v.s. multiple narrower-issue SS processors

- 21 mm - - 21 mm »

Instruction

External Cache

Instructi
Interface Fel:gt:on (32 KB)

External
Interface

Processor | Processor
#1 #2

TLB

Inst. Decode & Data
Rename Cache

(32 KB)

21 mm

Reorder Buffer,
Instruction Queues,
and Out-of-Order Logic

6-way SS proceséor —
3INT ALUs, 3FPALUs
I-cache: 32KB, D-cache: 32KB

)
o
©
o
o3
o
.E
X
3]
2
O

Clocking & Pads

‘Chip L2 Cache (256KB)
unication Crossbar
-Chip L2 Cache (256KB)

4 2=issue SS processor —
4* (1INT ALUs,1FP ALUs
I-cache: 8KB, D-cache: S8KB)

' 1-acne #3 (8K) | 1-.acne #4 (B8

Recap: Concept of CMP

Processor

Core Core Core Core

Registers Registers Registers Registers
L1-$ L1-$ L1-$ L1-$

LY LY LY LY
L2-$ L2-$ L2-$ L2-$

Last-level $ (LLC)

Recap: SMT v.s. CMP

- An SMT processor is basically a SuperScalar processor with multiple instruction front-end. Assume
within the same chip area, we can build an SMT processor supporting 4 threads, with 6-issue pipeline,
64KB cache or — a CMP with 4x 2-issue pipeline & 16KB cache in each core. Please identify how many
of the following statements are/is correct when running programs on these processors.

©@ OO0

moow»
aObhwWN =

If we are just running one program in the system, the program V\‘i1|| erform better on an %MT rocessor
, o , — yQUu have mm)e resource og’\t/ﬁe program
If we are running 4 applications simultaneously, the cache miss rates will be higher in the Procéssor

— |
If we are running 4 applications simultaneously, the branch mis-prediction will be higher in the SMT proc!:tegsec?rends'
If we are running one program with 4 parallel threads, the cache miss rates will be higher in the SMT It depends!
processor — jt depends!

If we are running one program with 4 parallel threads simultaneously, the branch mis-prediction will be longer
in the SMT processor — it depends!

The only thing we know for sure — if we don't parallel the program, it won't get any faster on CMP

Architectural Support for Parallel
Programming

Coherency & Consistency

. Coherency — Guarantees all processors see the same value
for a variable/memory address in the system when the
processors need the value at the same time

- What value should be seen

- Consistency — All threads see the change of data in the same
order

- When the memory operation should be done

10

Simple cache coherency protocol

- Snooping protocol
- Each processor broadcasts / listens to cache misses

- State associate with each block (cacheline)

- Invalid
- The data in the current block is invalid

- Shared

- The processor can read the data
- The data may also exist on other processors

- Exclusive
- The processor has full permission on the data
- The processor is the only one that has up-to-date data

1

What happens when we write in coherent caches?

for(i=3%size/4;1i<size;1

for(i=0;i<size/4;i++)for(i=size/4;i<size/2;i+§ .. > : sum += alil:
sum += alil; sum += ali]; for(1=si1ze/2;1<3%s1ze/4 @ ++

sum += al[il;

Thread Thread Thread Thread

sum = @xDEADBEEF _|sum = @ sum = OxDEADBEEF Mite miss/

~invalidate

sum = expoaaked Virtual Address Space

12

Observer

int loop; void*x modifyloop(void x)
{
int main() sleep(1);
{ printf("Please input a number:\n");
pthread_t thread; scanf("%d",&loop);
loop = 1; return NULL;
¥
pthread_create(&thread, NULL, modifyloop,
NULL)
while(loop == 1)
{
continue;
¥

pthread_join(thread, NULL);
fprintf(stderr, "User input: %d\n", loop);
return 0;

13

Observer

prevents the compiler from putting the variable “loop" in the "register”

thread 1 thread 2
volatile int loop; void*x modifyloop(void x)
{
int main() sleep(1);
{ printf("Please input a number:\n");
pthread_t thread; scanf("%d",&loop);
loop = 1; return NULL;
¥
pthread_create(&thread, NULL, modifyloop,
NULL)
while(loop == 1)
{
continue;
¥

pthread_join(thread, NULL);
fprintf(stderr, "User input: %d\n", loop);
return 0;

14

Outline

- Parallel programming
- GPU

15

https://www.pollev.com/hungweitseng close in 1:30

Cache coherency

- Assuming that we are running the following code on a CMP with a cache coherency protocol, how
many of the following outputs are possible? (a is initialized to O as assume we will output more than

10 numbers
thread 1 thread 2

while (1) while (1)
printf(“%d ",a); a++;

® 0123456789

® 1259368101213
® 1111111164100
@ 111111111100 - Coherency
A. O

mooOw
P WON -

16 A B C D E

.- RTINS PYEMOAN 200 B L RN SO RO 1T ROl 10, 100 TS 4T 4 50w o D M PR S ACMME S

Cache coherency

- Assuming that we are running the following code on a CMP with a cache coherency protocol, how
many of the following outputs are possible? (a is initialized to O as assume we will output more than

10 numbers
thread 1 thread 2

while(1) while(1)
printf(“%d ",a); a++;

® 0123456789

® 1259368101213
® 1111111164100
®@ 111111111100

A. O

Mmoo W
AN -

M

20

Cache coherency

T A2 onom ol agmen ____ _|

OxDEADBEEF A[0] = OxDEADBEEF
2] A[1]

A[2]
2] A[3]

A[0O]
A[1]
A[2]
A[3]

ite miss/
= invalidate

Alel=exbEFiAfed Virtual Address Space

21

https://www.pollev.com/hungweitseng close in 1:30

Performance comparison

- Comparing implementations of thread_vadd — L and R, please identify which one will be
performing better and why

Version L Version R

vold *xthreaded _vadd(void *xthread_id) vold *xthreaded vadd(void xthread _id)
{ {

int tid = *(int *)thread _id; int tid = *(int *)thread_id;

int 1; int 1;

for(i=tid; i<ARRAY_SIZE;i+=NUM_OF_THREADS) for(i=tid*(ARRAY_SIZE/NUM_OF THREADS) ;i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS) ;i++)

{ {

c[i] = al[i] + bl[i]; c[i] = ali]l + bl[il];

¥ ¥

return NULL; return NULL;
¥ ¥

FalseSharing

A. Lis better, because the cache miss rate is lower | Main th d

B. Ris better, because the cache miss rate is lower for(i = 0 ; 1 < NUM_OF_THRE%ISH; i++[ea

C. Lis better, because the instruction count is lower tids[i] = i:

D. Ris better, because the instruction count is lower =, Pthread-createldthreadlil, NULL, threaded_vadd, &tids
E. Both are about the same for(i = @ ; 1 < NUM_OF_THREADS ; i++)

pthread_join(thread[i], NULL);
1

29 A B C D E

.- ZRTURE PO 200 e | M SN SO RO 1T T 1, 2 0000 ThE T 4 W o D Mol SaCoME S o

Lv.s.R

Version L Version R

vold *xthreaded _vadd(void *xthread_id) vold *xthreaded vadd(void xthread _id)
{ {

int tid = *(int *)thread _id; int tid = *(int *)thread_id;

int 1; int 1;

for(i=tid; i<ARRAY_SIZE;i+=NUM_OF_THREADS) for(i=tid*(ARRAY_SIZE/NUM_OF THREADS) ;i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS) ;i++)

{ {

c[i] = al[i] + bl[i]; c[i] = ali]l + bl[il];

¥ ¥

return NULL; return NULL;
¥ ¥

C C

26

4Cs of cache misses

. 3Cs:
- Compulsory, Conflict, Capacity

- Coherency miss:
- A "block” invalidated because of the sharing among processors.

27

False sharing

- True sharing
- Processor A modifies X, processor B also want to access X.

- False sharing

- Processor A modifies X, processor B also want to access Y.
However, Y Is invalidated because X and Y are in the same block!

28

Performance comparison

- Comparing implementations of thread_vadd — L and R, please identify which one will be
performing better and why

Version L Version R

vold *xthreaded _vadd(void *xthread_id) vold *xthreaded vadd(void xthread _id)
{ {

int tid = *(int *)thread _id; int tid = *(int *)thread_id;

int 1; int 1;

for(i=tid; i<ARRAY_SIZE;i+=NUM_OF_THREADS) for(i=tid*(ARRAY_SIZE/NUM_OF THREADS) ;i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS) ;i++)

{ {

c[i] = al[i] + bl[i]; c[i] = ali]l + bl[il];

¥ ¥

return NULL; return NULL;
¥ ¥

A. L is better, because the cache miss rate is lower

B. Ris better, because the cache miss rate is lower for(i = 0 ; 1 < NUM_OF_TME%ISQ Ebjead

C. Lis better, because the instruction count is lower tids[i] = i:
D. Ris better, because the instruction count is lower pthread_create(&threadlil, NULL, threaded_vadd, &tid:

pthread_join(thread[i], NULL);

29

https://www.pollev.com/hungweitseng close in 1:30

Again — how many values are possible?

- Consider the given program. You can safely assume the caches are
coherent. How many of the followina outputs will vou see?

<:> (() ()) #include <stdio.h> int main() {
I #include <stdlib.h> int 1;
#include <pthread.h> pthread_t thread[2];
<:> ((),1) #include <unistd.h> pthread_create(&thread[©], NULL, modifya, NULL);
pthread_create(&thread[1], NULL, modifyb, NULL);
@ (1’ O) volatile int a,b: pthread_join(thread[0], NULL);
volatile int x,y; pthread_join(thread[1], NULL);
<:) (1 '1) volatile int f; fprintf(stderr,” (%d, %d)\n",x,y);
! void* modifya(void *xz) { return 0;
A O a:l; }
. x=b; —
B 1 \ return NULL;) Consistency
voidx modifyb(void *z) {
C. 2 b=1;
y=a;
[) 53 return NULL;
) ¥
E. 4

Possible scenarios
Thread 1 Thread 2 Thread 1

a=1l; a=1l;
b=1; x=b;

Thread 2

b=1;
y=a,

y=a,
x=b;

(1,1) (0,1)

Thread 1 Thread 2

Thread 1 Thread 2
b=1;

y=a;

X=h; 000 Scheduling!

a=1;

I

a=1
x=b:

I

(1,0) 34 (0,0)

Why (0,0)?

- Processor/compiler may reorder your memory operations/
Instructions

- Coherence protocol can only guarantee the update of the same
memory address

- Processor can serve memory requests without cache miss first

- Compiler may store values in registers and perform memory
operations later

- Each processor core may not run at the same speed (cache
misses, branch mis-prediction, |/O, voltage scaling and etc..)

- Threads may not be executed/scheduled right after it's spawned

35

Again — how many values are possible?

- Consider the given program. You can safely assume the caches are
coherent. How many of the followina outputs will vou see?

@ (0,0)

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

volatile int a,b;
volatile int x,y;
volatile int f;
void*x modifya(void *xz) {
a=1;
X=b;
return NULL;
¥
voidx modifyb(void *z) {
b=1;
y=a;
return NULL;

36

int main() {

int 1;

pthread_t thread[2];
pthread _create(&thread[0], NULL, modifya, NULL);
pthread_create(&thread[1], NULL, modifyb, NULL);
pthread_join(thread[0], NULL);
pthread_join(thread[1], NULL);
fprintf(stderr,” (%d, %d)\n",x,y);
return 0;

fence instructions

- X806 provides an “mfence” instruction to prevent reordering
across the fence instruction

- X86 only supports this kind of “relaxed consistency” model.
You still have to be careful enough to make sure that your code
behaves as you expected

thread 1 thread 2

a=1; b=1;
mfence a=1must occur/update before mfence mfenceb=1 must occur/update before mfence
X=Db; y=a;

37

Take-aways of parallel programming

- Processor behaviors are non-deterministic
- You cannot predict which processor is going faster
- You cannot predict when OS is going to schedule your thread

- Cache coherency only guarantees that everyone would
eventually have a coherent view of data, but not when

- Cache consistency is hard to support

38

Alternative Parallel Architectures

GPU (Graphics Processing Unit)

Raster
Input Vertex Geometry Setup & : Operations /
— —
Assembler Shader Shader Rasterizer PG SR Output
merger

2

N7

These shaders need to be “programmable” to apply
different rendering effects/algorithms
(Phong shading, Gouraud shading, and etc...)

40

Basic concept of shading

They are all "vectors”

lamb = Kamb * Mamb
P® / laite =|Kaite * Maits © (N - L)
v

Ispec q Kspec) Mspec ’ (R) V)n

ltotal = lamb + ldifs + Ispec
PJ F! void main(void)

{
l. // normalize vectors after interpolation
vec3 L = normalize(o_toLight);
vec3 V = normalize(o_toCamera);
vec3 N = normalize(o_normal);

For each 0|6

V’ // get Blinn-Phong reflectance components

11 . . N (I)
pOInt[plxe float Iamb = ambientLighting();
N , float Idif = diffuseLighting(N, L);
"""""""" float Ispe = specularLighting(N, L, V);

// diffuse color of the object from texture
vec3 diffuseColor = texture(u_diffuseTexture, o_texcoords).rgb;

// combination of all components and diffuse color of the object
resultingColor.xyz = diffuseColor * (Iamb + Idif + Ispe);
resultingColor.a = 1;

41

https://www.pollev.com/hungweitseng close in 1:30

What do you want from a GPU?

- Given the basic idea of shading algorithms, how many of the following
statements would fit the agenda of designing a GPU?
® Many ALUs to process multiple pixels simultaneously
_ow latency memory bus to supply pixels, vectors and textures
High performance branch predictors
Powerful ALUs to process many different kinds of operators

® © 0

GPU

moowxz
A WMN-—-O

42 A B C D E

What do you want from a GPU?

- Given the basic idea of shading algorithms, how many of the following
statements would fit the agenda of designing a GPU?

® Many ALUs to process multiple pixels simultaneusliic 102041080 pixets:
_ow latency memory bus to supp%pixels, vectors and textures
sdal

ctually, high bandwidth since each pixel require erentL,N, R,V and we need to feed thousands of pixels simultaneously
-+g¥1—per-f-emqanee-braneh—|9|ﬂeel+etel S

not really, the behavior is uniform across all pixels
YA LA A a¥l alda - a'a ~ a aldala a¥a a NN
J VV 9 W W NI U @, V U \/ \J “J NJ U OrS
not really, we only need vector add, vector mul, vector div. Low frequency is OK
since we have many threads

In terms of latency, even for 120 frames, you still have 8ms latency to get everything done!

moOow> WMEW

WO DN-—-O0O

46

Connect to PCle system interconnect

Nvidia GPU architecture

Thread
scheduler
High-
bandwidth
memory
controllers

GPU global
memory

Memory Controller Memory Contro.ler Memory C _ntroller

@
o
©
=
@
2
-
—
7]
o
m o
o
L)
n
7]
)
—
(=3
>
w
o
o

SMX (Streaming
Multiprocesso

Memory Controller Memory Controller Memory Controller

Inside each SMX

L Instruction Cache

Each of these performs
the same operation, but
each of these is also a

"thread”

Warp Scheduler

Warp Scheduler

Warp Scheduler

Warp Scheduler

Dispatch

4
4 &

3
. 2

il
i
ER
i
e
B2
e
[l
EE
[
Lo
T
il
ET
i

Dispatch

R

Core

Core

Core

Core

Core

Core

Dispatch
-

4 &

Dispatch
2

£ 4 &

Dispatch
s

4 4 I

Core

Core

Core

Core

Core

Core

Core

C

Core

[¢)
o
)

ol
)
o

(2]
o
3

LD/ST

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

“ Coie

Core

Core

Core

Core

Core

Core

Core

Core

Core

(2] (2]
] [)
: e I3

(2
e
o

O
o
®

Dispatch
3

o £
Core

Core
Core
Core
Core
Core
Core
“re
Core
Core
Core
Core
Core
Core
Core

Core

Dispatch
RS

Register File (65,536 x 32-bit GK110) | (131,072 x32-bit GK210)

4 I

&

Dispatch
4

Core

Core

Core

Core

Core

Core

Core

P

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

3

INRREERNEEEREEN

A
&

(2
]
o

(64 KB Shared Memory / L1 Cache GK110) | (128 KB Shared Memory / L1 Cache GK210)

48 KB Read-Only Data Cache

Tex

Tex

Tex

Tex

Nvidia GPU architecture

PCI Express 3.0 Host Interface

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Memory Controller

AMD GPU Architecture

—> "Geometry/Engine Geometry Engie

' (]
Global'Data Share

GCN Compute Unit " GCN Compute Unit

QOB UBIU|SNYGE
5 Ql‘)-i‘f{'b«},lm‘n.g k

‘I‘RO'P Units
- »

Stenci
- - !r

GCN Compute Unit GCN Compute Unit

-

GCN Compute Unit GCN Compute Unit

7/

GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit

GCN Compute Unit

GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit

GCN Compute Unit

GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit
GCN Compute Unit

GCN Compute Unit

qny
JQJ!S(_)‘dL{JO:)_.L

1S.19|(043U0D Ag|ds | AJIUIISAT

A v

64-bit Dual Channel 64-bit Dual Channel 64-bit Dual Channel 64-bit Dual Channel 64-bit Dual Channel 64-bit Dual Channel
Memory Controller Memory Controller Memory Controller Memory Controller Memory Controller Memory Controller

i i U i i U o U
Il Bl Bl Bl Bl BE B DD D BN B Ee

50

=
o]
=
©
o
=
2
E
<
=
Q
-
Q
(N8
c
0
i3]
= |
ol
=)
(7]
£

A CUinan AMD GPU

Message Bus
SIMDO Branch &] l

PC&IB &= s Message Unit

10 Wave
‘ Export/GDSDecode

SIMD1
PC&IB =
10 Wave

4

SIMD2
PC&IB <=

‘ Decode

SIMD3
PC&IB =
10 Wave

&= Vector MemoryDecode

Scalar L Scalar Unit

Decode 8 KB Registers

Integer ALU

uone3iqJy uopaNAsy|

LDS
Decode

Input Data (PC/State/Vector Register/Scalar Register)

SIMDO SIMD1 SIMD2 SIMD3
Read/

64 KB 64 KB 64 KB 64 KB Write
Registers 4m) Registers e =4 Registers = Registers Data

MP MP MP MP p— 11

Vector Vector Vector Cache
ALU ALU ALU

16KB

64 KB LDS Memory ==

Request
Arbiter

4 CU Shared 16KB Scalar Read Only L1 Cache

4 CU Shared 32KB Instruction L1 Cache

57

Export
Bus

Read/
Write
L2 Cache

Read/
Write
L2 Cache

https://www.pollev.com/hungweitseng close in 1:30

CPU v.s. GPU

- Comparing the performance of solving the following set of problems using
modern CPU and GPU architectures, how many can GPUs outperform
CPUSs?

® Matrix multiplications

@ Minimum Spanning Trees
® Shortest Path Problems
@ Gaussian Elimination

A. O

CPUvsGPU

moow
A wpN-

52 A B C D E

CPU v.s. GPU

- Comparing the performance of solving the following set of problems using
modern CPU and GPU architectures, how many can GPUs outperform
CPUSs?

® Matrix multiplications

x Minimum Spanning Trees
x Shortest Path Problems
@ Gaussian Elimination

moonwx
A WIN— O

56

How things are connected

Second Storage Devices

57

New overhead/bottleneck emerges

New overhead

Second Storage Devices

58

APU (Accelerated Processing Unit)

PCle/Display

DualCore
x86

It's now very common in intel and AMD lineups

59

https://www.pollev.com/hungweitseng close in 1:30

APU

- Regarding the pros and cons of an APU, how many of the followings are correct
® APU eliminates the need of moving data from DRAM to GPU device memory

®@ The memory bandwidth of an APU is generally better than that of GPU device
memory

® The total number of ALUs that an APU can provide must be fewer than a discrete
GPU given the same power budget and chip area

@ A memory intensive GPU kernel can slowdown the performance of another CPU
program
O

APU

moOoOwer
O -

60 A B C D E

APU

- Regarding the pros and cons of an APU, how many of the followings are correct

® APU eliminates the need of moving data from DRAM to GPU device memory
CPUs/GPUs in an APU are all connected to DRAM

®@ The memory bandwidth of an APU is generally better than that of GPU device
memory Not true, APU uses CPU memory bus that is optimized for “latencies”

x”) The total number of ALUs that an APU can provide must be fewer than a discrete

GPU given the same power budget and chip area . , .
CPU cores are really big due to the dynamic scheduling logic

@ A memory intensive GPU kernel can slowdown the performance of another CPU
program Because they have to compete with the DRAM bandwidth

mo o wx»
A WIN— O

64

Announcement

- Project due next Monday
- Last reading quiz due next Monday
- Assignment #4 due next Wednesday

- IEVAL, until 12/3

- Please fill the survey to let us know your opinion!

- Don't forget to take a screenshot of your submission and submit through iLearn — it
counts as a full credit assignment

- We will drop your lowest 2 assignment grades

- Final Exam

- Starting from 12/6 to 12/10 12:00pm, any consecutive 180 minutes you pick
- Similar to the midterm, but more time and about 1.5x longer

- Two of the questions will be comprehensive exam guestions

- Will release a sample final at the end of the last lecture

65

@omMPuter

Science &

