
Performance (III): Amdahl’s Law
(cont.) and Other Performance

Metrics
Hung-Wei Tseng

2

• IC (Instruction Count)
• ISA, Compiler, algorithm, programming language, programmer

• CPI (Cycles Per Instruction)
• Machine Implementation, microarchitecture, compiler, application, algorithm, programming language,
programmer

• Cycle Time (Seconds Per Cycle)
• Process Technology, microarchitecture, programmer

3

Recap: Summary of CPU Performance Equation
Performance = 1

Execution Time

Execution Time = Instructions
Program × Cycles

Instruction × Seconds
Cycle

ET = IC × CPI × CT
Speedup = Execution TimeX

Execution TimeY

Recap: Amdahl’s Law

4

Execution Timebaseline = 1
f 1-f

1-ff/s

baseline

enhanced

Speedupenhanced = Execution Timebaseline

Execution Timeenhanced
= 1

(1 − f) + f
s

Execution Timeenhanced = (1-f) + f/s

Speedupenhanced(f, s) = 1
(1 − f) + f

s

• We can apply Amdahl’s law for multiple optimizations
• These optimizations must be dis-joint!

• If optimization #1 and optimization #2 are dis-joint:

• If optimization #1 and optimization #2 are not dis-joint:

Recap: Amdahl’s Law on Multiple Optimizations

Speedupenhanced(fOpt1, fOpt2, sOpt1, sOpt2) = 1
(1 − fOpt1 − fOpt2) + f_Opt1

s_Opt1 + f_Opt2
s_Opt2

Speedupenhanced(fOnlyOpt1, fOnlyOpt2, fBothOpt1Opt2, sOnlyOpt1, sOnlyOpt2, sBothOpt1Opt2)

fOpt1 1-fOpt1-fOpt2fOpt2

fOnlyOpt1 1-fOnlyOpt1-fOnlyOpt2-fBothOpt1Opt2fOnlyOpt2 fBothOpt1Opt2

= 1
(1 − fOnlyOpt1 − fOnlyOpt2 − fBothOpt1Opt2) + + f_BothOpt1Opt2

s_BothOpt1Opt2 + f_OnlyOpt1
s_OnlyOpt1 + f_OnlyOpt2

s_OnlyOpt2

• Amdahl’s law and its implications
• Other performance metrics

6

Outline

• Final Fantasy XV spends lots of time loading a map
— within which period that 95% of the time on the
accessing the H.D.D., the rest in the operating
system, file system and the I/O protocol. If we
replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

7

Practicing Amdahl’s Law (2)
https://www.pollev.com/hungweitseng close in

Hard Disk Drive

Latency (us)
0 2000 4000 6000 8000

File System Operating System Hardware

• Final Fantasy XV spends lots of time loading a map
— within which period that 95% of the time on the
accessing the H.D.D., the rest in the operating
system, file system and the I/O protocol. If we
replace the H.D.D. with a flash drive, which
provides 100x faster access time and a better
processor to accelerate the software overhead by
2x. By how much can we speed up the map
loading process?

A. ~7x
B. ~10x
C. ~17x
D. ~29x
E. ~100x

11

Practicing Amdahl’s Law (2)

Speedupenhanced(95 % ,5 % ,100,2) = 1
(1 − 95% − 5%) + 95 %

100 + 5 %
2

= 28.98 ×

Hard Disk Drive
Flash SSD

Latency (us)
0 2000 4000 6000 8000

File System Operating System Hardware

• With the latest flash memory technologies,
the system spends 16% of time on accessing
the flash, and the software overhead is now
84%. If we want to adopt a new memory
technology to replace flash to achieve 2x
speedup on loading maps, how much faster
the new technology needs to be?
A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

12

Speedup further!
https://www.pollev.com/hungweitseng close in

Hard Disk Drive
Flash SSD

Latency (us)
0 2000 4000 6000 8000

File System Operating System Hardware

• With the latest flash memory technologies,
the system spends 16% of time on accessing
the flash, and the software overhead is now
84%. If we want to adopt a new memory
technology to replace flash to achieve 2x
speedup on loading maps, how much faster
the new technology needs to be?
A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

16

Speedup further!

Speedupenhanced(16 % , x) = 1
(1 − 16%) + 16 %

x
= 2

x = 0.47
Does this make sense?

PCM
Flash SSD

0 12.5 25 37.5 50
File System Operating System Hardware

• The maximum speedup is bounded by

17

Amdahl’s Law Corollary #1

Speedupmax(f, ∞) = 1
(1 − f) + f

∞

Speedupmax(f, ∞) = 1
(1 − f)

• With the latest flash memory technologies,
the system spends 16% of time on accessing
the flash, and the software overhead is now
84%. If we want to adopt a new memory
technology to replace flash to achieve 2x
speedup on loading maps, how much faster
the new technology needs to be?
A. ~5x
B. ~10x
C. ~20x
D. ~100x
E. None of the above

18

Speedup further!

Speedupmax(16 % , ∞) = 1
(1 − 16%) = 1.19

2x is not possible

PCM
Flash SSD

0 12.5 25 37.5 50
File System Operating System Hardware

• If we can pick just one thing to work on/optimize

19

Corollary #1 on Multiple Optimizations

f1 1-f1-f2-f3-f4f2 f3 f4

Speedupmax(f1, ∞) = 1
(1 − f1)

Speedupmax(f2, ∞) = 1
(1 − f2)

Speedupmax(f3, ∞) = 1
(1 − f3)

Speedupmax(f4, ∞) = 1
(1 − f4)

The biggest fx would lead
to the largest Speedupmax!

• When f is small, optimizations will have little effect.
• Common == most time consuming not necessarily the most
frequent

• The uncommon case doesn’t make much difference
• The common case can change based on inputs, compiler
options, optimizations you’ve applied, etc.

20

Corollary #2 — make the common case fast!

• Compile your program with -pg flag
• Run the program

• It will generate a gmon.out
• gprof your_program gmon.out > your_program.prof

• It will give you the profiled result in your_program.prof

21

Identify the most time consuming part

Demo — sort

22

Cumulative Execution
Time

Tim
e (

Se
co

nd
s)

0

7.5

15

22.5

30

CPU
+H

DD

GPU
+H

DD

GPU
+SS

D

File I/O
Sort
Other

Speedup

Sp
ee

du
p

0
2
4
6
8

10
12
14
16
18
20
22
24

CPU
+H

DD

GPU
+H

DD

GPU
+SS

D

Execution Time
Breakdown

No
rm

aliz
ed

 Ti
me

 to
 Ea

ch
 Co

nfi
gu

rat
ion

’s
To

tal
 Ex

ec
uti

on
 Ti

me

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CPU
+H

DD

GPU
+H

DD

GPU
+SS

D

File I/O
Sort
Other

Sort was the
most significant

File I/O is now
more critical to
performance

Something else (e.g., data
movement) matters more

Cumulative Execution
Time

Tim
e (

Se
co

nd
s)

0

7.5

15

22.5

30

CPU
+H

DD

GPU
+H

DD

GPU
+SS

D

File I/O
Sort
Other

• With optimization, the common
becomes uncommon.

• An uncommon case will (hopefully)
become the new common case.

• Now you have a new target for
optimization — You have to revisit
“Amdahl’s Law” every time you
applied some optimization

23

If we repeatedly optimizing our design based on Amdahl’s law...

Sort was the
most significant

File I/O is now
more critical to
performance

Something else (e.g.,
data movement)
matters more now

• If the program spend 90% in A, 10% in B. Assume that an
optimization can accelerate A by 9x, by hurts B by 10x...

• Assume the original execution time is T. The new execution
time

24

Don’t hurt non-common part too mach

ETnew = ETold × 90 %
9 + ETold × 10% × 10

ETnew = 1.1 × ETold

Speedup = ETold

ETnew
= ETold

1.1 × ETold
= 0.91 × ……slowdown!

You may not use Amdahl’s Law for this case as Amdahl’s Law does NOT
(1) consider overhead
(2) bound to slowdown

• Symmetric multicore processor with n cores (if we assume the
processor performance scales perfectly)

25

Amdahl’s Law on Multicore Architectures

Speedupparallel(fparallelizable, n) = 1
(1 − fparallelizable) + f_ parallelizable

n

• Regarding Amdahl’s Law on multicore architectures, how many of the following statements
is/are correct?
! If we have unlimited parallelism, the performance of each parallel piece does not matter as long

as the performance slowdown in each piece is bounded
" With unlimited amount of parallel hardware units, single-core performance does not matter

anymore
With unlimited amount of parallel hardware units, the maximum speedup will be bounded by

the fraction of parallel parts
$ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange

overhead is minor
A. 0
B. 1
C. 2
D. 3
E. 4

26

Amdahl’s Law on Multicore Architectures
https://www.pollev.com/hungweitseng close in

• Regarding Amdahl’s Law on multicore architectures, how many of the following statements
is/are correct?
! If we have unlimited parallelism, the performance of each parallel piece does not matter as long

as the performance slowdown in each piece is bounded
" With unlimited amount of parallel hardware units, single-core performance does not matter

anymore
With unlimited amount of parallel hardware units, the maximum speedup will be bounded by

the fraction of parallel parts
$ With unlimited amount of parallel hardware units, the effect of scheduling and data exchange

overhead is minor
A. 0
B. 1
C. 2
D. 3
E. 4

30

Amdahl’s Law on Multicore Architectures
Speedupparallel(fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable × Speedup(< 1)
∞

Speedupparallel(fparallelizable, ∞) = 1
(1 − fparallelizable) speedup is determined by 1-f

Merge Sort
Demo — merge sort v.s. bitonic sort on GPUs

31

O(nlog2n)
Bitonic Sort

void BitonicSort() {

 int i,j,k;

 for (k=2; k<=N; k=2*k) {
 for (j=k>>1; j>0; j=j>>1) {
 for (i=0; i<N; i++) {
 int ij=i^j;
 if ((ij)>i) {
 if ((i&k)==0 && a[i] > a[ij])
 exchange(i,ij);
 if ((i&k)!=0 && a[i] < a[ij])
 exchange(i,ij);
 }
 }
 }
 }
}

O(nlog2
2n)

Merge sort

32

1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

9 10 17 20 5 8 13 15 2 4 6 71 14 11 12

1 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7

1 9 10 11 12 14 17 20 2 4 5 6 7 8 13 15

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

O(n log n)

log n
you can merge with O(n) time

with O(n) space

Parallel merge sort

33

1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

1 14 11 12 9 10 17 20 5 8 13 15 2 4 6 7

1 11 12 14 9 10 17 20 5 8 13 15 2 4 6 7

1 9 10 11 12 14 17 20 2 4 5 6 7 8 13 15

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

Bitonic sort

34

1 14 12 11 10 9 17 20 8 5 13 15 4 2 6 7

1 14 12 11 9 10 20 17 5 8 15 13 2 4 7 6

1 11 12 14 20 17 9 10 5 8 15 13 7 6 2 4

1 11 12 14 20 17 10 9 5 8 13 15 7 6 4 2

1 11 10 9 20 17 12 14 7 8 13 15 5 6 4 2

1 9 10 11 12 14 20 17 13 15 7 8 5 6 4 2

1 9 10 11 12 14 17 20 15 13 8 7 6 5 4 2

void BitonicSort() {

 int i,j,k;

 for (k=2; k<=N; k=2*k) {
 for (j=k>>1; j>0; j=j>>1) {
 for (i=0; i<N; i++) {
 int ij=i^j;
 if ((ij)>i) {
 if ((i&k)==0 && a[i] > a[ij])
 exchange(i,ij);
 if ((i&k)!=0 && a[i] < a[ij])
 exchange(i,ij);
 }
 }
 }
 }
}

Bitonic sort (cont.)

35

1 2 4 5 6 7 8 9 10 11 12 13 14 15 17 20

1 9 10 11 12 14 17 20 15 13 8 7 6 5 4 2

1 5 4 2 6 9 8 7 12 13 10 11 15 14 17 20

1 5 4 2 6 9 8 7 12 13 10 11 15 14 17 20

1 2 4 5 6 7 8 9 10 11 12 13 15 14 17 20

O(n log2 n) — hard to beat n(log n) if you can’t parallelize this a lot!

benefits — in-place merge (no additional space is necessary), very stable comparison
patterns

void BitonicSort() {

 int i,j,k;

 for (k=2; k<=N; k=2*k) {
 for (j=k>>1; j>0; j=j>>1) {
 for (i=0; i<N; i++) {
 int ij=i^j;
 if ((ij)>i) {
 if ((i&k)==0 && a[i] > a[ij])
 exchange(i,ij);
 if ((i&k)!=0 && a[i] < a[ij])
 exchange(i,ij);
 }
 }
 }
 }
}

• If we can build a processor with unlimited parallelism
• The complexity doesn’t matter as long as the algorithm can utilize all
parallelism

• That’s why bitonic sort or MapReduce works!
• The future trend of software/application design is seeking for
more parallelism rather than lower the computational complexity

36

Corollary #4
Speedupparallel(fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedupparallel(fparallelizable, ∞) = 1
(1 − fparallelizable)

• Single-core performance still matters
• It will eventually dominate the performance
• If we cannot improve single-core performance further, finding more
“parallelizable” parts is more important

37

Corollary #3
Speedupparallel(fparallelizable, ∞) = 1

(1 − fparallelizable) + f_ parallelizable
∞

Speedupparallel(fparallelizable, ∞) = 1
(1 − fparallelizable)

“Fair” Comparisons

38

Andrew Davison. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers. In Humour the
Computer, MITP, 1995
V. Sze, Y. -H. Chen, T. -J. Yang and J. S. Emer. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered
Harmful. In IEEE Solid-State Circuits Magazine, vol. 12, no. 3, pp. 28-41, Summer 2020.

TFLOPS (Tera FLoating-point Operations Per Second)

39

TFLOPS clock rate
Switch 1 921 MHz

XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz

• Cannot compare different ISA/compiler
• What if the compiler can generate code with fewer instructions?
• What if new architecture has more IC but also lower CPI?

• Does not make sense if the application is not floating point
intensive

40

Is TFLOPS (Tera FLoating-point Operations Per Second) a good metric?

TFLOPS = # of floating point instructions × 10−12

Exection Time

= IC × % of floating point instructions × 10−12

IC × CPI × CT

IC is gone!= % of floating point instructions × 10−12

CPI × CT

• Cannot compare different ISA/compiler
• What if the compiler can generate code with fewer instructions?
• What if new architecture has more IC but also lower CPI?

• Does not make sense if the application is not floating point intensive

41

TFLOPS (Tera FLoating-point Operations Per Second)

TFLOPS clock rate
Switch 1 921 MHz

XBOX One X 6 1.75 GHz
PS4 Pro 4 1.6 GHz

GeForce GTX 2080 14.2 1.95 GHz

• Reading quiz due next Monday before the lecture
• We will drop two of your least performing reading quizzes
• You have two shots, both unlimited time
• The commentary question in Quiz #2 needs manual grading —
don’t be panic

• Assignment #1 will be up tonight
• Check our website for slides, eLearn for quizzes/assignments,
piazza for discussions

• Youtube channel for lecture recordings:
https://www.youtube.com/c/ProfUsagi/playlists

67

Announcement

https://www.youtube.com/c/ProfUsagi/playlists

ͺͻͥ

Computer
Science &
Engineering

203

