
Multithreaded Architectures and
Programming on Multithreaded

Architectures (II)
Hung-Wei Tseng

Recap: What about “linked list”

2

LOOP: ld X10, 8(X10)
 addi X7, X7, 1
 bne X10, X0, LOOP

Static instructions Dynamic instructions
① ld X10, 8(X10)
② addi X7, X7, 1
③ bne X10, X0, LOOP
④ ld X10, 8(X10)
⑤ addi X7, X7, 1
⑥ bne X10, X0, LOOP
⑦ ld X10, 8(X10)
⑧ addi X7, X7, 1
⑨ bne X10, X0, LOOP

Ins
tru

cti
on

 Qu
eu

e

1

3

2

5

7

1 2
3 4
5 6
7 8
9 4

6

8

910

11ILP is low because of data
dependencies

Wasted slots

Wasted slots
Wasted slots

Wasted slots

Wasted slots
Wasted slots

Recap: SMT SuperScalar Processor w/ ROB

3

Instruction
Queue

Fetch/
decode

instruction

Address Data
Memory

P1
P2
P3
P4
P5
P6
…
…

Physical
Registers

va
lid

va

luephysical register #X1
X2
X3
…

Register
mapping table #1Renaming

logic

Address
Resolution

Integer
ALU

Floating-
Point Adder

Floating-
Point Mul/Div Branch

Ad
dr.

Va
lue

Ad
dr.

De
st

Re
g.

Load
Queue

Store
Queue

physical register #X1
X2
X3
…

Register
mapping table #2

PC #1
PC #2

Recap: Simultaneous multithreading

4

Ins
tru

cti
on

 Qu
eu

e

1 2

5

1 2
3 4
5 6
7 8

3 4

76

8

① ld X10, 8(X10)
② addi X7, X7, 1
③ bne X10, X0, LOOP
④ ld X10, 8(X10)
⑤ addi X7, X7, 1
⑥ bne X10, X0, LOOP
⑦ ld X10, 8(X10)
⑧ addi X7, X7, 1
⑨ bne X10, X0, LOOP

① ld X1, 0(X10)
② addi X10, X10, 8
③ add X20, X20, X1
④ bne X10, X2, LOOP
⑤ ld X1, 0(X10)
⑥ addi X10, X10, 8
⑦ add X20, X20, X1
⑧ bne X10, X2, LOOP
⑨ ld X1, 0(X10)
ɩ addi X10, X10, 8
ꋷ add X20, X20, X1
ꋸ bne X10, X2, LOOP

1 2
3 4
5 6
7 8

9 10 9 10

1 2

3

54

6

11 12 11 12

9

7

8 9

• Improve the throughput of execution
• May increase the latency of a single thread

• Less branch penalty per thread
• Increase hardware utilization
• Simple hardware design: Only need to duplicate PC/Register

Files
• Real Case:

• Intel HyperThreading (supports up to two threads per core)
• Intel Pentium 4, Intel Atom, Intel Core i7

• AMD RyZen (Zen microarchitecture)
5

Recap: SMT

Wide-issue SS processor v.s. multiple narrower-issue SS processors

6

6-way SS processor —
3 INT ALUs, 3 FP ALUs

I-cache: 32KB, D-cache: 32KB
4 2-issue SS processor —
4* (1 INT ALUs, 1 FP ALUs

I-cache: 8KB, D-cache: 8KB)

Recap: Concept of CMP

7

Processor

Last-level $ (LLC)

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

Core
Registers

L1-$

L2-$

• An SMT processor is basically a SuperScalar processor with multiple instruction front-end. Assume
within the same chip area, we can build an SMT processor supporting 4 threads, with 6-issue pipeline,
64KB cache or — a CMP with 4x 2-issue pipeline & 16KB cache in each core. Please identify how many
of the following statements are/is correct when running programs on these processors.
! If we are just running one program in the system, the program will perform better on an SMT processor
" If we are running 4 applications simultaneously, the cache miss rates will be higher in the SMT processor
If we are running 4 applications simultaneously, the branch mis-prediction will be higher in the SMT processor
$ If we are running one program with 4 parallel threads, the cache miss rates will be higher in the SMT

processor
% If we are running one program with 4 parallel threads simultaneously, the branch mis-prediction will be longer

in the SMT processor
A. 1
B. 2
C. 3
D. 4
E. 5

8

Recap: SMT v.s. CMP

— you have more resources for the program
— it depends!
— it depends!

— it depends!

— it depends!

The only thing we know for sure — if we don’t parallel the program, it won’t get any faster on CMP

Architectural Support for Parallel
Programming

9

• Coherency — Guarantees all processors see the same value
for a variable/memory address in the system when the
processors need the value at the same time
• What value should be seen

• Consistency — All threads see the change of data in the same
order
• When the memory operation should be done

10

Coherency & Consistency

• Snooping protocol
• Each processor broadcasts / listens to cache misses

• State associate with each block (cacheline)
• Invalid

• The data in the current block is invalid
• Shared

• The processor can read the data
• The data may also exist on other processors

• Exclusive
• The processor has full permission on the data
• The processor is the only one that has up-to-date data

11

Simple cache coherency protocol

What happens when we write in coherent caches?

12

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

for(i=0;i<size/4;i++)
 sum += a[i];

sum = 0

for(i=size/4;i<size/2;i++)
 sum += a[i]; for(i=size/2;i<3*size/4;i++)

 sum += a[i];

for(i=3*size/4;i<size;i++)
 sum += a[i];

sum = 0 sum = 0 sum = 0

sum = 0

sum = 0xDEADBEEF write miss/
invalidate

sum = 0 sum = 0 sum = 0

read miss

sum = 0xDEADBEEF

write back
sum = 0xDEADBEEFsum = 0xDEADBEEF

Observer

13

thread 1 thread 2
int loop;

int main()
{
 pthread_t thread;
 loop = 1;

 pthread_create(&thread, NULL, modifyloop,
NULL);
 while(loop == 1)
 {
 continue;
 }
 pthread_join(thread, NULL);
 fprintf(stderr,"User input: %d\n", loop);
 return 0;
}

void* modifyloop(void *x)
{
 sleep(1);
 printf("Please input a number:\n");
 scanf("%d",&loop);
 return NULL;
}

Observer

14

thread 1 thread 2
volatile int loop;

int main()
{
 pthread_t thread;
 loop = 1;

 pthread_create(&thread, NULL, modifyloop,
NULL);
 while(loop == 1)
 {
 continue;
 }
 pthread_join(thread, NULL);
 fprintf(stderr,"User input: %d\n", loop);
 return 0;
}

void* modifyloop(void *x)
{
 sleep(1);
 printf("Please input a number:\n");
 scanf("%d",&loop);
 return NULL;
}

prevents the compiler from putting the variable “loop" in the “register”

• Parallel programming
• GPU

15

Outline

• Assuming that we are running the following code on a CMP with a cache coherency protocol, how
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than
10 numbers)

! 0 1 2 3 4 5 6 7 8 9
" 1 2 5 9 3 6 8 10 12 13
1 1 1 1 1 1 1 1 64 100
$ 1 1 1 1 1 1 1 1 1 100
A. 0
B. 1
C. 2
D. 3
E. 4

16

Cache coherency

thread 1 thread 2

while(1)
 printf(“%d ”,a);

while(1)
 a++;

https://www.pollev.com/hungweitseng close in

• Assuming that we are running the following code on a CMP with a cache coherency protocol, how
many of the following outputs are possible? (a is initialized to 0 as assume we will output more than
10 numbers)

! 0 1 2 3 4 5 6 7 8 9
" 1 2 5 9 3 6 8 10 12 13
1 1 1 1 1 1 1 1 64 100
$ 1 1 1 1 1 1 1 1 1 100
A. 0
B. 1
C. 2
D. 3
E. 4

20

Cache coherency

thread 1 thread 2

while(1)
 printf(“%d ”,a);

while(1)
 a++;

Cache coherency

21

Shared Memory

Core Core
Registers

Core
Registers

Core
RegistersRegisters

Thread Thread Thread Thread

Shared Virtual Address Space

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

L1-$

L2-$

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0]=0

A[0] = 0xDEADBEEF
A[1] = 0
A[2] = 0
A[3] = 0 write miss/

invalidate

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0
A[1] = 0
A[2] = 0
A[3] = 0

read miss

A[0]=0xDEADBEEF

write back

A[0] = 0xDEADBEEF
A[1] = 0
A[2] = 0
A[3] = 0

A[0] = 0xDEADBEEF
A[1] = 0
A[2] = 0
A[3] = 0

• Comparing implementations of thread_vadd — L and R, please identify which one will be
performing better and why

A. L is better, because the cache miss rate is lower
B. R is better, because the cache miss rate is lower
C. L is better, because the instruction count is lower
D. R is better, because the instruction count is lower
E. Both are about the same

22

Performance comparison

 for(i = 0 ; i < NUM_OF_THREADS ; i++)
 {
 tids[i] = i;
 pthread_create(&thread[i], NULL, threaded_vadd, &tids[i]);
 }
 for(i = 0 ; i < NUM_OF_THREADS ; i++)
 pthread_join(thread[i], NULL);

Main thread

Version L Version R
void *threaded_vadd(void *thread_id)
{
 int tid = *(int *)thread_id;
 int i;
 for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS)
 {
 c[i] = a[i] + b[i];
 }
 return NULL;
}

void *threaded_vadd(void *thread_id)
{
 int tid = *(int *)thread_id;
 int i;
 for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++)
 {
 c[i] = a[i] + b[i];
 }
 return NULL;
}

https://www.pollev.com/hungweitseng close in

L v.s. R

26

Version L Version R

c

void *threaded_vadd(void *thread_id)
{
 int tid = *(int *)thread_id;
 int i;
 for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS)
 {
 c[i] = a[i] + b[i];
 }
 return NULL;
}

void *threaded_vadd(void *thread_id)
{
 int tid = *(int *)thread_id;
 int i;
 for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++)
 {
 c[i] = a[i] + b[i];
 }
 return NULL;
}

c

• 3Cs:
• Compulsory, Conflict, Capacity

• Coherency miss:
• A “block” invalidated because of the sharing among processors.

27

4Cs of cache misses

• True sharing
• Processor A modifies X, processor B also want to access X.

• False sharing
• Processor A modifies X, processor B also want to access Y.

However, Y is invalidated because X and Y are in the same block!

28

False sharing

• Comparing implementations of thread_vadd — L and R, please identify which one will be
performing better and why

A. L is better, because the cache miss rate is lower
B. R is better, because the cache miss rate is lower
C. L is better, because the instruction count is lower
D. R is better, because the instruction count is lower
E. Both are about the same

29

Performance comparison

 for(i = 0 ; i < NUM_OF_THREADS ; i++)
 {
 tids[i] = i;
 pthread_create(&thread[i], NULL, threaded_vadd, &tids[i]);
 }
 for(i = 0 ; i < NUM_OF_THREADS ; i++)
 pthread_join(thread[i], NULL);

Main thread

Version L Version R
void *threaded_vadd(void *thread_id)
{
 int tid = *(int *)thread_id;
 int i;
 for(i=tid;i<ARRAY_SIZE;i+=NUM_OF_THREADS)
 {
 c[i] = a[i] + b[i];
 }
 return NULL;
}

void *threaded_vadd(void *thread_id)
{
 int tid = *(int *)thread_id;
 int i;
 for(i=tid*(ARRAY_SIZE/NUM_OF_THREADS);i<(tid+1)*(ARRAY_SIZE/NUM_OF_THREADS);i++)
 {
 c[i] = a[i] + b[i];
 }
 return NULL;
}

• Consider the given program. You can safely assume the caches are
coherent. How many of the following outputs will you see?
! (0, 0)
" (0, 1)
(1, 0)
$ (1, 1)
A. 0
B. 1
C. 2
D. 3
E. 4

30

Again — how many values are possible?

int main() {
 int i;
 pthread_t thread[2];
 pthread_create(&thread[0], NULL, modifya, NULL);
 pthread_create(&thread[1], NULL, modifyb, NULL);
 pthread_join(thread[0], NULL);
 pthread_join(thread[1], NULL);
 fprintf(stderr,”(%d, %d)\n",x,y);
 return 0;
}

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

volatile int a,b;
volatile int x,y;
volatile int f;
void* modifya(void *z) {
 a=1;
 x=b;
 return NULL;
}
void* modifyb(void *z) {
 b=1;
 y=a;
 return NULL;
}

https://www.pollev.com/hungweitseng close in

Possible scenarios

34

Thread 1
a=1;
x=b;

Thread 2

b=1;
y=a;

(0,1)
Thread 1

a=1;
x=b;

Thread 2
b=1;
y=a;

(1,0)

Thread 1
a=1;

x=b;

Thread 2

b=1;
y=a;

(1,1)
Thread 1

x=b;
a=1;

Thread 2
y=a;

b=1;

(0,0)

OoO Scheduling!

• Processor/compiler may reorder your memory operations/
instructions
• Coherence protocol can only guarantee the update of the same

memory address
• Processor can serve memory requests without cache miss first
• Compiler may store values in registers and perform memory

operations later
• Each processor core may not run at the same speed (cache

misses, branch mis-prediction, I/O, voltage scaling and etc..)
• Threads may not be executed/scheduled right after it’s spawned

35

Why (0,0)?

• Consider the given program. You can safely assume the caches are
coherent. How many of the following outputs will you see?
! (0, 0)
" (0, 1)
(1, 0)
$ (1, 1)
A. 0
B. 1
C. 2
D. 3
E. 4

36

Again — how many values are possible?

int main() {
 int i;
 pthread_t thread[2];
 pthread_create(&thread[0], NULL, modifya, NULL);
 pthread_create(&thread[1], NULL, modifyb, NULL);
 pthread_join(thread[0], NULL);
 pthread_join(thread[1], NULL);
 fprintf(stderr,”(%d, %d)\n",x,y);
 return 0;
}

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

volatile int a,b;
volatile int x,y;
volatile int f;
void* modifya(void *z) {
 a=1;
 x=b;
 return NULL;
}
void* modifyb(void *z) {
 b=1;
 y=a;
 return NULL;
}

• x86 provides an “mfence” instruction to prevent reordering
across the fence instruction

• x86 only supports this kind of “relaxed consistency” model.
You still have to be careful enough to make sure that your code
behaves as you expected

37

fence instructions

thread 1 thread 2

 a=1;

 x=b;

 b=1;

 y=a;
a=1 must occur/update before mfence b=1 must occur/update before mfencemfence mfence

• Processor behaviors are non-deterministic
• You cannot predict which processor is going faster
• You cannot predict when OS is going to schedule your thread

• Cache coherency only guarantees that everyone would
eventually have a coherent view of data, but not when

• Cache consistency is hard to support

38

Take-aways of parallel programming

Alternative Parallel Architectures

39

GPU (Graphics Processing Unit)

40

Geometry
Shader

Setup &
Rasterizer Pixel Shader

Raster
Operations /

Output
merger

Input
Assembler

Vertex
Shader Pixel ShaderVertex
Shader

Geometry
Shader

These shaders need to be “programmable” to apply
different rendering effects/algorithms

(Phong shading, Gouraud shading, and etc...)

Basic concept of shading

41

L
VΦ

RN

& &

Iamb = Kamb牨Mamb
Idiff = Kdiff牨Mdiff牨(N牨L)

Ispec = Kspec牨Mspec牨(R牨V)n

Itotal = Iamb + Idiff + Ispec

They are all “vectors”

For each
“point/pixel”

void main(void)
{
 // normalize vectors after interpolation
 vec3 L = normalize(o_toLight);
 vec3 V = normalize(o_toCamera);
 vec3 N = normalize(o_normal);

 // get Blinn-Phong reflectance components
 float Iamb = ambientLighting();
 float Idif = diffuseLighting(N, L);
 float Ispe = specularLighting(N, L, V);

 // diffuse color of the object from texture
 vec3 diffuseColor = texture(u_diffuseTexture, o_texcoords).rgb;

 // combination of all components and diffuse color of the object
 resultingColor.xyz = diffuseColor * (Iamb + Idif + Ispe);
 resultingColor.a = 1;
}

• Given the basic idea of shading algorithms, how many of the following
statements would fit the agenda of designing a GPU?
! Many ALUs to process multiple pixels simultaneously
" Low latency memory bus to supply pixels, vectors and textures
High performance branch predictors
$ Powerful ALUs to process many different kinds of operators

A. 0
B. 1
C. 2
D. 3
E. 4

42

What do you want from a GPU?
https://www.pollev.com/hungweitseng close in

• Given the basic idea of shading algorithms, how many of the following
statements would fit the agenda of designing a GPU?
! Many ALUs to process multiple pixels simultaneously
" Low latency memory bus to supply pixels, vectors and textures
High performance branch predictors
$ Powerful ALUs to process many different kinds of operators

A. 0
B. 1
C. 2
D. 3
E. 4

46

What do you want from a GPU?

Each frame contains 1920*1080 pixels!

Actually, high bandwidth since each pixel requires different L, N, R, V and we need to feed thousands of pixels simultaneously

not really, we only need vector add, vector mul, vector div. Low frequency is OK
since we have many threads

not really, the behavior is uniform across all pixels

In terms of latency, even for 120 frames, you still have 8ms latency to get everything done!

Nvidia GPU architecture

47

An Overview of Kepler GK110 and GK210 Architecture
Kepler GK110 was built first and foremost for Tesla, and its goal was to be the highest performing

parallel computing microprocessor in the world. GK110 not only greatly exceeds the raw compute

horsepower delivered by previous generation GPUs, but it does so efficiently, consuming significantly

less power and generating much less heat output.

GK110 and GK210 are both designed to provide fast double precision computing performance to

accelerate professional HPC compute workloads; this is a key difference from the NVIDIA Maxwell GPU

architecture, which is designed primarily for fast graphics performance and single precision consumer

compute tasks. While the Maxwell architecture performs double precision calculations at rate of 1/32

that of single precision calculations, the GK110 and GK210 Kepler-based GPUs are capable of performing

double precision calculations at a rate of up to 1/3 of single precision compute performance.

Full Kepler GK110 and GK210 implementations inclƵde ϭϱ SMX ƵniƚƐ and Ɛiǆ ϲϰͲbiƚ memoƌǇ conƚƌolleƌƐ͘
Different products will use different configurations. For example, some products may deploy 13 or 14

SMXs. Key features of the architecture that will be discussed below in more depth include:

x The new SMX processor architecture

x An enhanced memory subsystem, offering additional caching capabilities, more bandwidth at

each level of the hierarchy, and a fully redesigned and substantially faster DRAM I/O

implementation.

x Hardware support throughout the design to enable new programming model capabilities

x GK210 expands ƵƉon GKϭϭϬ͛Ɛ on-chip resources, doubling the available register file and shared

memory capacities per SMX.

SMX (Streaming
Multiprocessor)

Connect to PCIe system interconnect

Thread
scheduler

GPU global
memory

High-
bandwidth

memory
controllers

Inside each SMX

48

Streaming Multiprocessor (SMX) Architecture

The Kepler GK110/GK210 SMX unit features several architectural innovations that make it the most
powerful multiprocessor ǁe͛ve built for double precision compute workloads.

SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store units
(LD/ST).

Each of these performs
the same operation, but
each of these is also a

“thread” A total of 16*12 = 192 cores!

Nvidia GPU architecture

49

An Overview of Kepler GK110 and GK210 Architecture
Kepler GK110 was built first and foremost for Tesla, and its goal was to be the highest performing

parallel computing microprocessor in the world. GK110 not only greatly exceeds the raw compute

horsepower delivered by previous generation GPUs, but it does so efficiently, consuming significantly

less power and generating much less heat output.

GK110 and GK210 are both designed to provide fast double precision computing performance to

accelerate professional HPC compute workloads; this is a key difference from the NVIDIA Maxwell GPU

architecture, which is designed primarily for fast graphics performance and single precision consumer

compute tasks. While the Maxwell architecture performs double precision calculations at rate of 1/32

that of single precision calculations, the GK110 and GK210 Kepler-based GPUs are capable of performing

double precision calculations at a rate of up to 1/3 of single precision compute performance.

Full Kepler GK110 and GK210 implementations inclƵde ϭϱ SMX ƵniƚƐ and Ɛiǆ ϲϰͲbiƚ memoƌǇ conƚƌolleƌƐ͘
Different products will use different configurations. For example, some products may deploy 13 or 14

SMXs. Key features of the architecture that will be discussed below in more depth include:

x The new SMX processor architecture

x An enhanced memory subsystem, offering additional caching capabilities, more bandwidth at

each level of the hierarchy, and a fully redesigned and substantially faster DRAM I/O

implementation.

x Hardware support throughout the design to enable new programming model capabilities

x GK210 expands ƵƉon GKϭϭϬ͛Ɛ on-chip resources, doubling the available register file and shared

memory capacities per SMX.

A total of 16*12 = 192*13 = 2496 cores!

AMD GPU Architecture

50
AMD's Graphics Core Next Technology 13

Once the pixels fragments in a tile have been shaded, they flow to the Render Back-Ends (RBEs). The RBEs apply depth, stencil and alpha tests to determine
whether pixel fragments are visible in the final frame. The visible pixels fragments are then sampled for coverage and color to construct the final output pixels.
The RBEs in GCN can access up to 8 color samples (i.e. 8x MSAA) from the 16KB color caches and 16 coverage samples (i.e. for up to 16x EQAA) from the 4KB
depth caches per pixel. The color samples are blended using weights determined by the coverage samples to generate a final anti-aliased pixel color. The
results are written out to the frame buffer, through the memory controllers.

The graphics pipeline is orchestrated using the same set of techniques as the ACEs. Each stage of the 3D pipeline can operate concurrently, as can any ACEs.
The primitive and pixel pipelines are connected to the programmable GCN shaders through crossbar fabrics. The task queues synchronize different shaders
and fixed function hardware through cache or memory.

The advantage of GCN's flexibility is evident in the first few products that have scaled across all four dimensions. The AMD Radeon™ HD 7970 splits the
screen into 2 primitive pipelines and 4 pixel pipelines, with 32 compute units for shading and a 384-bit memory interface. The GCN pixel pipelines are organized
into 2 RBEs and 3 memory controllers, a 50% boost in memory bandwidth. In contrast, the AMD Radeon™ HD 7770 GHz Edition has a single primitive pipeline,
2 pixel pipelines and 10 compute units. The pixel pipelines in the AMD Radeon™ HD 7770 GHz Edition also scaled back to 2 memory controllers, for a 128-bit
wide interface.

Figure 7: AMD Radeon™ HD 7970

A CU in an AMD GPU

51

AMD's Graphics Core Next Technology 4

Figure 3: GCN Compute Unit

Another crucial innovation in GCN is coherent caching. Historically, GPUs have relied on specialized caches (such as read-only texture caches) that do
not maintain a coherent view of memory. To communicate between cores within a GPU, the programmer or compiler must insert explicit synchronization
instructions to flush shared data back to memory. While this approach simplifies design, it increases overhead for applications which share data. GCN is
tailored for general purpose workloads, where algorithms that communicate between cores are common. The cache coherency protocol shares data
through the L2 cache, which is significantly faster and more power efficient than using off-chip graphics memory.

In tandem with cache coherency, GCN introduces virtual memory through a combination of hardware and driver support. Virtual memory eliminates the most
challenging aspects of memory management and opens up new capabilities. AMD’s unique expertise in both high performance graphics and microprocessors
was particularly beneficial, as GCN’s virtual memory model has been carefully defined to be compatible with x86. This simplifies moving data between the
CPU and the discrete GPU in initial products. More importantly, it paves the way for a single address space that is seamlessly shared by CPUs and GPUs.
Sharing, rather than copying, data is vital for performance and power efficiency and a critical element in heterogeneous systems such as AMD’s Accelerated
Processing Units (APUs).

• Comparing the performance of solving the following set of problems using
modern CPU and GPU architectures, how many can GPUs outperform
CPUs?
! Matrix multiplications
" Minimum Spanning Trees
Shortest Path Problems
$ Gaussian Elimination
A. 0
B. 1
C. 2
D. 3
E. 4

52

CPU v.s. GPU
https://www.pollev.com/hungweitseng close in

• Comparing the performance of solving the following set of problems using
modern CPU and GPU architectures, how many can GPUs outperform
CPUs?
! Matrix multiplications
" Minimum Spanning Trees
Shortest Path Problems
$ Gaussian Elimination
A. 0
B. 1
C. 2
D. 3
E. 4

56

CPU v.s. GPU

How things are connected

57

GPU

Second Storage Devices

CPU DRAM

PCIe
Switch

New overhead/bottleneck emerges

58

GPU

Second Storage Devices

CPU DRAM

PCIe
Switch

New overhead

APU (Accelerated Processing Unit)

59

It’s now very common in intel and AMD lineups

GPU CPU

• Regarding the pros and cons of an APU, how many of the followings are correct
! APU eliminates the need of moving data from DRAM to GPU device memory
" The memory bandwidth of an APU is generally better than that of GPU device

memory
The total number of ALUs that an APU can provide must be fewer than a discrete

GPU given the same power budget and chip area
$ A memory intensive GPU kernel can slowdown the performance of another CPU

program
A. 0
B. 1
C. 2
D. 3
E. 4

60

APU
https://www.pollev.com/hungweitseng close in

• Regarding the pros and cons of an APU, how many of the followings are correct
! APU eliminates the need of moving data from DRAM to GPU device memory
" The memory bandwidth of an APU is generally better than that of GPU device

memory
The total number of ALUs that an APU can provide must be fewer than a discrete

GPU given the same power budget and chip area
$ A memory intensive GPU kernel can slowdown the performance of another CPU

program
A. 0
B. 1
C. 2
D. 3
E. 4

64

APU

CPU cores are really big due to the dynamic scheduling logic

CPUs/GPUs in an APU are all connected to DRAM

Because they have to compete with the DRAM bandwidth

Not true, APU uses CPU memory bus that is optimized for “latencies”

• Project due next Monday
• Last reading quiz due next Monday
• Assignment #4 due next Wednesday
• iEVAL, until 12/3

• Please fill the survey to let us know your opinion!
• Don’t forget to take a screenshot of your submission and submit through iLearn — it

counts as a full credit assignment
• We will drop your lowest 2 assignment grades

• Final Exam
• Starting from 12/6 to 12/10 12:00pm, any consecutive 180 minutes you pick
• Similar to the midterm, but more time and about 1.5x longer
• Two of the questions will be comprehensive exam questions
• Will release a sample final at the end of the last lecture

65

Announcement

66ͺͻͥ

Computer
Science &
Engineering

203

